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What is “dilute” neutron matter?

» Upper layers of the inner crust (close to neutron-drip density ~ 2.5 x 10™* fm~3)
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[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

> In spite of its “low” density (still p > 10" g/cm®), the neutron gas is relevant
because it occupies a much larger volume than the clusters

» Deeper in the crust: ng,s increases up to ~ ng/2 = 0.08 fm—3



Comparison with ultracold trapped Fermi gases

neutron gas

trapped Fermi gas (e.g. °Li)

n
ke = (3n2n)1/3

scattering length a
effective range ref

1//(/:2

K ress

4x1075...0.08 fm~3

0.1...1.3fm™1!
—18 fm

2.5 fm
—05--.-0.07
0.25...3

~1pm3

~1 pm™t

adjustable
(Feshbach resonance)

~1nm

unitary limit: 0
BCS-BEC crossover: —1...1

103

» rer can be neglected in cold atoms but not in neutron matter

» the neutron gas is close to the crossover regime but not in the unitary limit




Standard regularization procedure for a contact interaction

> Scattering length a for coupling constant g < 0 and cutoff A (e, = £)
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> Express g in terms of a, e.g. in the gap equation (£ = \/(ex — )2 + &%)
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» Coupling constant vanishes for A — c0: — = mo_m
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» Keeping A finite would induce a finite effective range: res = A
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» For cold atoms one usually takes the limit A — oo



Viow-k-like interaction for cold atoms
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» In nuclear physics: “soft” Viow.x or SRG
interactions reproduce exactly the 15k
low-momentum scattering phase shifts of 5 < \
the full NN interaction below the cutoff £ 1k : \
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» We can construct a separable s-wave 0.5 tH: . \
interaction [Tabakin 1969] that gives e ' \
scattering phase shifts with re = 0 ol T T
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» Physical results are cutoff independent 3 A=10/|a] ——
but a given theoretical method might = A=5/la| ----
only work (or work better) in a limited ) A=1/a] -

range of cutoffs 0 | 2 | 4 6 8 ‘10‘ 12



Hartree-Fock-Bogoliubov (HFB)

» In nuclear physics: hard core of
“realistic” potentials requires explicit
inclusion of short-range correlations,
and nuclei are not bound in HF(B)
approximation

» Soft interactions (Viow-x, SRG) much
better suited for perturbative methods

» HFB with perturbative corrections can
give good results for open-shell nuclei
[e.g., Tichai et al. 2019]

— try this method for cold atoms

» Momentum dependent gap A, and
mean field Uy:
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Bogoliubov Many-Body Perturbation Theory (BMBPT)

» Express K=~HA- MI\AI in terms of quasiparticle operators
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> BMBPT: treat :V: as a perturbation
» Example: leading correction to ground-state energy is second order

1~ J(ijkl| Vao|HFB) , y R
=2 5 WAEEIL  with  |jiki) = 8] 8] B8] |HFB
“ 4!zk;Ei+Ej+Ek+E/ " [k} = 5 5} BB HFEB)

» Very large number of terms at higher orders — Mathematica

» Summation over intermediate quasiparticle states — Monte-Carlo integration
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MBPT results for ultracold atoms
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at weak coupling

Approximate cutoff independence reached in a region of small cutoffs (A < 3kf)

» Inclusion of pairing (thick vs thin lines) very important at stronger coupling

» For A ~ 1.5 — 2kg, results are close to experimental ones



Discussion

» The Fermi momentum kg is a natural scale for the cutoff A

> BMBPT3 weakens cutoff dependence but is not enough to remove it
What is missing?

» Higher orders of BMBP

» Resummation of certain classes of diagrams:
> (Q)RPA to account for Bogoliubov-Anderson mode
P Screening in the gap equation

» Induced three-body force (3BF) and higher-body forces:

even if there is no 3BF in the limit A — oo, at finite A
one has to compensate for the missing contributions of
loop momenta above A in diagrams like this one



Differences between ultracold atoms and neutron matter

The nn interaction is more complicated:

» Finite range of the nn interaction is never negligible
(even at the lowest relevant densities)

» Not only s-wave, but also higher partial waves: we include £ < 6
» Coupling between different ¢ due to tensor force

» We use Viow.x and SRG matrix elements generated from
AV18 or chiral interactions (both give almost identical results)

> Although it is relatively weak in pure neutron matter, the
bare 3BF (neglected here) could play a role at higher densities

(note: contact nnn interaction forbidden by Pauli principle)



HFB+BMBPT results for neutron matter (Viow«)

» As in the cold atoms case, we use density dependent cutoffs A ~ 1.5 — 3kg
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> With Vigwx (A = 2kg), BMBPT seems to converge rapidly
» Good agreement with QMC results at low densities

> Energies too low at high densities: missing (bare) 3BF?



Cutoff dependence of neutron matter results (Viow-«)

» Physical results should be independent of the ratio A/kg
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» Varying A/kge in a reasonable range, we see that the BMBPT results show
much less cutoff dependence than the HFB results

» The residual cutoff dependence indicates the necessity of including higher
orders of BMBPT or induced many-body forces



Similarity Renormalization Group: induced 3-body force

» Unlike Viow«, the SRG allows us to compute the induced 3BF

» In the 3-body space, we use the basis of hyperspherical harmonics
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— needs less memory than the Jacobi partial wave basis [Hebeler 2012]

> So far, only 3BF induced by 'Sy 2-body interaction (bare Vig,: chiral)
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Cutoff dependence with induced 3-body force (SRG)

> Since induced 3BF is weak, we include it perturbatively (HF)
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» BMBPT3 with SRG has stronger cutoff dependence than with Vie,.«
(reason currently under investigation)

» Cutoff dependence almost cancelled by the contribution of the induced 3BF



Conclusions

» The HFB4+BMBPT scheme with low-momentum interactions can be
applied to uniform systems

» In infinite matter, it is natural to scale the cutoff A with kg

» In cold atoms: low-momentum interactions give a HF field and hence
better results already at the mean-field (HFB) level

» In neutron matter: BMBPT seems to converge at small cutoffs

» Contribution of induced 3BF is small

Outlook

» In progress: perturbative corrections to Uy and Ay within the
diagrammatic (Nambu-Gorkov) formalism

» Contribution of bare 3BF (2-pion exchange) in neutron matter
» Role of collective modes and screening

» Inclusion of protons (neutron-star core)



