

Etude, Simulation et Réalisation d'un prototype de spectrographe à intégrale de champ

Marie-Hélène AUMEUNIER

Directeurs de Thèse: Anne EALET Roger MALINA

11 Avril 2005

Problématique

Etude des performances d'un spectrographe optimisé pour la mesure de l'énergie noire

1- Mesurer avec une grande précision le spectre de supernovae lointaines de faible luminosité

2- Calibrer des étoiles de référence très brillantes avec une précision de 1%

1. Contexte scientifique 2. SNAP 3. Etude du spectrographe 3.1- La simulation 3.2- Le démonstrateur 4. Conclusions - Perspectives

Problématique cosmologique

Ce qu'on sait ...

Univers composé de 70% d' « énergie noire » Responsable de l'Accélération de l'univers

Ce qui est à déterminer...

Nature de l'énergie Noire ?

La méthode

Détermination des paramètres cosmologiques qui définissent l'énergie noire par la mesure de supernovae Principe de mesure des paramètres cosmologiques avec les SN Ia: diagramme de Hubble (m-M vs z)

On mesure :

- Magnitude apparente m
 - Décalage spectral z

On ajuste les paramètres cosmologiques : $m-M = 5\log(H_0) + 25 + 5\log(D_L(z))$

distance de luminosité $D_L(z, \Omega_k, \Omega_m, \Omega_\Lambda, w)$

Objets des mesures: supernovae de type la (meilleures chandelles standardisables)

La méthode

Etat actuel

Mesures actuelles : ~ 150 SN la proches obtenues avec des instruments au sol + quelques mesures de HST (résultats publiés par SCP (2003) et Riess (2004))

Mesures en cours : expérience SNLS (SuperNovae Legacy Survey) ~ 700 SN la prévues pour 2007 (z<1)

Futures Mesures : SNAP/JDEM jusqu'à z=1,7

1. Contexte scientifique 2. SNAP 3. Etude du spectrographe 3.1- La simulation 3.2- Le démonstrateur 4. Conclusions - Perspectives

Objectifs de SNAP

Mission : optimiser les performances de mesures de paramètres cosmologiques

Consolider les résultats actuels

Réduire les incertitudes statistiques et systématiques

Réduction des erreurs de mesure au %

Etudier la nature de l'énergie noire et sa dépendance (ou non) avec la distance z

Voir la zone de décélération (z=1.7)

Quel instrument ?

Spécifications de l'instrument

Quel spectrographe ?

1. Contexte scientifique 2. SNAP 3. Etude du spectrographe 3.1- La simulation 3.2- Le démonstrateur 4. Conclusions - Perspectives

Spécifications scientifiques

Identifier les SN la : mesurer la raie de Si à 0,615 µm jusqu'à z=1,7

 Large plage de longueur d'onde : 0.4 à 1.7 µm

Contrôler les paramètres d'explosion des SN la par la mesure de certaines caractéristiques spectrales (rapport des raies)

Optimiser la résolution et le rapport S/N

Obtenir simultanément le spectre de la SN et de la galaxie entière pour soustraire la galaxie de la SN et mesurer *z*

Résoudre l'objet spectralement et <u>spatialement</u>

Spectrographe à intégrale de champ

Spectrographe classique

Résoudre une image avec un spectrographe classique exige une stabilité de pointage très précise

Difficile à réaliser dans l'espace

Solution Innovante apportée par le Spectrographe à Intégrale de Champ

➔ Disséqueur d'Image

Le disséqueur d'image

Le Principe

La Technologie

SLICER

Etude des performances du spectrographe

PSF: réponse de l'instrument quand on place en entrée une source ponctuelle monochromatique

1. Contexte scientifique 2. Le spectrographe 3. Etude des performances 3.1- La simulation 3.2- Le démonstrateur 4. Conclusions - Perspectives

Principe de la simulation

Calcul de la PSF (Point Spread Function): Intensité dans le plan image d'un système optique diffractant lorsqu'on place en entrée une source ponctuelle (dirac)

Calcul des effets de diffraction

Optique de Fourier

Amplitude du Champ Objet

 $U_o(x_o, y_o)$

Modélisation des aberrations Optique géométrique Amplitude dans le plan Image

 $U_i(x_i, y_i) \propto \frac{1}{\lambda d_i} \times TF\{U_o(x_o, y_o) \times PG(x_o, y_o)\}$

Déroulement de la simulation

Résultats

1. Contexte scientifique 2. Le spectrographe 3. Etude des performances 3.1- La simulation 3.2- Le démonstrateur 4. Conclusions - Perspectives

Objectifs du démonstrateur

Tester les performances optiques de l'instrument dans le visible (à température ambiante) et dans l'IR à froid

Mesurer la PSF (forme,taille, position) dans des différentes conditions (diffractions, aberrations, diffusion (straylight), distorsions)

Tester la faisabilité de la calibration au %

Mettre en place des procédures de calibration

Ajuster la simulation par comparaison des PSF simulées et expérimentales

Etat d'avancement

Définition du design optique

E.Prieto / C.Macaire (LAM)

 Définition des contraintes mécaniques
→ descente en froid : cryostat
Mécanique: P.Karst (CPPM)
Cryostat : PE Blanc (LAM)
Détecteur IR (Rockwell pixels): IPNL Lyon

Définition des procédures de tests

Développement des outils d'acquisition de mesure et d'analyse

C.Cerna (CPPM)

MH Aumeunier

Première étape : PROTO-0

Proto-0

Prototype d'imageur slicer: Première étape avant le démonstrateur

Tester l'imageur slicer (pas de spectromètre) avec un prototype déjà existant

Mesure de PSF uniquement dans le visible

Réalisation finie Début des tests maintenant

Proto-0

Conclusion - Perspectives

Eté 2005 : Premiers résultats obtenus avec le Proto0
→ Expertise acquise pour le démonstrateur

Automne 2005: Construction du démonstrateur

Début 2006: début des tests avec le démonstrateur

Supernova / Acceleration Probe Studying the Dark Energy of the Universe

Design Optique

Design Optique

Finalisation du design optique

Le slicer

Module d'illumination

Module de détection

Zernike

Pour un nombre fini de points du plan objet(x0,y0), Zemax calcule la position du centre de la PSF et les coefficients de Zernike dans chaque plan image:

Slicer

$$Z_{tel}(x0, y0, \lambda; \rho, \theta) = \sum_{i=1}^{28} a_{tel,i}(x0, y0, \lambda) \times Z_i(\rho, \theta)$$

Miroirs fentes

 $(x_i,]$

 $(x_i, y_i)_{slice}$

$$Z_{pup}(x0, y0; \lambda, \rho, \theta) = \sum_{i=1}^{28} a_{pup,i}(x0, y0; \lambda) \times Z_i(\rho, \theta)$$

 \rightarrow Grille de points décrivant le plan objet : 600 points (24 points suivant x et 5 points suivant y par slice)