

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Mojahed Abushawish's PhD work, presented by Jérémie Dudouet

Institut de Physique des deux infinis de Lyon (IP2I)

AGATA week 2024, Milano

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Why AGATA is the best detector of the world?

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Why AGATA is the best detector of the world?

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

Why AGATA is the best detector of the world?

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

AGATA week 2024: 9th - 12th October

How is obtained this position resolution?

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

The Pulse Shape Analysis algorithm (PSA)

What can be improved ?

► Is the PSA working ?

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

What can be improved ?

→ What can be improved ? (PSA algorithm, Simulations)

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

- Can we characterize its performances ?
- → Is the position resolution uniform in the crystal volume ?

AGATA week 2024: 9th - 12th October

What can be improved ?

Can we characterize its performances ?

→ Is the position resolution uniform in the crystal volume ? → What can be improved ? (PSA algorithm, Simulations)

YES, with a scanning table !

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

YES

AGATA week 2024: 9th - 12th October

The Strasbourg scanning table

Scanning capabilities:

- \blacktriangleright motorized collimator with a precision of 10 µm
- → system allowing the placement of the detector in vertical and horizontal position
- ► laser alignment system
- → digital electronic (TNT2)

Scanning concept:

- → not performing a real 3D scan (too long), but two 2D scans (vertical and horizontal)
- → 3D basis obtained by Pulse Shape Comparison Scanning (PSCS) method

Detector scanned:

- ► S001: a prototype symmetric detector
- ► A005: scan finalized this summer

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

The PSCS principle

▶ 1 horizontal scan + 1 vertical scan,

- ▶ the 3D basis is obtained by a combined analysis of both data-sets.
- > Validated and published method, but time consuming (5 days for the PSCS analysis)

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

AGATA week 2024: 9th - 12th October

New method proposed @ IP2I based on neural networks

Trained Neural network

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

this allows the network to learn patterns of each dataset without affecting the other.

Data processing

To be as close as possible to the data taken online with AGATA, a complete analysis chain has been developed:

Raw data are converted from TNT2 to ADF using the new Scanning Table Data Processing (STDPro) package → produce compressed ADF raw data, including scanning meta data → produce basic histograms for processing checks and calibration

Standard AGATA tools are then used to calibrate the scanned data:

- → traces and energy calibrations (Cubix)
- → x-talk and time alignment (RecalEnergy)
- → data stored to ROOT Trees and calibrated ADF files (after preprocessing)
- → processing is done using the FEMUL emulator

► The processing is dispatched using the IP2I SLURM farm (more than 3000 runs to be processed in ~10 minutes) → batch processing system based on a docker image containing all AGATA software

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

Data processing

Baseline fluctuations (critical for comparing traces):
Not possible to use one baseline calibration for a full scan

Single calibration per scan

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Data processing

► Baseline fluctuations (critical for comparing traces): ► Not possible to use one baseline calibration for a full scan

► Automatic baseline calibration for each scan position

Single calibration per scan

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

Data processing

Energy calibrations:

- ► Need to play artificially with the **tfall/trise** values of **PreprocessingFilterPSA.conf** file

		tfall	trise	gain		
segm	0	10.0	<mark>6</mark> .148618e-01	5.649478e-02	15	0
segm	1	10.0	6.317184e-01	5.558346e-02	15	0
segm	2	10.0	6.262809e-01	5.310815e-02	15	0
segm	3	10.0	6.336661e-01	5.976445e-02	15	0
segm	4	10.0	6.205523e-01	5.447304e-02	15	0
segm	5	10.0	6.200081e-01	5.590805e-02	15	0
segm	6	10.0	5.958490e-01	5.982570e-02	15	0
segm	7	10.0	6.367053e-01	5.183969e-02	15	0
segm	8	10.0	<mark>6</mark> .289934e-01	1.090906e-01	15	0
segm	9	10.0	6.099112e-01	1.158522e-01	15	0
segm	10	10.0	<mark>6</mark> .138186e-01	1.127747e-01	15	0

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

→ With AGATA electronics (ATCA/GGP), no need to calibrate traces, this is automatic. Not the case for TNT2

Data processing

Energy calibrations:

- ► Need to play artificially with the **tfall/trise** values of **PreprocessingFilterPSA.conf** file

Segments/cores traces are calibrated

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

Max of the trace

S001: Neural network training

Large statistic fluctuations per segment:

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

→ Vertical scan quite homogenous: attenuation is compensated by the larger size of backward segments Horizontal scan: large discrepancies, more statistic in the larger layers, and in the segments closer to the source

S001: Neural network training

Large statistic fluctuations per segment:

- ► Training process:
 - Best results with one dedicated model per segment
 - ▶ 90% of data for training, 10% for validation

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

→ Vertical scan quite homogenous: attenuation is compensated by the larger size of backward segments Horizontal scan: large discrepancies, more statistic in the larger layers, and in the segments closer to the source

S001: Neural network results

> The distribution of the predicted positions conforms with the attenuation of the gamma rays.

