

Charge Signal formation in the TPC Vertical Drift design of DUNE

AG Enigmass 8th November 2024 - IPAG

Supervisors:

Johann COLLOT (LPSC) Laura Zembelli (LAPP) Dominique Duchesnau (LAPP)

Joshua PINCHAULT

Deep Underground Neutrino Experiment

- \triangleright Precision measurements of neutrino oscillation parameters $(\delta_{CP}$ phase, mass ordering, θ_{23} octant etc.)
- \triangleright Measurement of $v_\mu \to v_e$ and $\bar{v}_\mu \to \bar{v}_e$
- \triangleright Far detector is made of 4 Giant LArTPCs (17 kt of liquid argon each) located at 1480 m underground

• DUNE Phase 1: 2 detectors • DUNE Phase 2: 4 detectors

AG Enigmass 2024 2

How LArTPC works?

Ø **Time Projection Chamber:**

- Segmented anodes used to collect charge signal
- $\tau_{photon} \ll \tau_{drift}$ \rightarrow light signal trigger detection
- Enables large volume and high spatial resolution Charged

- \triangleright At GeV-scale (1 10 GeV) neutrino interactions are dominated by resonant interaction and deep inelastic scattering processes
- \triangleright Charged lepton produced by charged-current interactions are used to tag the neutrino flavour

$$
v_l + n \rightarrow \bigcirc l + p
$$

$$
\overline{v_l} + p \rightarrow \bigcirc l + n
$$

- \triangleright Separate v_e / v_μ events by track topology identification
- \triangleright Neutrino energy reconstructed using calorimetry

Vertical drift design

Diagram by L. Zambelli

- \geq 2 volumes split by a cathode
	- Carried by an electric drift field: $|\vec{E}| = 0.5 \frac{kV}{cm}$
- \triangleright The new perforated anode technology
	- Stack of 2 perforated Printed Circuit Boards (PCB)
	- Etched copper electrode strips on each PCB face
	- Few millimeters spatial resolution
	- Module called Charge-Readout Planes (CRP) ~ 3x3 m
- Ø DUNE Far detector at SURF:
	- Top and bottom anode planes made of 80 CRP modules each
	- The top CRPs will be produced at LPSC in Grenoble

Signal formation study on anodes

• **Problematic:**

- \triangleright Use of new anode technology
- \triangleright Important to know the deposited energy in the detector to measure the oscillation parameters
- \triangleright Improve tracks reconstruction using the shape of induction signals
- **My work:**
	- \triangleright Understand the waveforms based on energy, track angle and position
	- \triangleright Understand the charge lost in the anodes
	- \triangleright Estimate the different systematics
	- Ø **Study of induced signal formation on the anode**

CRP assembly at **CERN**

The perforated anode technology

- \triangleright Shield + 3 different charge readout layers:
	- Induction $1 -$ strip orientation -30 \degree to beam axis
	- Induction $2 -$ strip orientation $+30^{\circ}$ to beam axis
	- Collection strip orientation 90° to beam axis

Modeling signal formation

 \triangleright Shockley-Ramo theorem:

 ϕ ϕ ϕ

 $i(t) = q E_W \cdot \vec{v}_D$

- Theorem derives from Maxwell equations
- \triangleright Drift velocity: $\vec{v}_d = \mu E_d$
	- When $E_d > 200 V / cm$: electron mobility depends on the electric field
	- We use global model fitted on mobility measurements
- \triangleright Weighting Field $\overrightarrow{E_w}$:
	- Virtual field defined when the **reading strip equal 1 V** and **all others fixed to 0 V**
	- Depends only on the spatial distribution of the electrodes

Ø **Induced current is caused only by charge carriers motion**

. Li, et al., "Measurement of Longitudinal Electron Diffusion in

 $\mathbf l$

AG Enigmass 2024

Electron cloud simulation

https://gitlab.in2p3.fr/jpinchau/dunesimanodevd

 10

Electron cloud simulation

https://gitlab.in2p3.fr/jpinchau/dunesimanodevd

- \triangleright Border effect near to the collection electrode
- **≻** The field takes $\propto 1/r^2$ dependancy which will induce a high frequency signal
- \triangleright Electronic response will smooth the readout induced current

Charge carriers motion in liquid

Ø **Electron diffusion could cause a loss of charge in the CRP**

$$
\frac{\partial n}{\partial t} = D_L \frac{\partial^2 n}{\partial z^2} + D_T \left(\frac{\partial^2 n}{\partial x^2} + \frac{\partial^2 n}{\partial y^2} \right)
$$
 Fick's equation

