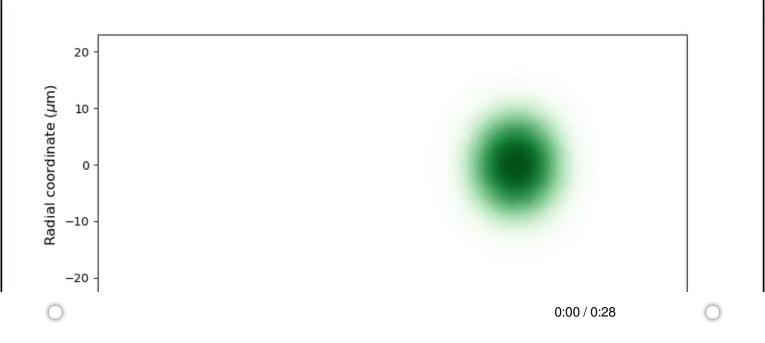


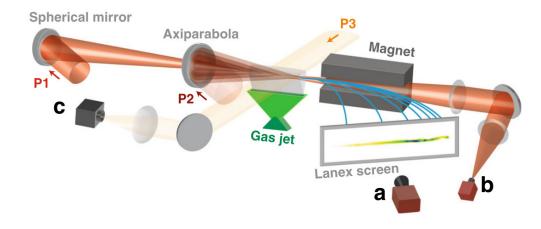
Mutli-code simulation of optically guided LWFA experiment at LOA

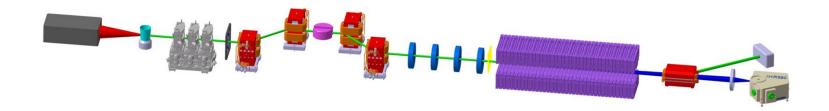

Igor Andriyash

Laboratoire d'Optique Appliquée (LOA)

GDR SCIPAC, October 2024

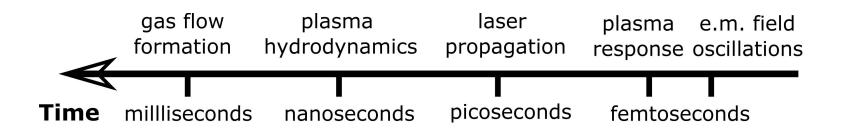
LWFA in a nutshell


- strong, $a_0\gtrsim 1$, laser travels through a plasma
- laser size/duration are roughly resonant with plasma, $\lambda_p \sim R_0 \gtrsim c au \gg \lambda_0$
- nonlinear plasma wave with strong "radial" field for trapping and accelerating electrons

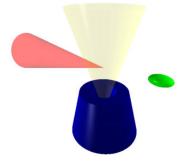

LWFA in a bigger picture

LWFA in a bigger picture

• design of guided LWFA with optical channel


• design of COXINEL LWFA-FEL

LWFA in the lab



Multiple timescales, multiple physics

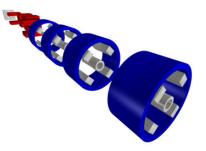
- gas flow: (super)sonic, transient/steady-state, turbulent, viscosity
- plasma hydro-dynamics and heat transport: channel/shock formation
- laser spot formation, measurements interpretation
- LWFA: e.m. field, plasma response, propagation

Required capabilities

Laser Plasmas Optical codes

• fs pulses, ionized media

CFD codes


 compressible, viscosity, turbulence

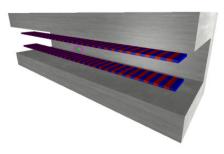
MHD codes

multi-species plasma

PIC codes

- 3D/quasi3D, relativistic, dispersionless, QSA
- Elementary processes

Beam Transport & Diags Pusher trackers


- Space-charge
- CSR

Matrix trackers

- Large e-spectra
- Beamline tuning

Magnetostatic codes

Equipment modeling

Secondary Light Emission SR light

Orbit integration

FEL

 3D/quasi3D, time-dependent, Non-averaged

Existing tools

PIC codes

- **FBPIC**^{q3D}, PSATD, GPU
- WARPX^{+q3D, PSATD, GPU}
- EPOCH (+ PSC)
- PIConGPU+GPU
- ChimeraCL^{q3D, PSATD, GPU}
- HiPACE++^{QSA}
- Architect^{RZ, Fluid}
- QuickPIC^{QSA}
- Piccante/ALaDyn^{+XPL}
- VPIC
- Smilei
- iPic3D

