Indirect dark-matter searches with γ -rays

Dimitrios Kantzas LAPTh/CNRS

with Francesca Calore, Marco Chianese

Image Credit: NASA/JPL-Caltech

Indirect dark matter searches

Dimitrios Kantzas | Assemblée Générale Enigmass+ | 8 Nov 2024

 $m_{_{DM}} \& <\sigma v >$

DM DM DM Image Credit: N. L. Rodd

Galactic centre excess

Goodenough & Hooper 2009; Hooper 2011; Calore et al. 2015; 2016; Macias et al. 2018

DM spikes

see e.g., Quinlan et a. 1995; Gondolo & Silk 1999; Gorchtein et al. 2010

Dimitrios Kantzas | Assemblée Générale Enigmass+ | 8 Nov 2024

Image Credit: Nick Risinger

Active galactic nuclei (AGN)

Cosmic ray (CR) acceleration in AGN jets

CR cooling due to DM or boosted DM

e.g., Bringmann & Pospelov 2019; Ema et al. 2019; Cappiello & Beacom 2019; Guo et al. 2020; Wang et al. 2022

Herrera & Murase, 2024

Dimitrios Kantzas | Assemblée Générale Enigmass+ | 8 Nov 2024

 $\chi + e^{-}/p^{+} \rightarrow \chi + e^{-}/p^{+}$

 $\chi + p^+ \rightarrow \chi + p^+ + \dots +$

γ-rays + neutrinos

elastic CR-DM

inelastic CR-DM

CR cooling due to DM or boosted DM

e.g., Bringmann & Pospelov 2019; Ema et al. 2019; Cappiello & Beacom 2019; Guo et al. 2020; Wang et al. 2022

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

10^{-28} $\langle \sigma v \rangle / m_{\rm DM} = 10^{-28} \mathrm{cm}^3 \mathrm{s}^{-1} / \mathrm{GeV}$ 10^{-30} $\langle \sigma v \rangle / m_{\rm DM} = 0$ 10^{-32} $[^{\rm z}_{\rm m}]_{\rm m}^{\rm 2} 10^{-34}$ $[^{\rm w}_{\rm m}]_{\rm m}^{\rm 2} 10^{-36}$ $[^{\rm w}_{\rm m}]_{\rm m}^{\rm 2} 10^{-38}$ Direct detection TXS 0506+056 10^{-36} Solar reflection BBDM Thermal dark matter 10^{-40} 10^{-42} 10^{-44} 10^{-3} 10^{-2} 10^{-4} 10^{-1} $m_{\rm DM} \, [{\rm GeV}]$

CR electrons + DM

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

CR electrons + DM

Elastic CR-DM collisions in AGN jets

Herrera & Murase, 2024

CR electrons + DM

Semi-analytical, multi-zone jet model

jet segments

particle acceleration

BHJet: a multi-zone model (Lucchini..., DK et al. 2022)

jet acceleration

and collimation

Dimitrios Kantzas | Assemblée Générale Enigmass+ | 8 Nov 2024

Blandford & Königl 1979; Hjellming & Johnston 1988; Falcke & Biermann 1995; Markoff et al. 2001, 2005; Maitra et al. 2009; Crumley et al. 2017; Lucchini et al. 2019, 2022; Kantzas et al. 2021, 2022, 2023a

The study case of Markarian 421

- BL Lac object
- @122Mpc (z=0.0308)
- The 1st extragalactic TeV source (Punch et al. 1992)
- One of the brightest quasars

The jets of Mkn 421

Pencil jet: slim and powerful jet power: **0.08 Edd** radius: **10 R**_g CR acceleration: **20 R**_g Particle acceleration efficiency: **10**⁻⁶

1 is the max possible attainable energy

The multiwavelength spectrum of Mkn 421

The MW spectrum of Mkn 421 with DM

Herrera & Murase, 2024

The cooling timescales

 $<\sigma v > /m_{DM} = 10^{-28} \,\mathrm{cm}^{-2} \,\mathrm{GeV}^{-1}$

$$<\sigma v>/m_{DM}=0$$

Dimitrios Kantzas | Assemblée Générale Enigmass+ | 8 Nov 2024

Kantzas et al. in prep.

Conclusions

- CRs may cool due to CR-DM collisions !
- We cannot draw conclusions on the DM nature unless we <u>better constrain jet</u> <u>physics</u> !!
- More physically driven jet models are required !!!