

Neutron-star crust modelling and unified equations of state (ongoing projects)

Anthea F. Fantina

in collabaration with LPC Caen, LUTh-Meudon, IAA-ULB, Univ. Montreal, CAMK Warsow, ...

MAC meeting, 30-31 May 2024 IJCLab, Orsay, France

- Selected (ongoing) projects + outlooks
 - > Catalysed NSs (T = 0, full equilibrium) → see P.J. Davis' talk
 - > Accreting NSs (T = 0, crust out of equilibrium)
 - > Proto-neutron-star (PNS) crust ($T \neq 0$, beta equilibrium)
 - Supernova electron-capture rates

NS (isolated): formation

after shock formation (deleptonization) (accretion) -sphere v-sphere R~15 km 20 Me Γ₂~50 ΜeV core heating accretion shock deleptonization shock lift-off mantle collapse (III) t ~ 15 s maximum heating (I) t = 0 s(II) t ~ 0.5 s standoff shock T_{eff}∼6×10⁵ K T_{eff}∼3×10⁵ K R~12 km R~12 km (cooling) T_~0.03 MeV T_~0.02 MeV black hole Urca v coolina γ coolina 12 km ν cooling ~.5 MeV modified Urca R~12 km R~12 km ν core cooling [_~0.12 MeV T_~0.06 MeV Terr~10⁶ K (IV) t ~ 50 s T_{eff}~2×10⁶ K v-transparency (V) t ~ 50 − 100 yr $(VI) 10^2 < t < 3 \times 10^5 \text{ yr}$ cold core star becomes warm crust observable X-ray isothermal thermal emission

Lattimer & Prakash, Science 304, 536 (2004)

- NS born hot, T ~ 10¹⁰-10¹¹ K
- after few tens of sec mins
 - → beta equilibrium (e.g. Camelio et al. 2017)
 - → formation of crust (e.g. Pons&Viganò 2019) (*T* below ~ $10^9 - 10^{10}$ K, Δt ~ hr - months)
- cooling $\rightarrow T$ below ~ 10⁸ K
 - → "cold catalysed" (→ T = 0) full thermodynamic equilibrium, $P(n_B)$

Image Credit: 3G Science White Paper

<u>but</u>: real picture can differ from cold catalysed one ★ Accretion of matter from companion ($\rightarrow P(n_B, Y_q)$, not full equilibrium) ★ PNS ($\rightarrow T > 0$, $P(n_B, T)$ if beta equilibrium)

A. F. Fantina N.B.: "General purpose" EoSs P(n_B, T, Y_q) & B effects not addressed here (see e.g. Oertel et al., Rev. Mod. Phys. 2017; Burgio & Fantina, ASSL Springer 2018)

Why a <u>unified</u> treatment ?

Unified treatment of inhomogeneous & homogeneous matter → same nuclear model employed in different regions of star

- Challenging because of wide range of thermodynamic conditions
- Challenging because different states of matter
- But: essential to avoid spurious non-physical effects in numerical modelling

Aim: provide thermodynamically consistent and unified EoSs for astro modelling & inference analyses

EoS models used in our works BSk + ETFSI

- HFB mass model for outer crust
- ETFSI for inner crust
- Brussels-Montreal (BSk) EDFs

- CLDM for outer+inner crust

- meta-model (MM) for core
- + also for bulk energy of ion

Unified EoSs

- ✓ Accurately calibrated Skyrme EDFs
 → study specific model dependence
 - → benchmark calculations
- ✓ More microscopic
- X No parameter-space exploration

Ensemble of consistent nuclear inputs for astro models (e.g. EoS, M(R), A(M), but also nucl. masses, microscopic quantities like pairing gaps, m*, etc.)

- ✓ Accurately calibrated Skyrme EDFs
 → study specific model dependence
 - → benchmark calculations
- ✓ More microscopic
- X No parameter-space exploration

- ✓ Flexible, faster computation
 - \rightarrow Parameter-space exploration
 - → Bayes analysis
- ✓ Multi-component plasma (MCP)
- X Less microscopic

$$P(\mathbf{X}|\mathbf{c}) = \mathcal{N}P_{\text{prior}}(\mathbf{X})\prod P(c_k|\mathbf{X})$$

X = nucl. param.

nuclear+astro constraints

- MCP distributions (e.g. PNS crusts)
- Estimation of uncertainties in astro predictions/inference (e.g. Bayesian)

Electron captures + neutron emission (inner crust):

 $(A, Z) + e^- \rightarrow (A, Z - 1) + \nu_e$ $(A, Z - 1) + e^- \rightarrow (A - k, Z - 2) + kn + \nu_e + Q_c$ \diamond **Pycnonuclear** reactions:

$$(A,Z) + (A,Z) \rightarrow (2A,2Z) + Q_p$$

Chamel & Haensel 2008

✓ matter off-equilibrium
 ✓ reactions possible
 → energy reservoir
 → deep crustal heating