Gaussian spatial distribution of the electrons o[ver time](http://www.sciencedirect.com/science/article/pii/S0168900216001443)

 \triangleright Average diffusion length given by:

$$
\sigma_{L,T} = \sqrt{2 D_{L,T} t}
$$

 \triangleright Relationship between longitudinal and transverse diffusion coefficient: $\epsilon_L \mu$

$D_L =$ *(Einstein's relation)*

11/8/24

$$
\frac{D_L}{D_T} = 1 + \frac{E}{\mu} \frac{\partial \mu}{\partial E}
$$

 ϵ_L : longitudinal effective electron energy

 \triangleright Electron Electron Electron loss on E

Electron drift axis [mm]

Οı

 μ : electron mobility

. Li, et al., "Measurement of Longitudinal Electron Diffusion in Liquid Argon", NIMA 816, 160 (2016). [arXiv]

 \boldsymbol{e}

Electron diffusions

Time: $0.10 \,\mu s$ $1e-13$ 2.0 Electron cloud evolution with transverse diffusion **Collection Diffusion** Collection No Diffusion Charge: - 0.000 Charge: - 0.000 Time: $0.10 \mu s$ 1.5 Electron cloud evolution no diffusion Time: $0.10 \,\mu s$ 1.0 0.5 **Collection** 0.0 **Induction 2** amplitude [A] $1e-13$ 0.5 15 0.0 ٦5 $\frac{1}{2}$ Drift Z [mm] $\frac{1}{2}$ Drift Z [mm] -0.5 Signal -1.0 Induction 2 Diffusion Induction 2 No Diffusion Charge: - 0.000 Charge: - 0.000 **Induction 1** $1e-13$ 1.5 Induction 1 Diffusion Charge: - 0.001 1.0 Induction 1 No Diffusion **Shield** Charge: - 0.001 0.5 0.0 -0.5 \overline{z} 6 8 10 12 0 Δ **▷ Diffusion causes 10 % of charge loss (simulation)** Time [μ s]

AG Enigmass 2024 11

Signal on all views

R&D TPC 50 L detector

- Ø Data-taken on R&D TPC at CERN last summer
- \triangleright Need to compare with simulation
- \sim 32×32 cm active area
- 52 cm drift
- Random trigger
- Ø **Not enough cosmic ray event**

- 2 ^{207}Bi sources put inside TPC
- Activity: both at 37 kBq
- Main conversion electron rays at around 1 MeV
- Range in liquid argon: \approx 5 mm < strip length \rightarrow single hits

Single hits

- \triangleright Reconstructed events by using Lardon developped L. Zambelli
- \triangleright Isolated hit on three views correlated in time

Reconstructed single hits

Results

- Total reconstructed single hits: 17 334 hits \rightarrow 1542 hits after cut off
- Each signal has been added to reduce the white noise
- Normalized by charge to compare the shape with simulation

$$
S_{norm}(t) = \frac{S(t)}{\int |S(t)| dt} = \frac{S(t)}{Q_{ind}^+ - Q_{ind}^-}
$$

- Ø **Simulated waveforms in good agreement with data taken**
	- Only single hit was considered \rightarrow extend the simulation at large scale

Prototypes at CERN

Ø **ProtoDUNE Vertical Drift (VD):**

- A prototype built at CERN to test the Vertical Drift technology at large scale (TPC size: 3.0 m (W) × 6.8 m (L) × 6.8 m (H))
- Data-taking should start early in 2025
- Top CRPs have accessible electronics and bottom CRPs have embedded cold electronics
- Will enable to analyse some data of cosmic to show induction waveforms as a function of track angle

Summary

Ø**Work done:**

- Numerical simulation design to understand the formation of induction signals of all views
- Analyse 50L TPC data and compare with simulation \rightarrow Very good agreement
- Electron diffusion seems to cause a loss of charge inside the anode

Ø**What's next ?**

- Extend the simulation in a bigger volume \rightarrow One goal of simulation is to understand the waveforms in order to improve track reconstruction.
- Data-taking at early 2025 with protoDUNE-VD
- Further study the impact of electron diffusion on the anode transparency the charge loss in the induction 1 on data seems to be more important than simulation \rightarrow Work in Progress
- (and write a thesis)

