Macroscopic superfluidity in neutron stars

Superfluidity affects neutrino emission and heat capacity

Pulsar glitches (and maybe timing noise) are related to the presence of superfluid neutrons Review: arXiv:2301.12769 (2022)

Superfluidity allows for more and different oscillation modes (like second sound in Helium-II)

Marco Antonelli

CNRS, LPC-Caen antonelli@lpccaen.in2p3.fr

Thursday, May 30, 2024 – MAC Meeting, Paris Orsay-Saclay

Pairing channels

Total angular momentum operator: $\mathbf{J} = \mathbf{L} + \mathbf{S}$ Notation: ^{2S+1}L_J (L=0,1,2,3... \rightarrow S,P,D,F...)

 $^1\mathrm{S}_{\scriptscriptstyle 0}$ isotropic pairing: Δ = "energy gap" $\sim 0.57~\mathrm{T_c}$

 $^3S_1\!-^3\!D_1$ binds the deuteron: but in NS ${\bf n}$ and ${\bf p}$ have very different Fermi surfaces \to no ${\bf n}\text{-}{\bf p}$ pairing

 ${}^{3}\mathrm{PF}_{2}$ partial–wave channel (Δ has contributions from both L=1,3) preferred at larger Fermi momenta, where ${}^{1}\mathrm{S}_{0}$ is repulsive. Uncertain gap, usually treated as free **parameter** in cooling simulations.

Continuum description?

Not a simple fluid but many layers with different inhomogeneities, defects, currents

Inner crust

(Visco-)elastic lattice Neutron "scalar" superfluid Excitations (entropy/heat) Ideal gas of electrons B field Frame of the lattice: 3 currents

Outer core

Neutron superfluid Proton superconductor Excitations (entropy/heat) Ideal gas of electrons B field in fluxtubes (type II?)

Different phenomena may be well described with a smaller number of "fluids" e.g. cooling, glitches, oscillation modes, "mountains", B evolution... ...it is however true that the "mageto-thermo-rotational" evolution is coupled

Role of vortices in the continuum description?

Many coexisting species and independent currents, but **what is the role of the topological defects?** Hint: consider laboratory type-II superconductors

Vortex-defect interaction associated with a **critical current** in the V-I relation

The slope is the resistance: **Flat region** \rightarrow **no dissipation**

Measured Current

Willa et al. (2018)

Nutron Stars – Lab Superconductor

Crust's frame of reference – Frame of the lattice Delocalized neutrons – Electron sea Vorticity – magnetic field Vortices – Flux-tubes Neutron current – electric current Magnus force – Lorentz force

> Conservative regime: Pinned vortices – pinned flux-tubes

Dissipative regime: Moving vortices – Moving flux-tubes

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Microscopic models needed:

Helium: stochastic GPE, mean field...

NS: phenomenological Ginzburg-Landau+GPE, TDLDA, HFB...

Conserved baryon charge: # Baryons ~ $n_0 (10 \text{ fm})^3 \sim 10^3$

Inter-vortex scale: $\sim 10^{-3} \,\mathrm{cm}$ in a NS

Mescoscopic models needed:

Helium: Vortex filament model (K. Schwarz's 80s papers)

NS: the same but needs extension to non-homogeneous environment

Conserved baryon charge: # Baryons ~ $n_0 (10^{-3} \text{ cm})^3 \sim 10^{29}$ Relativistic formulation: Gavassino, MA ArXiv: 2012.10288, 2001.08951 Review: arXiv:2301.12769 (2022)

Fluid element: from $\sim mm$ in a NS

Macroscopic hydro:

Helium: HVBK hydro (Hall & Vinen 1956)

NS: extensions/decorations of HVBK hydro (more species, GR)

Conserved baryon charge: Not so relevant, need to include many vortices in the fluid element

Relativistic formulation: Gavassino, MA ArXiv: 2012.10288, 2001.08951 Review: arXiv:2301.12769 (2022)

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Inter-vortex scale: $\sim 10^{-3}$ cm in a NS