<u>N.B.</u>: uncertainties in pycno reactions \rightarrow we assume it occurs when $Z = Z_{min} = 8$

see e.g. Chamel & Haensel, Living Rev. Relativ. 11, 10 (2008); Meisel et al., J. Phys. G, 45, 093001 (2018); Blaschke & Chamel, ASSL 457, 337 (2018); Haensel & Zdunik, A&A 1990, 2003, 2008

Accreting NS (SXT)

"Deep crustal heating" can explain thermal radiation in SXTs in quiescence <u>but</u> : exceptions ! → shallow heating (additional sources in shallow layers)

Wijnands et al., J. Astrophy. Astr. 38, 49 (2017)

Inputs to model relaxation / cooling :
Composition
EoS
Heat sources
→ amount of heat and location

for a review: Chamel & Haensel, Living Rev. Relativ. 11, 10 (2008); Meisel et al., J. Phys. G, 45, 093001 (2018); Blaschke & Chamel, ASSL 457, 337 (2018)

Accreting NS crusts: EoS

Fantina et al., A&A 665, A74 (2022)

➤ Accreting crust EoS stiffer than catalysed one → larger radii
 X but: difference still smaller than observation uncertainties

➤ Accreting crust EoS stiffer than catalysed one → larger radii

X but: difference still smaller than observation uncertainties

X EoS closer to catalysed EoS if *n* diffusion (Gusakov & Chugunov 2020; Shchechilin et al. 2023)
 → to be investigated (e.g. Allard&Chamel, PRL 2024)

Fantina et al., A&A 620, A105 (2018)

14

Accreting NSs: outlooks

Unified EoS + heat released

data publicly available (tables on CDS, Zenodo* for magnetar's crusts)

♦ Accreted crust ≠ catalysed crust → importance of nuclear shell effect

- Inclusion of neutron diffusion ? (Gusakov & Chugunov 2020, 2021, Shchechilin et al. 2022, 2023)
- > OCP vs MCP to be explored $\rightarrow Q_{imp}$, transport coeff. \rightarrow impact on light curves / cooling
- Partially accreted crust (e.g. Suleiman et al. 2022)

N.B. very recent results on cooling of SXTs with "gapless" superfluidity

(*) http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/, https://zenodo.org/

Lattimer & Prakash, Science 304, 536 (2004)

 \rightarrow NS are born hot (T > 10¹⁰ K ~ 1 MeV) \rightarrow ensemble of nuclei (MCP) expected

 \rightarrow NS crust crystallises (liquid \rightarrow solid) at $T_{\rm m} \sim 0.1-1$ MeV \rightarrow crust composition "frozen"

- but: depending on cooling timescales, composition can be frozen at $T > T_m$ (e.g. Goriely et al., A&A 531, A78 (2011))
 - other reactions possible below T_m? (e.g. Potekhin & Chabrier, A&A 645, A102 (2021))

PNS: composition & impurities

. Composition can be different from *T* = 0 & OCP one !

Dinh Thi et al., A&A 677, A174 (2023) see also Fantina et al., A&A 633, A149 (2020); Carreau et al., A&A 640, A77 (2021) 2. Co-existence of nuclear species
 → "impurity factor" (usually free parameter adjusted on cooling data)

$$Q_{\rm imp} = \langle Z^2 \rangle - \langle Z \rangle^2$$

→ impact dynamic, magneto-rotational and transport properties

see e.g. Schmidt&Shternin, ASSL 457, 455 (2018) for a review; Jones, PRL 83, 3589 (1999), MNRAS 321, 167 (2001), PRL 93, 221101 (2001)

PNS crust (MCP): perturb. vs consistent

MM + CLDM

Dinh Thi et al., A&A 677, A174 (2023) - CLDM with BSk24

- ➤ OCP less reliable at higher density and temperature
 → (self-consistent) MCP
- ➤ appearance of bi-modal distribution → light clusters !
 - → importance of light cluster already highlighted, e.g. Typel et al., PRC 2010; Hempel et al., PRC 2011

+ data on CDS

Dinh Thi et al., A&A 677, A174 (2023); see also Carreau et al., A&A 640, A77 (2020) – CLDM with BSk24 + data on CDS

consistent calculations of Q_{imp} throughout the crust
 impact on transport coefficients / properties

consistent calculations of Q_{imp} throughout the crust

→ impact on transport coefficients / properties

PNS crust: outlooks

* Crystallisation of (P)NS crust + (perturbative) MCP * Liquid (P)NS crust in self-consistent MCP $\rightarrow Q_{imp}$ (publicly available)

***** Self-consistent MCP needed at higher ρ , *T*

- Inclusion of pasta phase to be done (e.g. Pelicer et al. 2021)
- > Q_{imp} → transport coeff. → impact on cooling (e.g. Pelicer et al. 2023)

T-dependent parametrisation of surface energy

➢ Neutron "skin", finite T → benchmark / fit with more microscopic calculations (collab. ETFSI IAA-ULB)