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What is “dilute” neutron matter?

I Upper layers of the inner crust (close to neutron-drip density ∼ 2.5× 10−4 fm−3)

ngas = 4× 10−5 fm−3 (14% of total nB)

ngas = 4.8× 10−4 fm−3 (54% of total nB)

[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

I In spite of its “low” density (still ρ & 1011 g/cm3), the neutron gas is relevant
because it occupies a much larger volume than the clusters

I Deeper in the crust: ngas increases up to ∼ n0/2 = 0.08 fm−3



Comparison with ultracold trapped Fermi gases

neutron gas trapped Fermi gas (e.g. 6Li)

n 4× 10−5 . . . 0.08 fm−3 ∼ 1 µm−3

kF = (3π2n)1/3 0.1 . . . 1.3 fm−1 ∼ 1 µm−1

scattering length a −18 fm
adjustable
(Feshbach resonance)

effective range reff 2.5 fm ∼ 1 nm

1/kFa −0.5 · · · − 0.07
unitary limit: 0
BCS-BEC crossover: −1 . . . 1

kF reff 0.25 . . . 3 10−3

I reff can be neglected in cold atoms but not in neutron matter

I the neutron gas is close to the crossover regime but not in the unitary limit



Standard regularization procedure for a contact interaction

I Scattering length a for coupling constant g < 0 and cutoff Λ (εk = k2

2m )

4πa

m
= g + g

∫ Λ d3k

(2π)3

1

−2εk

4πa

m
= +

I Express g in terms of a, e.g. in the gap equation (Ek =
√

(εk − µ)2 + ∆2)

∆ = −g
∫ Λ d3k

(2π)3

∆

2Ek
⇔ ∆ = −4πa

m

∫ Λ d3k

(2π)3

( ∆

2Ek
− ∆

2εk

)
⇒ now the cutoff can be removed

I Coupling constant vanishes for Λ→∞:
1

g
=

m

4πa
− mΛ

2π2

I Keeping Λ finite would induce a finite effective range: reff =
4

πΛ

I For cold atoms one usually takes the limit Λ→∞



Vlow-k-like interaction for cold atoms

I In nuclear physics: “soft” Vlow-k or SRG
interactions reproduce exactly the
low-momentum scattering phase shifts of
the full NN interaction below the cutoff

I We can construct a separable s-wave
interaction [Tabakin 1969] that gives
scattering phase shifts with reff = 0

δ(k) = R
( k

Λ

)
arccot

(
− 1

ka

)
here: smooth regulator R(x) = e−x20

I Physical results are cutoff independent
but a given theoretical method might
only work (or work better) in a limited
range of cutoffs
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Hartree-Fock-Bogoliubov (HFB)
I In nuclear physics: hard core of

“realistic” potentials requires explicit
inclusion of short-range correlations,
and nuclei are not bound in HF(B)
approximation

I Soft interactions (Vlow-k , SRG) much
better suited for perturbative methods

I HFB with perturbative corrections can
give good results for open-shell nuclei
[e.g., Tichai et al. 2019]
→ try this method for cold atoms

I Momentum dependent gap ∆k and
mean field Uk :

∆k = −
∫

d3p

(2π)3
V (k, p) upvp

Uk =

∫
d3p

(2π)3
V
(p− k

2
,
p− k

2

)
v 2
p
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Bogoliubov Many-Body Perturbation Theory (BMBPT)

I Express K̂ = Ĥ − µN̂ in terms of quasiparticle operators

βk↑ = uk ak↑ − vk a
†
−k↓ , βk↓ = uk ak↓ + vk a

†
−k↑

K̂ = EHFB +
∑
kσ

Ek β
†
kσβkσ+ :V̂ :

:V̂ : = V04 ββββ + V13 β
†βββ + V22 β

†β†ββ + V31 β
†β†β†β + V40 β

†β†β†β†

I BMBPT: treat :V̂ : as a perturbation

I Example: leading correction to ground-state energy is second order

E2 = − 1

4!

