

Update on the FAIR campaign

Kathrin Wimmer

GSI Helmholtzzentrum für Schwerionenforschung

9. September 2024

European Research Council

Established by the European Commission

Courtesy Helena Albers

AGATA to be installed at the low-energy (LE) branch of Super-FRS

The FAIR timeline

- Until 2028 "First Science": NUSTAR experiments with SIS100 beams at Super-FRS
- S-FRS provides secondary beams to R³B, Super-FRS EC, and DESPEC
- Continue experiments at GSI (SHE at UNILAC, ESR, CRYRING)

Commissioning of Super-FRS and common NUSTAR experiment at FHF2 in Q4 2027

Funding decision on FS++ (including Low Energy Branch) aimed for in 2026, operation 2030

- Commissioning of Super-FRS and common NUSTAR experiment at FHF2 in Q4 2027
- Early (SIS18) and First Science (SIS100) experiments on one beam-line to HEC

■ Funding decision on FS++ (including Low Energy Branch) aimed for in 2026, operation 2030

- Commissioning of Super-FRS and common NUSTAR experiment at FHF2 in Q4 2027
- Early (SIS18) and First Science (SIS100) experiments on one beam-line to HEC
- Funding decision on FS++ (including Low Energy Branch) aimed for in 2026, operation 2030

FAIR construction site April 2024

D. Fehrenz, GSI/FAIR, https://www.gsi.de/forschungbeschleuniger/fair/bau_von_fair/bilder_und_videos

Beam splitter toward HEC (straight) and LEC (left)

H. Albers, P. Hofmann

FAIR construction site April 2024

- High-energy cave
- Installation of building infrastructure

H. Albers, P. Hofmann

Artist view:

GSI/FAIR, Zeitrausch, https://www.gsi.de/medien-news/mediathek/bilderdatenbank

FAIR construction site April 2024

- Low-energy cave
- Building completed, but installation of instrastructure awaits funding decision
- Operation currently planned for First Science++ phase from 2030

H. Albers, P. Hofmann

FRS tunnel

GSI/FAIR, Zeitrausch, https://www.gsi.de/medien-news/mediathek/bilderdatenbank

EG ES I Super Fragment-Separator

- Two stage separation and identification
- Large reach for many radioactive beams
- Typical required intensities for in-beam spectroscopy 10-100 pps

E = i Super Fragment-Separator

 $\blacksquare B\rho - \Delta E - TOF \text{ method}$

$$\frac{dE}{dx} = \frac{4\pi e^4 Z^2}{m_e v^2} N z \left[ln \left(\frac{2m_e v^2}{l} \right) - ln(1 - \beta^2) - \beta^2 \right]$$
$$TOF = \frac{L}{\beta c}$$
$$\frac{A}{Q} = \frac{B\rho}{\beta \gamma} \frac{c}{m_u}$$

Challenge: separation of charge states

Increase in primary beam intensity and transmissionCompetitive intensities throughout the periodic table

Super Fragment-Separator

 $\blacksquare B\rho - \Delta E - TOF \text{ method}$

$$\frac{dE}{dx} = \frac{4\pi e^4 Z^2}{m_e v^2} Nz \left[ln \left(\frac{2m_e v^2}{l} \right) - ln(1 - \beta^2) - \beta^2 \right]$$

$$TOF = \frac{L}{\beta c}$$

$$\frac{A}{Q} = \frac{B\rho}{\beta\gamma} \frac{c}{m_u}$$

■ Challenge: separation of charge states → Benefit from high beam energy

Increase in primary beam intensity and transmission

Competitive intensities throughout the periodic table

Super Fragment-Separator FI SI II

 $\blacksquare B\rho - \Delta E - TOF \text{ method}$

U intensity per spill

 $2 \cdot 10^{9}$

 $8 \cdot 10^{9}$

 $2 \cdot 10^{10}$

 $3 \cdot 10^{11}$

Conceptual design with flexible operation

- Secondary target at FLF3
- Large acceptance spectrometer
- 3 dipole magnets with 30° deflection angle, maximum rigidity 7 Tm (about 300 AMeV depending on the species)
- High-resolution / energy buncher mode
- Dispersion matching (main-separator and energy buncher)
- Intermediate focus at focal plane FLF4
- Large experimental area, about 7 m along the beam line at FLF3

