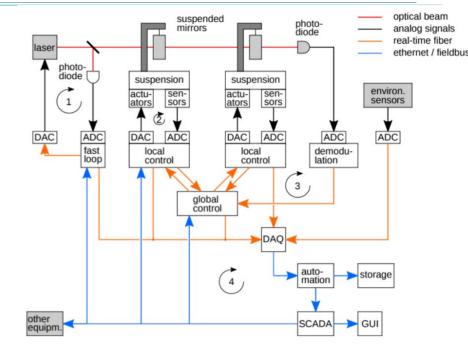

Quelques activités techniques Virgo/ET Electronique/software pour contrôles temps-réel et acquisition des données

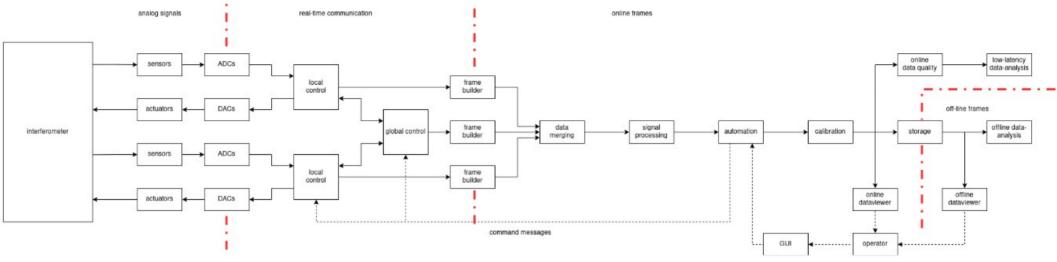
Avril 2024

Interferometer control and data collection

keep mirrors quiet and cavities on resonance at picometer level


Various levels of control loops:

- vary fast analog/digital loops (100 kHz to 1 MHz)
- fast local control of suspension (~10 kHz)
- fast global control of whole interferometer (~10 kHz)
- slow automation: lock acquisition (~1 Hz)
- human in-the-loop monitoring and operation (minutes)


Timing synchronisation over kilometers + constraints on phase noise of clocks

Hard real-time, distributed, hierarchical control. Control bandwidth limited by sampling frequency/delays.

All signals from control system and environmental monitoring recorded by data acquisition chain

Collection chain from front-end to data storage

Analog signals of sensors/actuators converted to/from digital, sent around for digital realtime controls Fast signals **collected** by "frame builders" into chunks of data (0.1 to 1.0 s), then merged with slow data

Slow automation: update parameters of fast processes based on data in frames

Optional signal processing (decimation, image processing, ...)

Data viewers, GUIs for human interaction with interferometer

Data **storage**Calibrated strain signal sent to online and offline **data analysis**

Control hardware and software

Evolution going to more and more digital electronics and control loops

Key components:

- ADC/DAC
- computing units: FPGA/DSP/CPU... part of an electronic board, a crate or a remote PC
- real-time communication network
- timing network (timestamp + low-noise clocks)
- software: real-time software, data collection chain, automation, supervisory control, ...

Not everywhere a single solution in Virgo

- for example specific real-time electronics used for the suspension (developed by Pisa group)
- + different configuration and control softwares
- → limit the number of experts on different solutions; more difficult for users to acquire knowledge on different systems

Opportunity to start from scratch for E.T., applicable/testable in Virgo (or part of Virgo)

Real-time digital electronics/software developped at LAPP

DAQ-box with slots for 4 mezzanines

- mother board with DSPs for decimation, FPGAs, interface with data and timing networks

- analog front-end and ADC/DAC chips
- digital demodulation with on-board FPGAs
- fastDAC for some loops with UGF of ~10 kHz
- photodiode acquisition and control, camera control
- timing clock generation
- associated software/firmware for configuration and slow monitoring

Real-time PCs

- fast PC with real-time Linux
- PCIe board for timing and data network interfaces
- software for real-time I/O and synchro of real-time processes
- software for computing control loops and signal processing
- software for front-end data collection

MuxDemux boards as "switches" of real-time data network

TimingDistributionBoxes for timing distribution

- timing synchro over 2x3 km arms, at the ~100 ns level
- 100 MHz clock with low phase noise for digital demodulation
- on-going move to WhiteRabbit, in collaboration with Nikhef

