

Università degli Studi di Padova

RECENT DEVELOPMENTS IN THE FABRICATION OF PLANAR AND COAXIAL HPGE DETECTORS

S. Bertoldo* ^{1,2}, C. Carraro¹, W. Raniero¹, G. Maggioni^{1,2}, S. Carturan^{1,2}, F. Sgarbossa^{1,2}, D. De Salvador^{1,2}, D.R. Napoli¹, E. Napolitani^{1,2}.

* email: stefano.bertoldo@Inl.infn.it

(1) INFN-Laboratori Nazionali di Legnaro, Legnaro, Italy

(2) University of Padova, Padova, Italy

PhD Thesis: co-tutorship agreement signed on 11/06/2021 between Universitat de Valencia (Spain) and Università di Padova (Italy).

Milano, 9-12 Sep 2024

Stefano Bertoldo

Introduction

Why Germanium?

- Lowest Energy Gap: highest energy resolution among all detectors
- Moderate atomic number: high probability for gamma interaction
- Highest purification possible and larger active volumes

GAMMA RAYS DETECTION

Why gamma-rays detection?

- Cosmic rays (satellites)
- Nuclear structure (large arrays)
- ➢ Medical (PET)
- Freight security (rad-portals)
- Radioactive sites (portable det.)
- Oil drilling
- ➢ Metal casting

High Purity Germanium (HPGe) detectors

Introduction

TRACKING ARRAY

Y_c

в

F

A

units in mm

С

Е

AGA

ADVANCED GAMMA TRACKING ARRAY

Stefano Bertoldo 4

A

State of the art

AGATA ADVANCED GAMMA TRACKING ARRAY

State of the art

V.Boldrini et al. *Characterization and modeling of thermally-induced doping contaminants in high-purity Germanium*. J. Phys. D: Appl. Phys. 52(3), 035104 (2018)

➢ Introduction

State of the art

- Small thin samples
- Large thin samples
- Process Upgrades
- > Thick planar detectors
- Coaxial detectors
- Conclusions

Milano, 9-12 Sep 2024

Fabrication steps

Characterization

 \succ

Process overview

Polished HPGe surface

Sawing damage removal via alumina grinding and final polishing via wet etching

Dopant sputtering deposition

Few nm deposition of n-dopant or p-dopant in Ar plasma with ultrapure targets in vacuum (10⁻⁷ mbar)

UV pulsed laser exposure

25 ns pulses at 248 nm wavelength to melt 150 nm of HPGe

Crystal regrowth

100 ns resolidification of germanium with dopant atoms in the crystalline structure

Process overview

Au deposition 100 nm deposition of Au in Ar plasma with ultrapure target in vacuum (10⁻⁷ mbar)

Photolithography

Photoresist deposition, baking, exposure and development, followed by Au stripping and resist removal.

Intercontact gaps passivation 3:1 HNO3 : HF etching followed by chemical quenching passivation.

1st step: crystal polishing

Grinding

-Grinding with 3 µm Al₂O₃ slurry to remove sawing damages: the abraded thickness depends on last process.

Polishing

-Wet etching (3:1 HNO₃ : HF) for several minutes: 20 μ m/min erosion rate.

2nd step: dopant deposition

3rd step: Pulsed Laser Melting

248 nm, 25 ns pulse KrF laser (Coherent)

6 motorized DOF

3rd step: Pulsed Laser Melting

3rd step: Pulsed Laser Melting

C. Carraro et al., "N-type heavy doping with ultralow resistivity in Ge by Sb deposition and pulsed laser melting", Applied Surface Science, 509 (2020)

4th step: photolithography

Au sputtering

Photolithographic process:

- 1) Positive resist spin coating
- 2) Softbake
- 3) Exposure through acetate mask
- 4) Development
- 5) Gold stripping
- 6) Resist stripping
- 7) Trenching: strong acid attack (HNO₃, HF)

Milano, 9-12 Sep 2<u>024</u>

5th step: passivation

ADVANCED GAMMA

Process Overview

- Large thin samples
- Process Upgrades
- Thick planar detectors
- Coaxial detectors
- Conclusions

Small thin planar detectors

S. Bertoldo et al. "New method for the production of thin and stable, segmented n+ contacts in HPGe detectors", Eur. Phys. J. A (2021) 57:177

- Large thin samples
- Process Upgrades
- Thick planar detectors
- Coaxial detectors
- Conclusions

Simulation

Simulation

Simulation

Index

- ➢ Introduction
- State of the art
- Process Overview
- Small thin samples
- Large thin samples
 - Process Upgrades
 - Thick planar detectors
 - Coaxial detectors

Conclusions

Large thin planar detectors

Milano, 9-12 Sep 2024

RACKING ARRAY

Index

- State of the art
- Process Overview
- > Small thin samples
- Large thin samples
- Process Upgrades
 - Thick planar detectors
 - Coaxial detectors
 - Conclusions

- Fabrication steps upgrades
 - Characterization

Polishing: mirror surface for PLM phase

Dopant deposition: precursor influence

PLM recipes: thicker junction

Solvent cleaning: avoid surface defects

Plating-free lithography: buried junction

Process upgrade: crystal polishing

Grinding

-Grinding with 3 µm Al₂O₃ slurry to remove sawing damages: the abraded thickness depends on last process.