Horizontal

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Predicted positions in (Y,Z) plane for X in [-3 mm ; 3 mm]

S001: Model consistency

> Average trace between Neural network and PSCS looks similar but more statistics and less fluctuations in NN

Traces predicted at position (22,0,34) in segment 2

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

S001: Model consistency

> Average trace between Neural network and PSCS looks similar but more statistics and less fluctuations in NN

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Mean Std of the traces per pixel at Z=30mm

Filtering of the data to keep the best traces:

- → limitation on the energy range with the best results: 300-480 keV and 650-670 keV
- → in this energy range, only traces with error < 2mm are kept
- → an iterative method based on the trace std then removes the remaining noisy signals

Remaining traces in the basis: 43% of the full scan

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Experimental basis as a function of radius

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Experimental basis as a function of theta

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Experimental basis as a function of Z

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Segment 8

20

40

Time(10ns)

60

► We are now ready to perform PSA !!!

- → PSA performed with the standard AGAPRO/femul environment (Full Grid Search used by default)
- → PSA results are then compared

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

S001: PSA results

Keep in mind that for S001, ADL comparisons are not fair !
The core signal is too fast compared to ADL and we didn't succeeded to understand why

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

► PSA results:

- → PSCS gives slightly worse results than NN (mean error = 3.12mm)
- \rightarrow ADL is the worst (but unfair comparison) (mean error = 4.26mm)

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

► PSA results:

- Clear patterns appear at middle radius
- → The error increase with depth (so with the volume of the segment)

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

► PSA results:

- Clear patterns appear at middle radius
- → The error increase with depth (so with the volume of the segment)

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

► PSA results:

- Clear patterns appear at middle radius
- → The error increase with depth (so with the volume of the segment)

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

► PSA results:

- Clear patterns appear at middle radius
- → The error increase with depth (so with the volume of the segment)

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

PSA algorithm effect:

→ The clustering effects in the middle of the segment is enhanced by the algorithm:

- ► NN model: present but very limited
- ► PSA full grid search: clearer pattern
- ► PSA adaptive grid search: stronger effect

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Layer 2

S001: PSA results

> PSA algorithm effect:

- → The clustering effects in the middle of the segment is enhanced by the algorithm:
- → The clustering regions corresponds to voxels where the transient signal area are almost null

Integral of the transients signals in the first neighbouring segments

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

t is enhanced by the algorithm: The transient signal area are almost null

PSA algorithm effect:

- → The clustering effects in the middle of the segment is enhanced by the algorithm:
- → The clustering regions corresponds to voxels where the transient signal area are almost null
- → In this regions, the PSA adaptive grid search is less efficient to find the good coarse grid voxel.

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

PSA algorithm effect:

- → The clustering effects in the middle of the segment is enhanced by the algorithm:
- The clustering regions corresponds to voxels where the transient signal area are almost null
- → In this regions, the PSA adaptive grid search is less efficient to find the good coarse grid voxel.
- → This effect is also seen in ADL basis

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

AGATA week 2024: 9th - 12th October

A005 scanning

A005 crystal has been scanned previously in Liverpool and very recently in Strasbourg !
We discovered that there was a mismatch in segments nomenclature conventions !

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

A005 scanning

A005 crystal has been scanned previously in Liverpool and very recently in Strasbourg !
We discovered that there was a mismatch in segments nomenclature conventions !
Segments A in the scanning corresponds to segments B in AGATA (ADL) nomenclature

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

A005 scanning

How to fix this nomenclature problem to apply PSA on ADL data ?
Simply rotation the ADL by 60° is not possible (2mm cartesian grid basis issues)
Producing a new ADL basis in IKP nomenclature (who can do it ?)

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

A005 scanning

Three steps solution !

