

Strasbourg scanning table A005 report

G. Duchêne

9-13/09/2024

AGATA week 2024 @ Milano

Content

What happened to A005?

Lateral and front scans – segmentation lines

A005 Tomography

What happened to A005

What happened to A005?

Request of the Characterisation Team

- > A005 scanned already at Liverpool
- Moved to Salamanca but, after 6 months, tripping when raising HV
- Brought from Salamanca to Strasbourg in test cryostat for diagnostic (Jan 23)
- Core FET replaced; not successfull
- A005 dismounted on Feb 8 for capsule leak repair at MIRION
- ➢ Back at IPHC on April 26
- Mounted, validated in the Salamanca test cryostat in May-June
- Start of A005 scans in July 23

What happened to A005?

Request of the Characterisation Team

- > A005 scanned already at Liverpool
- Moved to Salamanca but, after 6 months, tripping when raising HV
- Brought from Salamanca to Strasbourg in test cryostat for diagnostic (Jan 23)
- Core FET replaced; not successfull
- A005 dismounted on Feb 8 for capsule leak repair at MIRION
- Back at IPHC on April 26
- Mounted, validated in the Salamanca test cryostat in May-June
- Start of A005 scans in July 23

- Vertical alignments and scans in autumn 23
- Horizontal alignments and scans January-April 24
- > Tomography April July
- Imager tests July
- The test cryostat with A005 capsule mounted has been pumped from early August to August 21 and packed
- Moved to GSI on August 27
- Meanwhile, J. Dudouet copied the scanned data to Lyon for reformating them in AGATA standard with the goal to further analyse them

Lateral and front scans – segmentation line widths

Classical method

- > Am horizontal (H) scans across segmentation BC
 - ♦ 10 scans of 10 mm length each, 5 < z < 86 mm
- > Am H scans across slices
 - 5 scans of 4 mm length each, for z = 8, 21, 36, 54, 72 mm
- Fit with Wood-Saxon function

M. Moukaddam's analysis

Classical method

- > Am horizontal (H) scans across segmentation BC
 - * 10 scans of 10 mm length each, 5 < z < 86 mm
- > Am H scans across slices
 - 5 scans of 4 mm length each, for z = 8, 21, 36, 54, 72 mm
- Fit with Wood-Saxon function

M. Moukaddam's analysis

Classical method

220.00

210,00

200,00

190,00

180,00

170,00

160,00

150,00

140,00

130.00

120.00

-250.00 -240.00 -230.00 -220.00

- > Am H scans across segmentation BC
 - * 10 scans of 10 mm length each, 5 < z < 86 mm
- \geq Am H scans across slices
 - * 5 scans of 40 mm length each, for z = 8, 21, 36, 54, 72 mm
- > Fit with Wood-Saxon function

-210.00

-200.00

□ A005 alignments in vertical position

- > Vertical (V) scan across the EF segmentation line
 - Use a ²⁴¹Am to align the EF segmentation line on the Y axis
 - Pitch of 100 μm
 - Front segmentation width
 - $668 + 30 + 6 \mu m$ with a 1 mm diam. collimator $626 + - 30 + - 4 \mu m$ with a 500 μm diam. collimator

□ A005 alignments in vertical position

- > Vertical (V) scan across the EF segmentation line
 - Use a ²⁴¹Am to align the EF segmentation line on the Y axis
 - Pitch of 100 μm
 - Front segmentation width

 $668 + - 30 + - 6 \mu m$ with a 1 mm diam. collimator $626 + - 30 + - 4 \mu m$ with a 500 μm diam. collimator

Charge collection in interstrips

9-13/09/2024

Université de Strasbourg

Charge collection in interstrips

M. Ginsz, PhD, Univ. Strasbourg, 2015

Charge collection in interstrips

Charge collection in

J. Ljungvall's analysis on A005 data using Ginsz technique

□ A005 alignments in vertical position

- > Vertical (V) scan across the EF segmentation line
 - Use a ²⁴¹Am to align the EF segmentation line on the Y axis
 - Pitch of 100 μm
 - Segmentation width