Fluid element: from $\sim mm$ in a NS

We can not take into account each vortex ($\sim 10^{16}$ in a pulsar) \rightarrow HVBK hydrodynamics

2 Euler-like equations + entrainment + mutual friction The dynamics of vortices in a fluid

$$\partial_t \rho_{\mathbf{x}} + \nabla_i (\rho_{\mathbf{x}} v_{\mathbf{x}}^i) = 0$$

$$(\partial_t + v_{\mathbf{x}}^j \nabla_j) (v_i^{\mathbf{x}} + \varepsilon_{\mathbf{x}} w_i^{\mathbf{y}\mathbf{x}}) + \nabla_i (\tilde{\mu}_{\mathbf{x}} + \Phi) + \varepsilon_{\mathbf{x}} w_{\mathbf{y}\mathbf{x}}^j \nabla_i v_j^{\mathbf{x}} = f_i^{\mathbf{x}} / \rho_{\mathbf{x}}$$
element gives the form and strength of mutual friction

 $x, y=n \rightarrow$ superfluid neutrons $x, y=p \rightarrow$ normal component (electrons, excitations, protons, lattice...)

Relativistic formulation: Gavassino, MA ArXiv: 2012.10288, 2001.08951 Review: arXiv:2301.12769 (2022)

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Inter-vortex scale: $\sim 10^{-3}$ cm in a NS

Fluid element: from $\sim mm$ in a NS

We can not take into account each vortex ($\sim 10^{16}$ in a pulsar) \rightarrow HVBK hydrodynamics

2 Euler-like equations + entrainment + mutual friction

 $(\partial_t + v_{\mathbf{x}}^j \nabla_j)(v_i^{\mathbf{x}} + \varepsilon_{\mathbf{x}} w_i^{\mathbf{y}\mathbf{x}}) + \nabla_i (\tilde{\mu}_{\mathbf{x}} + \Phi) + \varepsilon_{\mathbf{x}} w_{\mathbf{y}\mathbf{x}}^j \nabla_i v_j^{\mathbf{x}} = f_i^{\mathbf{x}} / \rho_{\mathbf{x}}$

 $p_x^i = m_x \left[(1 - \epsilon_x) v_x^i + \epsilon_x v_y^i \right]$ Hydrodynamic canonical momenta

Uniform matter, external force applied to a single species

(e.g. the neutrons)

$$\mathbf{F}_{n}^{ext} = n_{n} \dot{\mathbf{p}}_{n} = \rho_{n} \dot{\mathbf{v}}_{n} \qquad \mathbf{F}_{n}^{ext} = n_{n} \dot{\mathbf{p}}_{n} = \rho_{nn}^{*} \dot{\mathbf{v}}_{n} + \rho_{pn}^{*} \dot{\mathbf{v}}_{p}$$
No entrainment
With entrainment

Entrainment is a non-dissipative coupling (but you can not see this at this level, entropy is needed)

Relativistic formulation: Gavassino, MA ArXiv: 2012.10288, 2001.08951 Review: arXiv:2301.12769 (2022)

Vortex core scale: $\sim 10 \text{ fm in a NS}$

Inter-vortex scale: $\sim 10^{-3}$ cm in a NS

Fluid element: from $\sim mm$ in a NS

We can not take into account each vortex ($\sim 10^{16}$ in a pulsar) \rightarrow HVBK-like hydrodynamics

2 Euler-like equations + entrainment + mutual friction

The **dynamics of vortices** in a fluid element gives the form and strength of the macroscopic "**mutual friction**"

$$\rho_n D_t \mathbf{v}_n + \dots = \mathbf{F}_{MF} \bullet$$
$$\rho_p D_t \mathbf{v}_p + \dots = -\mathbf{F}_{MF}$$

 $x, y=n \rightarrow$ superfluid neutrons $x, y=p \rightarrow$ normal component (electrons, excitations, protons, lattice...)

Vortex motion \rightarrow Mutual friction (with pinning)

Antonelli & Haskell, arXiv:2007.11720 (2020)

Beyond hydrodynamics: hysteresis

Rate-dependent hysteresis: lag between an input and an output that disappears if the input is varied more slowly. If the input is reduced to zero, the output continues to respond for a finite time.