Backup

Neutrino oscillation

- There are three leptonic flavors v_e , v_u , v_τ
- Neutrinos only interact by weak interaction \rightarrow Small cross section
- **Neutrino oscillation:**
	- \triangleright Assumes neutrino masses (SM predict massless for these ones)
	- \triangleright Flavor eigenstates (which couple W^{\pm} , Z^0) are different from mass eigenstates during their propagation
- **Flavor states** are a linear combination of mass states:

$$
|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} | \nu_{i} \rangle \quad \text{avec} \quad \begin{cases} \alpha = e, \mu, \tau \\ i = 1, 2, 3 \end{cases}
$$

• **PMNS mixed matrix** (Pontecorvo-Maki-Nakagawa-Sakata):

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta_{CP}} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

Atmospheric
 $v_{\mu} \leftrightarrow v_{\tau}$
 $v_{\mu} \leftrightarrow v_{e}$
 $v_{\mu} \leftrightarrow v_{e}$
 $v_{e} \leftrightarrow v_{X}$

Mass ordering

• Sign of $\left|\Delta m^2_{31}\right| \rightarrow$ Mass ordering

2nd year PhD Seminar 20

Matter effect

- \triangleright Neutrino oscillations are modified by matter effect
- \triangleright Add a effective potential to the Hamiltonian

Charged currents cross section

Principle of LArTPC detection

Charge particle

 \triangleright Scintillation light coming from argon de-excitation ($\lambda = 128 \text{ nm}$)

Drift velocity: Walkowiak Fit

• Walkowiak fit (1999): $v_D \equiv v_D(|\vec{E}|,T)$ $= (P_1(T - T_0) + 1) (P_3 \vert \vec{E} \vert \ln (1 +$ P_4 É + $P_5 \vec{E}^{P_6}$ $+ P_2(T - T_0)$

With P_1 *,* P_2 *,* P_3 *,* P_4 *,* P_5 *and* P_6 *fit parameters*

$$
\begin{cases}\nP_1 = -0.01481 \pm 0.00095 \, K^{-1} \\
P_2 = 0.0075 \pm 0.0028 \, K^{-1} \\
P_3 = 0.141 \pm 0.023 \left(\frac{kV}{cm}\right)^{-1} \\
P_4 = 12.4 \pm 2.7 \left(\frac{kV}{cm}\right) \\
P_5 = 1.627 \pm 0.078 \left(\frac{kV}{cm}\right)^{-P_6} \\
P_6 = 0.317 \pm 0.021 \\
T_0 = 90.371 \, K\n\end{cases}
$$

W. Walkowiak. Drift velocity of free electrons in liquid argon 1999

Drift velocity: Icarus fit

- ICARUS detector using TPC technologie (2004)
- P5 Polynomial fit:

 $v_D(E, T = 89 K)$ $= a + bE + cE^{2} + dE^{3} + eE^{4} + fE^{5}$

• Fit valid only: $T = 89 K$

ICARUS Collaboration, Analysis of the liquid argon purity in the ICARUS T600 TPC, 2004

Drift velocity: Brookhaven fit

- Global data fit scaled at $T = 89 K$
- Drift velocity: $\overrightarrow{v_D} = \mu(|\vec{E}|, T) \vec{E}$ Avec: $\mu =$ $a_0 + a_1 E + a_2 E^{3/2} + a_3 E^{5/2}$

$$
\begin{cases}\n a_0 = 551.6 \\
 a_1 = 7158.3 \\
 a_2 = 4440.43 \\
 a_3 = 4.29 \\
 a_4 = 43.63 \\
 a_5 = 0.2053\n\end{cases}
$$

 \overline{T}

 $-3/2$

- \triangleright Main γ rays:
	- $\approx 570~keV$ \bullet
	- ≈ 1 MeV
	- ≈ 1.7 MeV
- \triangleright More complicated:
	- Conversion
	- Electron ≈ 1 MeV

Electron range in liquid argon

 γ attentuation length > 10 cm \bullet

 γ attenuation length in liquid argon

- Conversion electron range ≈ 1 cm \bullet
- \triangleright Need to find Bi207 events from 50 L data
	- Electron range very short \bullet
	- Looking for only one signal from strips on all \bullet induction views \rightarrow called a single hits

Bi207 Reconstructed Spectra

- \triangleright Cut hits at 7 mm around both sources
- \triangleright Useful to calibrate detector with peak at 1 MeV
- \triangleright Red is closer to the anode than blue
- \triangleright Not enough single hit events data acquisition too short (\sim few hours)

AG Enigmass 2024

Electron life time

 \triangleright To reconstruct the charge, it is necessary to take into account impurities (N_2 , O_2 , etc.):