 $668 + - 30 + - 6 \mu m$ with a 1 mm diam. collimator $626 + - 30 + - 4 \mu m$ with a 500 μm diam. collimator

9-13/09/2024

M. Ginsz, PhD, Univ. Strasbourg, 2015

□ A005 alignments in vertical position

- > Vertical (V) scan across the EF segmentation line
 - Use a ²⁴¹Am to align the EF segmentation line on the Y axis
 - Pitch of 100 μm
 - Segmentation width

 $668 +/- 30 +/- 6 \mu m$ with a 1 mm diam. collimator $626 +/- 30 +/- 4 \mu m$ with a 500 μm diam. collimator $545 +/- 34\mu m$ with a 1 mm diam. collimator

Width +/- 50 μm

J. Ljungvall's analysis on A005 data using Ginsz technique

Classical method

- > Am H scans across segmentation BC
 - ♦ 10 scans of 10 mm length each, 5 < z < 86 mm
- > Am H scans across slices
 - 5 scans of 40 mm length each, for z = 8, 21, 36, 54, 72 mm
- Fit with Wood-Saxon function

Ginsz's method or add-back method

- Sum up the energies released in sector B_i and C_i
- > Fit the peak shape along the collimator path

J. Ljungvall's analysis on A005 data using Ginsz technique

9-13/09/2024

AGATA week 2024 @ Milano

Classical method

- > Am H scans across segmentation BC
 - ♦ 10 scans of 10 mm length each, 5 < z < 86 mm
- > Am H scans across slices
 - 5 scans of 40 mm length each, for z = 8, 21, 36, 54, 72 mm
- > Fit with Wood-Saxon function

Ginsz's method or add-back method

- Sum up the energies released in slice B_i and B_{i+1}
- > Fit the peak shape along the collimator path

J. Ljungvall's analysis on A005 data using Ginsz technique

Classical method

- > Am H scans across segmentation BC
 - * 10 scans of 10 mm length each, 5 < z < 86 mm
- Am H scans across slices
 - 5 scans of 40 mm length each, for z = 8, 21, 36, 54, 72 mm
- Fit with Wood-Saxon function

Ginsz's method or add-back method

- Sum up the energies released in sector B_i and C_i
- Sum up the energies released in slice B_i and B_{i+1}
- > Fit the peak shape along the collimator path

Not yet understood To be further studied

J. Ljungvall's analysis on A005 data using Ginsz technique

B006 tomography

B006 tomography

- ➢ M. Ginsz's PhD work on B006
 - Full horizontal surface scans
 - ✤ 2.5x2.5 mm² pitch (1152 pts), 75 sec/pt
 - * 11 scanned 2D projections rotated by 30°
 - **\diamond** Total duration = 14 days

B006

A005 tomography – the link between 2D and 3D scans

> New work on A005

- * 12 scanned 2D projections rotated by 30°
- 1x1 mm² pitch (7200 pts), 70 sec/pt
- **\diamond** Total duration = 3 months
- Adapted Ginsz's programmes

h30_ppintegral

h60_ppintegral

h240_ppintegral

h300_ppintegral

Duchêne

сi

160 150 140F

-250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150

210

200 190

180

170

130

de Strasbourg

F. Didierjean's analysis

F. Didierjean's analysis

2D projection of the 3D reconstructed model

and 3D scans

 \geq New work on A005

Transversal cuts

segmentation lines

Slice between 44.00 and 45.00

Duchêne 6

9-13/09/2024

AGAT/

Slice between 43.00 and 44.00

 \geq New work on A005

and 3D scans

- Transversal cuts
- Front hole due to the crossing of the 3 segmentation lines
- **\diamond** Still present at z = 3-4 mm

and 3D scans

Slice between 42.00 and 43.00

Slice between 36.00 and 37.00

 \geq New work on A005

and 3D scans

- Transversal cuts
- Front hole due to the crossing of the 3 segmentation lines
- ***** Still present at z = 3-4 mm
- **\diamond** Bored hole appears at z = 10-11 mm

and 3D scans

Slice between 35.00 and 36.00

Z = 11-12

Slice between 34.00 and 35.00

□ A005 tomography – the link between 2D and 3D scans

> New work on A005

Transversal cuts

Slice between 33.00 and 34.00

□ A005 tomography – the link between 2D and 3D scans

> New work on A005

Transversal cuts

Slice between 0.00 and 1.00

□ A005 tomography – the link between 2D and 3D scans

> New work on A005

Transversal cuts

Slice between -30.00 and -29.00

and 3D scans

- \geq New work on A005
 - Transversal cuts
 - Front hole due to the crossing of the 3 segmentation lines
 - Still present at z = 3-4 mm
 - ***** Bored hole appears at z = 10-11 mm