Instantaneous drop to null lag \rightarrow vortex velocity drops to zero immediately (if NO pinning forces) Instantaneous drop to null lag \rightarrow vortex velocity relaxes to zero (with pinning forces)

Rate-independent hysteresis \rightarrow vortex-vortex interactions

Antonelli & Haskell 2020 arXiv:2007.11720

Pinning energy (vortex – single nucleus)

Donati & Pizzochero, Phys Lett B, 640 (2006) Semiclassical approach: static LDA calculation (local Fermi momentum is a function of the neutron number density)

Klausner et al, arXiv:2303.18151 (2023) Hartree-Fock-Bogolyubov

Energy contributions to pinning:

- \rightarrow negative condensation energy of the order of $\Delta^{\scriptscriptstyle 2}\,/$ $E_{_{\rm F}}$
- \rightarrow kinetic energy of the irrotational vortex-induced flow
- \rightarrow Fermi energy $\rm E_{_F}\, of$ neutrons
- \rightarrow nuclear cluster energy (Woods-Saxon potential)

Uncertain pairing gap Δ : modifies the strength and location of the pinning energies (in-medium effects!) Maximum pinning energies < 3.5 MeV

Significant pinning occurs only in a restricted range: 0.07 $\rm n_{_0} < n_{_B} < 0.2 ~ n_{_0}$

Improvements: TDLDA, Wlazłowski+ (2016), Hartree-Fock-Bogolyubov Klausner+ (2023)

Pinning forces (inner crust)

Strong pinning when $\xi <$ lattice spacing

Pinning to single defects VS "collective pinning":

Rigid (straight) vortices are "less pinned"

Coherence length ξ estimates: Mendell, ApJ 38 1991

Inner crust:

Problem: how to calculate the "vortex-lattice" interaction from the "vortex-nucleus" interaction ?

IDEA: consider a segment of vortex line (the length L is given by the tension) and average over translations and rotations of the total pinning force divided by L

Stationary test (glitch amplitude)

We can **test** theoretical single-vortex pinning forces with glitches of large amplitude:

- Choose the EOS
- Choose the pinning forces (function of the baryon density)
- Solve the hydrostatic equilibrium in slow rotation ("Hartle") and calculate:

$$\Delta\Omega_{\rm abs} = \frac{\pi^2}{I\kappa} \int_0^{R_d} dr \, r^3 \, e^{\Lambda(r)} \, \frac{\mathcal{E}(r) + P(r)}{m_n \, n_B(r) \, c^2} \, f_P(r)$$

- \rightarrow Generous theoretical **upper bound** based only on angular momentum balance
- \rightarrow No superfluid fraction and no entrainment
- \rightarrow No need to solve the internal dynamics
- \rightarrow No dependence on the assumed vortex configuration

Compare with bounds on the **minimum** mass:

Observed: M=1.174 Mo Martinez+2015 arXiv:1509.08805

CCS simulations: M \approx 1.15 Mo Suwa+2017 arXiv:1808.02328

Review: Antonelli, Montoli, Pizzochero arXiv:2301.12769 (2022)

Result: the superfluid in the crust is not enough to explain Vela's activity when strong entrainment is accounted for 0.020 Andersson+2012 arXiv:1207.0633, Chamel 2013 arXiv:1210.8177 0.015 $I_{V}/(I - I_{V})$ Revised argument: Montoli+2020 arXiv:2012.01539 $I_v = \frac{8\pi}{3} \int_0^{R_d} dr \, r^4 \, \frac{\rho_n(r)}{1 - \epsilon_n(r)} \qquad \frac{\mathcal{A}}{|\dot{\Omega}|} < \frac{I_v}{I - I_v}$ 0.010 SLy4 0.005 BSk20 BSk21 Note: no need to solve the internal dynamics ("stationary") DDME2 0.000 1.2 2.0 2.2 0.8 1.0 1.4 1.6 1.8 2.4 Mass (Msun)