- Before PSA: Segments nomenclature in the data flow is switched to AGATA convention
- → The standard PSA with ADL basis in AGATA convention is performed
- \blacktriangleright Results are rotated by ~60° to match with the scanning positions
- This will allow to analyze the scanned data with ADL, but also to analyze data taken online with A005

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

A005 scanning issues....

Scanning of A005:

- → Vertical scan processed in August 2023 → Full calibration processed
- → New Horizontal scan processed in July 2024 → Full recalibration

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

→ Horizontal scan processed in February 2024 → Full recalibration that shown some scanning issues

A005: Results

Comparison of:

- \rightarrow NN results
- → PSA with NN basis
- → PSA with AGATAGeFEM, rotated to IKP convention (thanks Joa)
- → PSA with ADL, using IKP to AGATA filter and PSA rotation filter

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

ion (thanks Joa) A rotation filter

Layer 1

	-	
_	7	
_	6	
_	5	(
_	4	ror (mm
_	3	ш
_	2	
_	1	
	0	

A005: Results

Comparison of:

- \rightarrow NN results
- → PSA with NN basis
- → PSA with AGATAGeFEM, rotated to IKP convention (thanks Joa)
- → PSA with ADL, using IKP to AGATA filter and PSA rotation filter

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

ion (thanks Joa) A rotation filter

Layer 3

-
- 7
- 6
- 5
- 4 `
- 3
- 2
- 1
- 0

A005: Results

Comparison of:

- \rightarrow NN results
- → PSA with NN basis
- → PSA with AGATAGeFEM, rotated to IKP convention (thanks Joa)
- → PSA with ADL, using IKP to AGATA filter and PSA rotation filter

On average, the results comply with AGATA specifications, but there is room for improvement in the regions where the hot spots are located.

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

ion (thanks Joa) A rotation filter

Layer 5

-
- 7
- 6
- 5
- 4 `
- 3
- 2
- 1
- 0

A005: Results

Up to which level can we trust the scanned positions ?
Given values are relative to the scan positions, but what about random Compton or multiple hits in one segment ?
To test the robustness of the NN, we trained it with 50% of the data with bad random labels
after training, the network was still able to predict the good positions

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

AGATA week 2024: 9th - 12th October

Up to which level can we trust the scanned positions ? Given values are relative to the scan positions, but what about random Compton or multiple hits in one segment ? To test the robustness of the NN, we trained it with 50% of the data with bad random labels → after training, the network was still able to predict the good positions Selecting only photopeak events (limiting random Compton events), the results are much better in the last layer

Error on X and Y, for layer: 5

-40 -30 -20 -10 0 10 20 30

X(mm)

Photopeak only

All energies

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

A005: Results

Comparison between PSA basis compared to NN predictions (assumed to be more precise than scanning): → NN experimental basis

- → AGATAGeFEM basis
- \rightarrow ADL basis

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Layer 1

A005: Results

Comparison between PSA basis compared to NN predictions (assumed to be more precise than scanning):
NN experimental basis

- ► AGATAGeFEM basis
- ➡ ADL basis

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Layer 3

A005: Results

Comparison between PSA basis compared to NN predictions (assumed to be more precise than scanning): ► NN experimental basis

- → AGATAGeFEM basis
- \rightarrow ADL basis

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

Layer 5

→ Effects inherent to the PSA algorithm → Effects coming from the basis simulations (ADL ~ AGATAGeFEM)

2.4 mm ➡ NN:

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Conclusions and perspectives

Conclusions:

> Still preliminary results (new horizontal scan analysis not yet included in the NN analysis) > But already an impressive quantitative and qualitative work performed by Mojahed ! New results already very useful for a better understanding of the PSA performances

Perspectives:

- Finalize A005 analysis
- Explore AGATA data taken online with A005 and compare NN basis with simulated ones
- > Raw and calibrated data (ADF) will be uploaded on the AGATA iRODS to be accessible by the collaboration.

Personal comments:

> We should push toward a standard use of AGATAGeFEM basis, because the full expertise is in the collaboration (Joa) > We should push to have an AGATA electronic on the scanning tables to really have comparable results with online data

Jérémie Dudouet: <u>j.dudouet@ip2i.in2p3.fr</u>

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Jérémie Dudouet: j.dudouet@ip2i.in2p3.fr

PSA activities @ IP2I Lyon: Scanning data analyzed with machine learning techniques

Merci !