AGATA at FLF3

- Beam rates 100 Hz to 100 kHz
- Beam spot size at secondary target \sim 2 3 cm
- Typical target size 8 × 8 cm²
- Fast secondary particles are created → Could damage most forward detectors or lead to dead-time
- Consider acceptance of spectrometer for several beam species
- Exit of target chamber 120 mm beam pipe
- Diameter pentagon 160 mm
- Use doubles at most forward angles around a pentagon
- Need five double cryostats (existing)

Double cryostats with a 120 mm beam pipe

Experimental techniques and considerations

AGATA at GSI 2012-2014 (PreSPEC campaign)

Kathrin Wimmer

GSI

E = Direct reactions

- Direct knockout reactions and Coulomb excitation at relativistic beam energies ($\beta \sim 0.5 c$)
- Peripheral collision probe the surface of the nucleus

- Remove one nucleon in the collision with a light target
- Single-particle properties

- Excitation in the electromagnetic field of a high Z target
- Collective properties

M. A. Bentley, G. Benzoni, K. Wimmer, "Agata: in-beam spectroscopy with relativistic beams", Eur. Phys. J. A 59 (2023) 172.

H. Crawford et al., Phys. Rev. C 93 (2016) 031303(R).

- Many nucleon removal reaction populate "high-spin" states
- Few nucleon removal limits feeding of 4⁺ states
- Measure lifetimes of several states in one experiment

651

Choice of target affects resolution

- Background from atomic processes
- **Radiative electron capture** $\sim Z_p^2 Z_t$
- Primary Bremsstrahlung $\sim Z_p^2 Z_t$
- Secondary Bremsstrahlung $\sim Z_p^2 Z_t^2$

calculator https://github.com/wimmer-k/Coulex

Choice of target affects resolution

65Ť

- Background from atomic processes
- Radiative electron capture $\sim Z_p^2 Z_p^2$
- Primary Bremsstrahlung $\sim Z_p^2 Z_t$
- Secondary Bremsstrahlung $\sim Z_p^2 Z_t^2$

calculator https://github.com/wimmer-k/Coulex

Choice of target affects resolution

65Ť

- Background from atomic processes
- Radiative electron capture $\sim Z_p^2 Z_t$
- Primary Bremsstrahlung $\sim Z_p^2 Z_t$
- Secondary Bremsstrahlung ~ Z_p^2 Z_t^2

calculator https://github.com/wimmer-k/Coulex

E Secondary devices

- Additional γ -ray detectors around the target
- PRESPEC campaign: HECTOR array with LaBr₃ and BaF₂ detectors

R. Avigo et al., Phys. Lett. B 811 (2020) 135951.

E Secondary devices

- \blacksquare Additional $\gamma\text{-ray}$ detectors around the target
- PRESPEC campaign: HECTOR array with LaBr₃ and BaF₂ detectors

R. Avigo et al., Phys. Lett. B 811 (2020) 135951.

E E 1 Targets

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target
- With an active target resolution can be greatly improved

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target

With an active target resolution can be greatly improved

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target

With an active target resolution can be greatly improved

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target
- With an active target resolution can be greatly improved

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target
- With an active target resolution can be greatly improved

Active targets have several advantages for in-beam spectroscopy:

- Multiply statistics without sacrifice to resolution
- Increased sensitivity for lifetime measurements

counts

- Standard solid target, 8 × 8 cm², beam tracking
- Plunger setup for lifetime measurements
 University of Cologne, Germany and Horia Hulubei NI, Romania
- Liquid hydrogen, deuterium, helium targets
- To access the most exotic nuclei thick targets have to be used (few mm or g/cm²)
- Reaction and emission at different velocities
- (Angle dependent) spread in Doppler reconstructed spectrum
- Different mean decay velocities and different depths in the target
- With an active target resolution can be greatly improved

Active targets have several advantages for in-beam spectroscopy:

- Multiply statistics without sacrifice to resolution
- Increased sensitivity for lifetime measurements

Lifetime measurements with Solid Active targets

1000

E (keV)

900

Kathrin Wimmer

counts

1100

🖬 🖬 👖 Summary

- FAIR construction under way, buildings finished
- Installation of SIS100 magnets started
- First FAIR experiments in 2027

- Main benefit for AGATA from higher primary beam intensities with SIS100
- Commissioning of low-energy branch currently forseen for 2030
- Installation of AGATA in late 2030
- Start experiments with AGATA in 2031

Thank you for your attention

Backup

High-energy cave progress

P. Hofmann, NUSTAR newsletter 2024

GSI