"Heteroscedastic" linear regression: uncertainties larger by a factor ~ 10 for the Vela (Montoli+2020 arXiv:2012.01539)

$$\mathcal{A}_{a} = \frac{\sum_{i} \Delta \Omega_{i}}{\sum_{i} \Delta t_{i}} = \frac{\sum_{i} \Delta \Omega_{i}}{t_{N_{\text{gl}}-1} - t_{0}} \qquad \text{Var}(\mathcal{A}_{a}) = \frac{1}{(N_{\text{gl}}-1)(t_{N_{\text{gl}}-1} - t_{0})} \sum_{i} \frac{(\Delta \Omega_{i} - \mathcal{A}_{a} \Delta t_{i})^{2}}{\Delta t_{i}} \qquad \begin{array}{c} \text{Unbiased} \\ \text{estimators for} \\ \text{cumulated data} \end{array}$$

Compare with bounds on the minimum mass of a NS:

Observed: M=1.174 Mo Martinez+2015 arXiv:1509.08805 CCS simulations: M≈1.15 Mo Suwa+2017 arXiv:1808.02328

Stationary test (glitch activity)

Bayesian fit of Vela 2016

Fit of the TOA residuals of Palfreyman+2018 with a 3-component model:

- \rightarrow Estimated moment of inertia fractions (x,+x,<1):
 - "active" $\mathbf{x_2} \sim 0.1 0.3,$ "passive" $\mathbf{x_1} \sim 0.5 0.7$
- \rightarrow Confirmed **overshoot** found by Ashton+2019, Pizzochero+2020
- \rightarrow Posteriors for **friction parameters** in agreement with the revised estimates of friction by Graber+2018
- \rightarrow First "clue" that the superfluid in the outer core is pinned before the glitch, regardless of entrainment strength in the inner crust

Review: Antonelli, Montoli, Pizzochero arXiv: 2301.12769

Normal
$$x_p \dot{\Omega}_p = -\mathcal{T}_1 - \mathcal{T}_2 - |\dot{\Omega}_\infty|$$

Super (core?) $x_1 \dot{\Omega}_1 = \mathcal{T}_1$
Super (crust?) $x_2 \dot{\Omega}_2 = \mathcal{T}_2$,
 $\mathcal{T}_i = -x_i b_i (\Omega_i - \Omega_p)$ $i = 1, 2$

Pulsar "timing noise"

Antonelli, Basu, Haskell, MNRAS (2023) - arXiv:2206.10416

- \rightarrow we import physical ideas from "glitch theory" to model "timing noise"
- \rightarrow understanding the properties of timing noise is important also for Virgo/Ligo

NS emitting *continuous* GW is a "gravitational pulsar"

 \rightarrow need to keep track of pulsar timing (including glitches and noise) for "targeted" and "narrow-band" searches of continuous GW @Ligo/Virgo

Stochastic process for timing noise

Antonelli, Basu, Haskell Arxiv:2206.10416

Non-superfluid component (coupled to magnetosphere) $\begin{array}{c} \text{fluctuating} & \text{fluctuating} \\ \text{internal torque} & \text{external torque} \end{array} \\ x_p \dot{\Omega}_p = -\mathcal{T} - \eta_t^{\mathcal{T}} + \mathcal{T}_\infty + \eta_t^\infty \end{array}$

Superfluid component (not directly observable) $x_1 \dot{\Omega}_1 = \mathcal{T} + \eta_t^{\mathcal{T}}$ fluctuating internal torque

Independent standard Wiener processes

$$\eta_t^{\infty} = \sigma_{\infty} \dot{W}_t^{\infty}$$
$$\eta_t^{\mathcal{T}} = \sigma_{\mathcal{T}} \dot{W}_t^{\mathcal{T}}$$
$$\dot{W}_t^i \dot{W}_s^j \rangle = \delta_{ij} \delta(t-s)$$

Only **external** fluctuations: flat region in the PSD shrinks \rightarrow pure Wiener process + "inertial" corrections

$$P_p(\omega) = \frac{\alpha_\infty^2 \,\Omega \,\dot{\Omega}}{x_p^2 \,\omega^2} \cdot \frac{\omega^2 + x_p^2 \tau^{-2}}{\omega^2 + \tau^{-2}} \approx \frac{\alpha_\infty^2 \Omega \dot{\Omega}}{\omega^2}$$