• Hole diameter increases from z = 76-77 mm

and 3D scans

 \geq New work on A005

mm

Transversal cuts

Slice between -36.00 and -35.00

Duchêne 6

and 3D scans

mm

Slice between -38.00 and -37.00

Z = 84-85

Slice between -39.00 and -38.00

Z = 85-86

Slice between -40.00 and -39.00

Z = 86-87

AGAT/

Slice between -41.00 and -40.00

A005 tomography – the link between 2D and 3D scans

- > New work on A005
 - Transversal cuts
 - Front hole due to the crossing of the 3 segmentation lines
 - Still present at z = 3-4 mm
 - ***** Bored hole appears at z = 10-11 mm
 - Hole diameter increases from z = 76-77 mm
 - Hole diameter gets asymmetric from z = 82-83
 mm
 - Very asymmetric!!
 - The outer diameter seems also to slightly reduce!

Slice between -42.00 and -41.00

A005 tomography – the link between 2D and 3D scans

- > New work on A005
 - Transversal cuts
 - Front hole due to the crossing of the 3 segmentation lines
 - Still present at z = 3-4 mm
 - ***** Bored hole appears at z = 10-11 mm
 - Hole diameter increases from z = 76-77 mm
 - Hole diameter gets asymmetric from z = 82-83
 mm
 - Very asymmetric!!
 - The outer diameter seems also to slightly reduce!

Slice between -43.00 and -42.00

Z = 84-85

A005 tomography

Segment Hit (Z = 86 mm)

A. Corbel's analysis

G. Duchêne

Université

de Strasbourg

A. Corbel's analysis

G. Duchêne

Université

de Strasbourg

Z = 88-89

Z = 89-90

A005 tomography

A. Corbel's analysis

G. Duchêne

Université

de Strasbourg

SIIC F. Didierjean's analysis UU

□ A005 tomography or 3D scans?

> Perspectives

- Play with threshold to confirm the inactive volumes
- Evaluate the volume loss
- Interact with M. Labiche for implementation in GEANT4 simulations
- Perform the tomography or a full database with 1 mm pitch on another A crystal, on at least one B and one C
- Or produce a 1 mm pitch database from which a similar model can be extracted (20 TB, 36d)

The AGATA collaboration

> For B006, S001 and A005 loans

M. Ginsz, B. De Canditiis, A. Corbel

> PhD students for their extremely valuable inputs and developments

The IPHC AGATA team

F. Didierjean, M. Filliger, J. Ljungvall, M. Moukaddam and M-H. Sigward

Thanks for your attention

Scan fit using Wood-Saxon function

$$V(r)=-rac{V_0}{1+\exp(rac{r-R}{a})}$$

3 parameters: V_0 , R and a

The Strasbourg PSCS technique

Perspectives

- > Mechanical upgrades
 - ✤ On the detector holder équerre
 - Optical module
 - Support bars for the collimator

Sources

- Search for smaller size sources with the same activity (presently diam. 3 mm, height 3 mm)
- > Analysis programs
 - * Perform and study $\chi^{0.3}$ comparison to give more weight to the induced signals
 - Study gating on the Compton edge to favour single interactions

- > Compare AGATA detector databases
 - Compare A, B and C crystal databases
 - If differences are observed -> compare 2 A crystals, 2 B crystals and 2 C crystals

Scan new detectors

- New contacts (Padova-LNL devpt)
- Scan a crystal and the same crystal after coating
- Point-contact detectors
- Neutron damaged detector before and after annealing

2-6/09/2024