∑
ijkl

|〈ijkl |V̂40|HFB〉|2

Ei + Ej + Ek + El
with |ijkl〉 = β†i β

†
j β
†
kβ
†
l |HFB〉

I Very large number of terms at higher orders → Mathematica

I Summation over intermediate quasiparticle states → Monte-Carlo integration



HF(B)+(B)MBPT results for ultracold atoms
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[exp.: Horikoshi et al. (2017), kF a expansion: Wellenhofer et al. (2021)]

I Approximate cutoff independence reached in a region of small cutoffs (Λ . 3kF )
at weak coupling

I Inclusion of pairing (thick vs thin lines) very important at stronger coupling

I For Λ ' 1.5− 2kF , results are close to experimental ones



Discussion

I The Fermi momentum kF is a natural scale for the cutoff Λ

I BMBPT3 weakens cutoff dependence but is not enough to remove it

What is missing?

I Higher orders of BMBP

I Resummation of certain classes of diagrams:

I (Q)RPA to account for Bogoliubov-Anderson mode

I Screening in the gap equation

I Induced three-body force (3BF) and higher-body forces:

even if there is no 3BF in the limit Λ→∞, at finite Λ
one has to compensate for the missing contributions of
loop momenta above Λ in diagrams like this one



Differences between ultracold atoms and neutron matter

The nn interaction is more complicated:

I Finite range of the nn interaction is never negligible
(even at the lowest relevant densities)

I Not only s-wave, but also higher partial waves: we include ` ≤ 6

I Coupling between different ` due to tensor force

I We use Vlow-k and SRG matrix elements generated from
AV18 or chiral interactions (both give almost identical results)

I Although it is relatively weak in pure neutron matter, the
bare 3BF (neglected here) could play a role at higher densities

(note: contact nnn interaction forbidden by Pauli principle)



HFB+BMBPT results for neutron matter (Vlow-k)

I As in the cold atoms case, we use density dependent cutoffs Λ ' 1.5− 3kF
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I With Vlow-k (Λ = 2kF ), BMBPT seems to converge rapidly

I Good agreement with QMC results at low densities

I Energies too low at high densities: missing (bare) 3BF?



Cutoff dependence of neutron matter results (Vlow-k)

I Physical results should be independent of the ratio Λ/kF
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I Varying Λ/kF in a reasonable range, we see that the BMBPT results show
much less cutoff dependence than the HFB results

I The residual cutoff dependence indicates the necessity of including higher
orders of BMBPT or induced many-body forces



Similarity Renormalization Group: induced 3-body force

I Unlike Vlow-k , the SRG allows us to compute the induced 3BF

I In the 3-body space, we use the basis of hyperspherical harmonics

k
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p

p

p

3

2
1

2

3

K =
√

k2 + q2

α = arccos
k

K

YL`1m1`2m2 = Y`1m1 (k̂)Y`2m2 (q̂)P`2`1
L (α)

→ needs less memory than the Jacobi partial wave basis [Hebeler 2012]

I So far, only 3BF induced by 1S0 2-body interaction (bare V1S0
: chiral)
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Cutoff dependence with induced 3-body force (SRG)

I Since induced 3BF is weak, we include it perturbatively (HF)
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I BMBPT3 with SRG has stronger cutoff dependence than with Vlow-k

(reason currently under investigation)

I Cutoff dependence almost cancelled by the contribution of the induced 3BF



Conclusions

I The HFB+BMBPT scheme with low-momentum interactions can be
applied to uniform systems

I In infinite matter, it is natural to scale the cutoff Λ with kF

I In cold atoms: low-momentum interactions give a HF field and hence
better results already at the mean-field (HFB) level

I In neutron matter: BMBPT seems to converge at small cutoffs

I Contribution of induced 3BF is small

Outlook
I In progress: perturbative corrections to Uk and ∆k within the

diagrammatic (Nambu-Gorkov) formalism

I Contribution of bare 3BF (2-pion exchange) in neutron matter

I Role of collective modes and screening

I Inclusion of protons (neutron-star core)