Only **internal** fluctuations: flat region extends to the origin \rightarrow typical Lorentzian PSD (Ornstein-Uhlenbeck process)

$$P_p(\omega) = \frac{\alpha_{\mathcal{T}}^2 x_1^2 \dot{\Omega}^2}{2 x_p^2 \mathcal{B} \Omega} \cdot \frac{1}{\omega^2 + \tau^{-2}}$$

Final considerations

Glitches provide us with some interesting theoretical challenges: ...thank you spinning pulsar!

- \rightarrow vortex dynamics in non-homogeneous environments
- \rightarrow collective avalanche dynamics
- \rightarrow how to describe pinning at the microscopic scale?
- \rightarrow physics in the core: superfluid-superconductor mixture

Cross contamination between different fields, especially condensed matter, is necessary. Some open questions:

 \rightarrow role of starquakes? (can we really have quakes in a NS?)

- \rightarrow role of entrainment (strong/weak? affected by disorder?)
- \rightarrow better understanding of dissipation at micro/meso scale
- \rightarrow collective aspects of vortex dynamics (Viscoelasticity? Hysteresis? Collective pinning?)

The most important thing: more and better observations Improved timing techniques (and more observation time) \rightarrow test current models

(some) References

Stationary "activity" test (morally: "effective moment of inertia of pinned region" > "observed activity") Link+1999 arXiv:9909146, Andersson+2012 arXiv:1207.0633, Chamel 2013 arXiv:1210.8177, Montoli+2020b arXiv:2012.01539 Stationary "glitch size" test (morally: "glitch from maximal critical lag" > "observed glitch amplitude") Antonelli+2018 arXiv:1710.05879

Beyond the stationary tests (need to solve temporal evolution \rightarrow model dependent):

Ho+2015 arXiv:1703.00932 (activity+cooling: need to integrate the thermal evolution), Pizzochero+2017 arXiv:1611.10223, Montoli+2020 arXiv1809.07834 (glitch size+activity: need to integrate the superfluid reservoir evolution)

General Relativity corrections: Sourie+2017 arXiv:1607.08213 (2 rigid components), Antonelli+2018 arXiv:1710.05879 (fluid, corrections for the glitch size), Gavassino+2019 arXiv:2001.08951, arXiv:2012.10288 (fluid, corrections for the spin-up timescale)

Revisiting the starquake paradigm: Giliberti+2019 arXiv:1902.06345, arXiv:1809.08542 (continuously stratified), Reconret+2021 arXiv:2106.12604 ("starquake is not enough" argument), Bransgrove+2020 arXiv:2001.08658 (quake and null pulses in Vela 2016)

Glitch overshoot: virtually any model with more degrees of freedom than Baym+ Nature 224 1969: Fluid models that are in the same class of Alpar+ ApJ 273 1984: Haskell+2012 arXiv:1107.5295, Antonelli+2017 arXiv:1603.02838, Graber+2018 arXiv:1804.02706 (revised friction parameters) Models with 3 rigid components: Pizzochero+2020 arXiv:1910.00066 (mathematical condition for the overshoot)

Vela 2016 (Palfreyman+ Nature 556 2018)

Ashton+2019 arXiv:1907.01124 (agnostic Bayesian fit), Montoli+2020a arXiv:2005.01594 (theory of 3-component model, Bayesian fit of physical parameters), Sourie+2020 arXiv:2001.09668 (pinning in the core), Gügercinoğlu+2020 arXiv:2003.08724 (fit with the vortex creep model)

Beyond hydrodynamics: we are still "stealing" from Anderson&Itoh Nature 256 1975 (short but very dense paper!) Melatos+2018 arXiv:1809.03064 (correlations in glitches), Khomenko+2018 arXiv:1801.01413, Antonelli+2020 arXiv:2007.11720 (pinning/depinning transition, hysteresis loop), Howitt+2020 arXiv:2008.00365 (point vortex simulations), Haskell+2020 arXiv:2007.02748 (quantum turbulence), Carlin+2021 arXiv:2105.13588

Entrainment coupling: crust and core

 In the inner crust (lattice of ions & S-wave superfluid): Chamel, PRC 2012 Bragg scattering by crustal lattice entrains the "free" neutrons. Non-local effect: m¥ > 1
 → Consequence: the crustal superfluid is entrained by the normal component: reduced mobility of "free" neutrons is a potential problem for pulsar glitch theory.