Polishing

-Chemical-mechanical polishing with rotating disc rinsed with H₂O₂ 1% (pH 12 with KOH)

Process upgrades

Au deposition

100 nm deposition of Au in Ar plasma with ultrapure target in vacuum (10⁻⁷ mbar)

Photolithography Photoresist deposition, baking, exposure and development, followed by Au stripping and resist removal.

Intercontact gaps passivation 3:1 HNO3 : HF etching followed by chemical quenching passivation.

Process upgrades

Full area **PLM**

Partial area

Au deposition 100 nm deposition of Au in Ar plasma with ultrapure target in vacuum (10⁻⁷ mbar)

Photolithography Photoresist deposition, baking, exposure and development, followed by Au stripping and resist removal.

Intercontact gaps passivation 3:1 HNO3 : HF etching followed by chemical quenching passivation.

Selective etching Removal of untreated dopant using selective etchants to protect the near junction.

Chemical passivation Passivation of undoped surfaces with suitable solutions.

Process upgrades

Full area -> Plated Photolithography

Process upgrade: Pulsed Laser Melting

* AGATA

Process upgrade: Pulse Laser Melting

Process upgrade: lithography

Process upgrade: passivation

Milano, 9-12 Sep 2024

Partial area

Quenching selective acids with suitable agents:

 \rightarrow

- H_2SO_4 (Sb)
- H_2O_2 (GeP)
- Water (Safety) Water (Already diluted)
- \rightarrow Kern (Al-Ge) \rightarrow
- Methanol

Process upgrade: passivation

Cooling:

samples hosted in prototyped cryostats and cooled down to LN2 temperature to reduce thermal carriers: delicate electrical contacts with springs on plated and non-plated segments.

Index

- Introduction
- State of the art
- Process Overview
- > Small thin samples
- ➤ Large thin samples
- Process Upgrades
- Thick planar detectors
- Coaxial detectors
- Conclusions

Milano, 9-12 Sep 2024

Test of recovery after n damage

> Results

Plating upgrade

 \geq

 \geq

Poole-Frenkel hopping

Partially depleted guarded segment of the Sb/p-HPGe/Al detector:

Index

- Introduction
- State of the art
- Process Overview
- > Small thin samples
- ➤ Large thin samples
- Process Upgrades
- Thick planar detectors
- Coaxial detectors
- Conclusions

Milano, 9-12 Sep 2024

Test of recovery after n damage

➢ Results

Plating upgrade

 \geq

Index

- Introduction
- State of the art
- Process Overview
- > Small thin samples
- Large thin samples
- Process Upgrades
- Thick planar detectors
- Coaxial detectors
- Conclusions

Milano, 9-12 Sep 2024

Test of recovery after n damage

Plating upgrade

➢ Results

 \triangleright

Plating upgrade

AGATA

1)

2)

3)

4)

5)

6)

7)

Plating upgrade

Plating upgrade

Plating upgrade

Index

- \triangleright Introduction
- State of the art \triangleright
- **Process Overview** \triangleright
- Small thin samples \succ
- Large thin samples \triangleright
- Process Upgrades
- Thick planar detectors \geq
- Coaxial detectors \succ Conclusions \triangleright
- 3d fabrication upgrades \geq
 - Characterization

 \triangleright

Preliminary results \geq

3D fabrication upgrade: crystal handling

Crystals must not be touched during and after the processes

Handling system for deposition and PLM

3D fabrication upgrade: dopant deposition

Lateral surface rotating deposition

Frontal surface static deposition

3D fabrication upgrade: dopant deposition

Milano, 9-12 Sep 2024

TRACKING ARRAY

3D fabrication upgrade: Pulsed Laser Melting

AlGe deposition, 100 mJ/cm² pre-annealing to reduce morphological defects.

3D fabrication upgrade: Pulsed Laser Melting

3D fabrication upgrade: photolithography

Coaxial detectors

Coaxial detectors

AGATA

Conclusions

- We developed thin and thermally stable hyperdoped n-junction with Sb using magnetron sputtering and Pulsed Laser Melting technique, which preserve bulk purity.
- We tested different lithographic procedures on different planar geometries and started testing on coaxial detectors.

Future plans

- We need to investigate pressure effects and plating techniques (Au on Al bi-plate) on the thin junction to increase maximum reverse voltage on thick samples and extend it from planar to coaxial geometries.
- Industrialization (MIRION Technology research collaboration agreement) from this work.

Università degli Studi di Padova

THANK YOU FOR YOUR ATTENTION

