

Applications possibles de Geant4 à la simulation de sources de particules

Atelier Calcul – GdR SCIPAC, 16 – 18 Octobre 2024

Marc Verderi, LLR, Ecole polytechnique

Introduction

- Présentation fait suite au contact de Thomas Thuillier et Vincent Le Flanchec concernant la possible utilisation de Geant4 sur les sources de particules
 - « que pourrait apporter Geant4 pour l'interaction des électrons de basse énergies (>100 eV) avec les parois et s' il y a des possibilités/perspectives possibles pour l'interaction des ions (E > ... 10-50 eV) avec les parois ? »
 - J'ai pris l'avis des experts Geant4 en physique hadronique et électromagnétique...
- Pour spoiler le reste de la présentation:
 - Pas simple, aujourd'hui, mais des aspects à essayer
 - Le problème : aux énergies O(10 eV), on est davantage dans des problématiques d'interaction particule – molécule que des interactions particule – atome/noyau
 - La paroi serait-elle alors vue comme un objet particulier du point de vue des interactions ?
 - Geant4 fait peu de particule molécule
 - Il le fait en partie (ex: DNA et silicium à O(eV) en microdosimétrie)
 - Pas de limitation de principe, si besoin était, d'étendre Geant4 à ces questions
 - Et adjoindre des propriétés à des surfaces est fait par exemple en tracking de photons optiques
 - Mais pour cela, l'apport de nouvelles compétences –les vôtres– serait nécessaire
- Cette présentation:
 - Un panorama rapide de Geant4, pour situer les choses
 - Puis des éléments de discussion

What is Geant4 ?

Geant4 as a Software Toolkit

- Geant4 is an Object Oriented (using C++17) Monte Carlo particle transport software toolkit for simulating the passage of elementary particles through matter and interacting with it.
- It started in 1994 as the CERN RD44 project :
 - Goal of RD44 : assess the benefit of OO technologies for detector simulation for LHC era (LHC yet to come at that time !)
 - Medical and space domains requests included since the beginning !
 - Geant4 v1.0 released in Dec 1998
 - After alpha release in Apr 1997 and beta one in Jul 1998
- Key functionalities:
 - Kernel

- \rightarrow to **animate** the system
- Geometry + navigation & materials → to **describe** the setup
- Physics processes & tracking
- → to generate the series of physics interactions
- EM (O(100 eV) PeV), special extensions (O(eV) & O(mK)), hadronic (rest multi-TeV)
- Scoring
- GUI and Visualization drivers
- \rightarrow to **collect data** from the simulation
- → to **pilot** the application and **visualize**
- "Toolkit" because users select components and build their application
 - Not an application like ROOT, or Powerpoint, etc.
- Users can extend the toolkit !

What is Geant4 ? Geant4 as a Collaboration

- Geant4 is also the name of the Collaboration maintaining, developing and validating the software
 - ~130 members + O(10) "contributors" = new light status
 - ~30 FTE
 - ~30 institutes, worldwide
 - (Map of collaborative institutes after)
 - 16 working groups
- Web site:
 - http://geant4.cern.ch/
 - Download area, documentation, news, announcement of releases, meetings (Technical Forum, etc.)

- Distributed development model:
 - Based on GitLab (geant4-dev repo.)
 - Reserved to members & contributors
 - About 1000 Merge Requests / year
- Distribution through:
 - Geant4 Web site
 - GitHub instance
 - GitLab mirror for public releases & patches

- Open to public for Pull Requests
- Special way, CVMFS, for LHC experiments (monthly tag)
- One public release/year, in December
 - Latest release: Geant4 v11.2.2
- Three general papers:
 - "Geant4: a simulation toolkit", S. Agostinelli *et al.*, NIM A, vol. 506, no. 3, pp. 250-303, 2003
 - "Geant4 Developments and Applications", J. Allison *et al.*, IEEE TNS, vol. 53, no. 1, pp. 270-278, 2006
 - "Recent Developments in Geant4", J. Allison *et al.*, NIM A, vol. 835, pp. 186-225, 2016

Electromagnetic Physics

Standard" Electromagnetic:

- Energy range 1 keV O(100 TeV)
- Processes for e-, e+, γ
- Charged hadrons ionization up to 100 TeV
- Muon, up to PeV
- "Low energy" Electromagnetic:
- Usable ?

kinetic energy. But threshold

used (ionisation and brem.)