Chamel PRL 2013, Montoli, Antonelli et al, Universe 2020

In the core (S-wave superconductor & P-wave superfluid): Chamel & Haensel PRC 2006 Entrainment is due to the strong interaction between protons and neutrons. Local effect: m*<1

-Consequence #1: Scattering of electrons off vortex cores: the core is coupled to the crust on the timescale of a second Alpar et al, ApJ 1984

-Consequence #2: Dipole-dipole interaction with flux-tubes (core pinning?)

 $d\sin\theta = N\pi/k$

Pinning – Length scales

 $\mathbf{Core} \rightarrow$ "Abrikosov lattice" spacing between flux-tubes $\sim 1000~\mathrm{fm}$

 $Crust \rightarrow crustal \ lattice \ spacing \sim 100 - 20 \ fm$

Vortex-*nucleus* interaction \rightarrow coherence length $\sim 10 - 100$ fm

Inter-vortex spacing

$$l_v = \frac{\sqrt{\kappa P}}{2\pi} \approx 7 \times 10^{-3} \sqrt{P} \text{ cm}$$

Vortex dynamics and vortex-*lattice* interaction \rightarrow "mesoscale" (inter-vortex spacing)

Inner crust structure

Density profiles of neutron and protons, at several average densities, along a line joining the centers of two adjacent unit cells (HF calculation of the GS in the **inner crust** with effective NN interaction, **no pairing correlations**)

Negele & Vautherin, Neutron star matter at sub-nuclear densities (1973)

Include **pairing correlations**: Baldo et al, *The role of superfluidity in the structure of the neutron star inner crust* (2005)

Band theory of solids: Carter et al, Entrainment Coefficient and Effective Mass for Conduction Neutrons in Neutron Star Crust (2006)

Heteroscedastic linear regression

Montoli+2020 arXiv: 2012.01539

$$\Delta\Omega_i = \mathcal{A}_a \, \Delta t_i + \varepsilon_i$$

$$\Omega_i = \mathcal{A}_a t_i + \sum_{j=1}^i \varepsilon_j$$

Usual regression: deviations i.i.d.

Cumulated data: deviations are not i.i.d.

Important: careful inclusion of the "intercept" may lower the estimated uncertainty.

Pulsar	$\mathcal{G}_{ ext{hom}}(\%)$	$\mathcal{G}_{het}(\%)$
0534+2200	0.0079 ± 0.0007	0.008 ± 0.006
0537-6910	0.874 ± 0.003	0.85 ± 0.15
0631+1036	1.77 ± 0.18	2.03 ± 1.95
0835-4510	1.62 ± 0.02	1.6 ± 0.2
1341-6220	1.52 ± 0.10	1.9 ± 0.6
1740-3015	1.22 ± 0.04	1.3 ± 0.7

$$\mathcal{A}_{a} = \frac{\sum_{i} \Delta \Omega_{i}}{\sum_{i} \Delta t_{i}} = \frac{\sum_{i} \Delta \Omega_{i}}{t_{N_{\text{gl}}-1} - t_{0}} \qquad \text{Var}(\mathcal{A}_{a}) = \frac{1}{(N_{\text{gl}}-1)(t_{N_{\text{gl}}-1} - t_{0})} \sum_{i} \frac{(\Delta \Omega_{i} - \mathcal{A}_{a} \Delta t_{i})^{2}}{\Delta t_{i}} \qquad \begin{array}{c} \text{Unbiased} \\ \text{estimators for} \\ \text{cumulated data} \end{array}$$