Nuclear equation of state for the study of neutron stars

Orsay Mac Meeting Pietro Klausner 31/5/2024

A very coincise summary of my PhD

Main Goal:

nuclear physics and astronomical observations.

First Step:

- Bayesian inferences on nuclear matter parameters with constraints from nuclear experiments -> inclusion of of A_{PV} , α_D

Second Step:

stars observables as constraints.

- Find a reliable probability distribution of nuclear matter parameters that is informed both by

- Employing the results as basis for a second Bayesian inference, this time with neutron

Statistical analysis with Skyrme interaction

¹G. Colò, X. Roca-Maza, arXiv:2102.06562v1 [nucl-th]

1-to1 correspondence with usual Skyrme's parameters!

Nuclear matter parameters Surface term parameters Parameters of the model: n_{sat} , E_{sat} , K_{sat} , E_{sym} , L_{sym} , m_s^* , m_v^* , G_s , G_v , w_0 Effective Spin-orbit masses parameter

"hfbcs-qrpa¹" code to compute observables from parameters

Observables used

	B.E. [MeV]	R_{ch} [fm]	ΔE_{SO}
Ph208	16364 + 20	5.50 ± 0.05	2 02 -
Ca48	416.0 ± 2.0	3.48 ± 0.05	1.72 ±
Ca40	342.1 ± 2.0	3.49 ± 0.05	
Ni56	484.0 ± 2.0		
Ni68	590.4 ± 2.0		
$\mathbf{Sn100}$	825.2 ± 2.0		
$\mathbf{Sn132}$	1102.8 ± 2.0	4.65 ± 0.05	
Zr90	783.9 ± 2.0	4.27 ± 0.05	
	$\alpha_D [\mathrm{fm}^3]$	$\mathfrak{m}(1)$ [MeV fm ²]	A_{PV} (
Pb208	19.60 ± 0.60	961 ± 22	550
Ca48	2.07 ± 0.22		2668

Marginalized Parameters Posterior Distributions

Posterior observables means and uncertainties

B.E. [MeV]

40 Ca	342 ± 1.5		40Ca	3.49 ± 0.01
	342 ± 2.0			3.48 ± 0.05
^{48}Ca	417 ± 1.1	\mathbf{R}_{ch} [fm]	$48C_{2}$	3.50 ± 0.02
	416 ± 2.0		-°Ca	3.48 ± 0.05
⁵⁶ Ni	482 ± 1.3		907	4.26 ± 0.02
	484 ± 2.0			4.27 ± 0.05
⁶⁸ Ni	590 ± 1.0		132Sn	4.69 ± 0.02
	590 ± 2.0			1.65 ± 0.05
⁹⁰ Zr	784 ± 1.3			4.03 ± 0.03
	784 ± 2.0		$208 \mathrm{Pb}$	5.47 ± 0.03
¹⁰⁰ Sn	826 ± 1.6			5.50 ± 0.05
	825 ± 2.0	ΔE_{SO}	^{48}Ca	1.91 ± 0.18
132 Sn	1103 ± 1.6	[MeV]	$(\nu 2p)$	1.72 ± 0.50
	1103 ± 2.0		$\frac{(r-p)}{208 \mathrm{Dh}}$	222 ± 0.15
²⁰⁸ Pb	1636 ± 1.8			2.00 ± 0.10
	1636 ± 2.0		$(\pi 2f)$	1.96 ± 0.50

 $\sigma_c = \sqrt{\sigma_{exp}^2 + \sigma_{inf}^2} \quad \longrightarrow \quad$

-		
$\mathbf{m}(1)$ IV	208 Pb	957 ± 2
[MeV]		961 ± 2
E_{GQR}^{IS}	²⁰⁸ Pb	10.8 ± 0
[MeV]		10.9 ± 0
E_{GMB}^{IS}	90Zr	17.8 ± 0
[MeV]		17.7 ± 0
	208 Dh	13.5 ± 0
		$13.5 \pm$
$\alpha = [fm^3]$	48 Ca	2.3 ± 0
		2.1 ± 0
	208 Dh	$19.5 \pm$
		$19.6 \pm$
A_{PV}	48Ca	$2571 \pm$
[p.p.b.]		$2668 \pm$
	²⁰⁸ Pb	$587 \pm$
		550 ± 1

$$|x_{exp} - x_{inf}| \in [1,2) \sigma_c$$

Neutron stars from nuclear Equation of state Caen group's code-

Input:

Nuclear matter parameters

Parameters:

nuclear matter parameters

Previous posterior distribution

new prior distribution

Output: *Meta-Model nEoS* Neutron star equation of state + properties

Bayesian analysis

Constraints:

Maximum mass *M* observed Ligo-Virgo-Collaboration tidal deformability results, NICER mission simultaneous mass-radius measurements

ab-initio calculations; neutron stars

Final posterior distribution informed by both nuclear

and astrophysics

Marginalized Parameters Posterior Distributions

7

Equation of state and Sound Speed posterior distributions

What's next? Neutron star crust

$$E_{WS} = \int_{V_{WS}} \mathcal{E}_{E'}^{S}$$

$$n(r) = n_{r-cl}(r) + n_{r-gas}(r) = \frac{n_0}{1 + \exp\left(\frac{r-R}{a}\right)} + \frac{n_g}{1 + \exp\left(-\frac{r-R}{a}\right)}$$
$$n_p(r) = n_{p,r-cl}(r) = \frac{n_{0,p}}{1 + \exp\left(\frac{r-R_p}{a_p}\right)}$$
Parametrized density profiles improved computational efficient

From CLDM to ETF

Skyrme EDF approximated within extended Thomas Fermi theory at second order in \hbar^2

s for iency

10