Virgo slow monitoring and automation

Automation

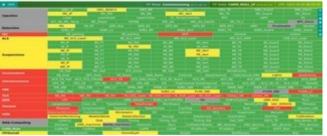
running on the DAQ server 1 Hz loop

Detector slow monitoring: some additional machines at EGO

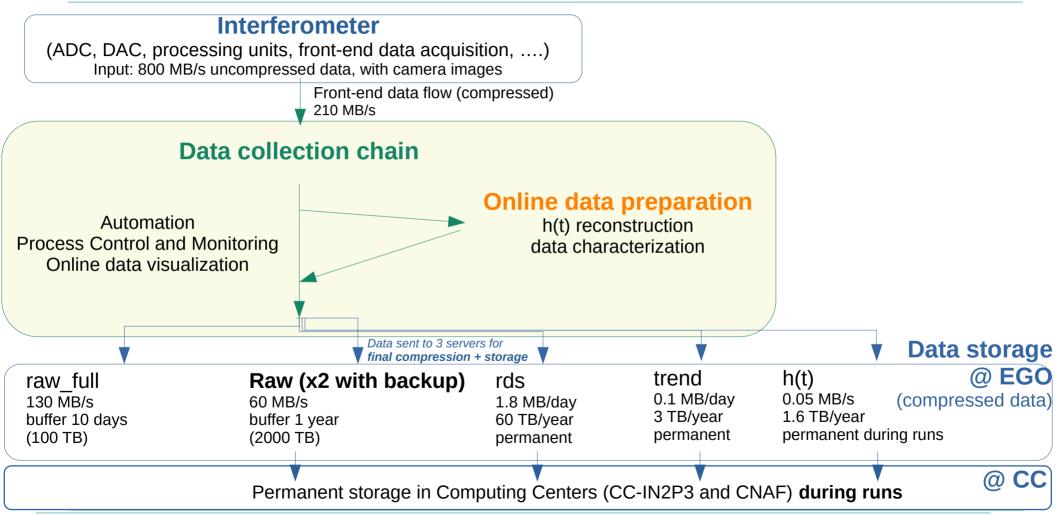
Cm nameserver Virgo Process Monitoring server (VPM) Detector Monitoring System server (DMS)

GUIs Web interfaces for users

Camera image visualization in control room screens


2 vid machines, each with 16 CPU and 50 GB memory

4 screens for display


home-made software for display configuration

Virgo data collection: main data flows

Scaling up from Virgo to ET

No major technological breakthroughs needed to control ET, could be evolution of current hardware Virgo will still be online for ~20 years, upgrades of current hardware will be needed

- data flux might increase by ~1 order of magnitude: Virgo produces 5 TB/day (1 "raw" flux), ET will have multiple interferometers that are more complex
 - longer arms (3 km → 10 km, or more?): control strategy due to larger transmission delays?
 - ADCs and DACs noise close to limiting for some critical sensors/actuators
 - some faster digital loops (to replace some more analog loops)
 - (slightly) better timing: lower phase noise (for digital demodulation)
 - upgrade software/hardware to state-of-the-art
 - make things more uniform/maintainable: don't have multiple devices for the same job

Some possible activities... "DAQ" electronics and software

Investigations towards E.T. but applicable/testable on (a part of) Virgo

Fast digital control loops

- with unity gain frequency ~>100 kHz (for laser, injection, ...)

+ help in reviewing and completing the ET PBS

Digital demodulation:

- on-going R&D at LAPP, based on demodulation computed on FPGA
- exploration of alternative solutions, for example computation on GPU

Network for real-time data

- explore solutions, future developments as WhiteRabbit 10 GB

Alternatives to real-time software (Tolm, Acl)

- use a friendly user-interface, matlab/simulink to design filters and configure controls
- on-going activity at LAPP about real-time kernel, with possible impact on real-time software

New tools for data visualisation

- web version?

Control electronics for the suspensions (driven by Pisa)

Evolutions of data collection and data format

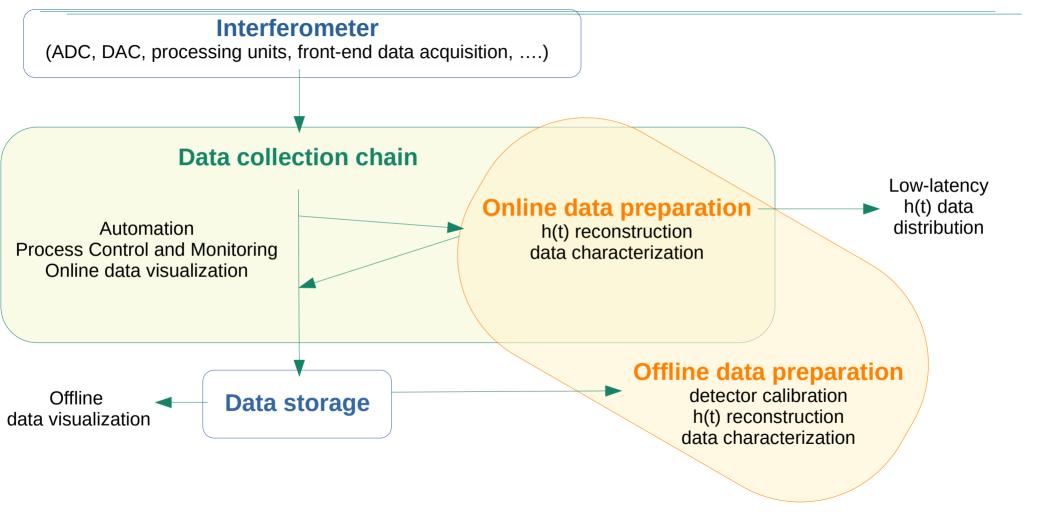
Any other topics of interest from IP2I?

Some possible activities... others

More directly useful for Virgo (within DETetection and CALibration sub-systems)

Participation to test and installation of ADC/DAC channels for O5?

- as a training


Calibration of photodiodes (absolute timing and frequency-dependent response)

- develop method on calibration test-bench
- installation on Virgo (EDB, SDB2 benches)

Fast-shutter for detection bench

- electro-mechanics and driving
- possibility that LAPP will work on it

Interface of real-time control and DAQ with EIB?