- More precise description:
 - PENELOPE 2008 reimplementation
 - LIVERMORE data for cross-sections and final states
 - Energy range down to ~250 eV / ~100 eV
- Charged hadron ionization
 - ICRU' 49 & 73 & 90, NIST
- Material relaxation (PIXE, Auger e-, ... on secondary production is

DNA & MuElec:

- For microdosimetry studies in DNA and Silicon
- Processes down to a few eV
- Chemistry stage for DNA
- Very low energy, but very specific !
- Water radical scattering
- Optical photon: long wavelength γ (X-ray, UV, visible)
 - Reflection, refraction, absorption, wavelength shifts, Rayleigh
- Phonons:
 - Suited for very low-temperature detectors (tens of mK)

 Cell nucleus (15 µm diameter) with

 6×10° base pairs of DNA

 Tracking is made down to zero

 NIM B 306 (2013) 158-164

e⁻/hole propagation with Luke phonon emission in Ge crystal

pBR322 plasmid irradiation, including radiolysis

Hadronic Physics

What Geant4 can do today for sources simulation ?

- Tracking is made down to zero kinetic energy
 - Fine for the primary ✓, but secondary production (ionization and brem.) is suppressed below threshold (O(100 eV)) ×
- Electromagnetic physics:
 - In vacuum, tracking in electromagnetic fields is easy, whatever energies are involved
 - For interaction on surfaces:
 - The field map in the vicinity of the surface is needed. (?)
 - Note that some experiments shown that below (~25 eV) e- cannot enter/escape and be properly measured.
 - Above, Single Scattering physics describes tracking of charged particles well. Geant4 can do v
 - Any charged particle at a surface should go in or out due to elastic scattering.
 - Likely detailed surface field map, considering crystal structure, may have to be considered. (?)
 - Single Scattering must be used in limited areas (possible ✓), otherwise simulation will be very slow !
 - More complication may arise, with possibly special property of the surface that may play a role. (?)
 - To be learned & characterized by beam-surface test beam data. (?)
 - Geant4 does not have the knowledge/expertise for these phenomena. X

• For hadronics physics:

- Both energy range and projectile hadron type matter
- Neutrons can be tracked down to thermal energies
 - And there are several experts in Geant4
- For other particles, it is difficult to say (?)
 - If the existing physics is not enough, then new expertise is needed X
- In summary:
 - nothing can be expected out of the box X
 - likely some extension of Geant4 will be needed, but Geant4 does not have the expertise X

What Geant4 could do tomorrow for sources simulation ?

- A priori no technical show-stoppers to extend Geant4 to the functionalities you need
- Could a community-based (your community) effort provide these features in Geant4 ?
 - To make them available to the community ?
 - This happened several times in Geant4.
- How ?
 - First stage could be to present these sources simulation needs at a Geant4 Technical Forum (TF) meeting:
 - https://geant4.web.cern.ch/collaboration/technical_forum
 - The TF is a users-developers forum
 - Where developers present the status of the Geant4 development
 - And where users present their needs or possible issues they found etc.
 - It is often an entry point for creating new functionalities
 - Then, depending on the amount of efforts this represents either:
 - One or a few persons join Geant4 as "contributors"
 - A sort of "light member" status
 - One or a few persons join Geant4 as "members"
 - More formal but more "robust" status
 - Requires contacting one of the Working Group coordinator, the one most appropriate
 - Proposing the topics of development, with expected FTE, etc.
 - The proposal is submitted to the Geant4 Steering Board (SB) by the Working Group coordinator
 - The SB gives is green light (in most of the cases)
 - In both cases, GitLab and the validation machinery are made available to the developers.