Transport

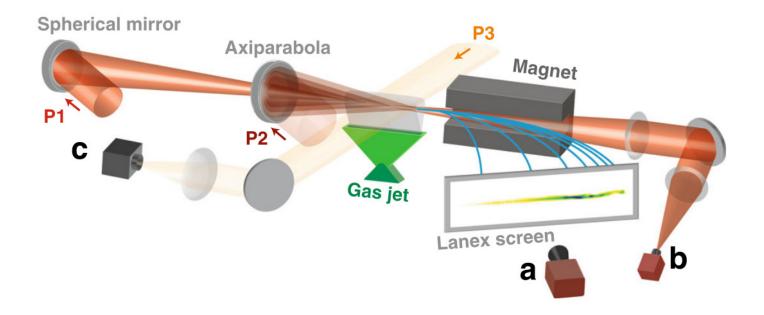
- ELEGANT^{ALL}
- ASTRA^{RK,SC,SCR}
- CCELOT^{MTRX,SC,SCR}
- AT^{MTRX}
- Beta^{MTRX}
- Synergia^{PIC}

Hydrodynamics

- OpenFOAM
- COOLFluiD

Optical & SR radiation

- **₺** SynchRad^{SR,GPU}
- **℃** AxiProp^{Prop,GPU}
- **℃** SRW^{SR,Prop}
- XRT^{SR,Prop,GPU}
- [₺] CHIMERA^{SR}
- Shadow3 (OASYS)*
- OPC^{Prop}


FEL

- GENESIS^{3D,TD}
- PUFFIN^{3D,TD, unav}
- CHIMERA^{3D,PSATD,TD, unav}
- FEL Booklet (PARSIFEL)

[Oubrerie et al. Light: Science & Applications (2022)11:180]

General setup at APOLLON

- Slit-nozzle of 6 cm with a shock, Hydrogen gas
- Axiparabola: flying focus line for high intensities
- two fs laser pulses: few mJ (channeling) and few J (driver)
- HOFI channel formation

Simulation workflow components

Formation of axibeam and propagation in vacuum and in gas/plasma OFI heating profile

• Optical, PIC, MC codes

Gas expansion and channel formation

• MHD

LWFA

• PIC, QSA-PIC

Optical propagation in ionizable media

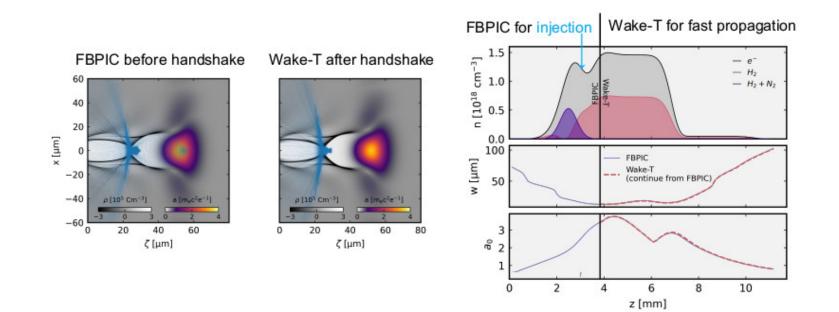
Axiprop [https://github.com/hightower8083/axiprop]

- Paraxial and non-paraxial, *RT* and *XYT* optical vacuum propagators
- Explicit (RK4, adaptive) and implicit (AM2) solvers for the envelope wave equation in plasma
- ADK ionization for enveloped and frequency-resolved field
- used as propagator engine in LASY project

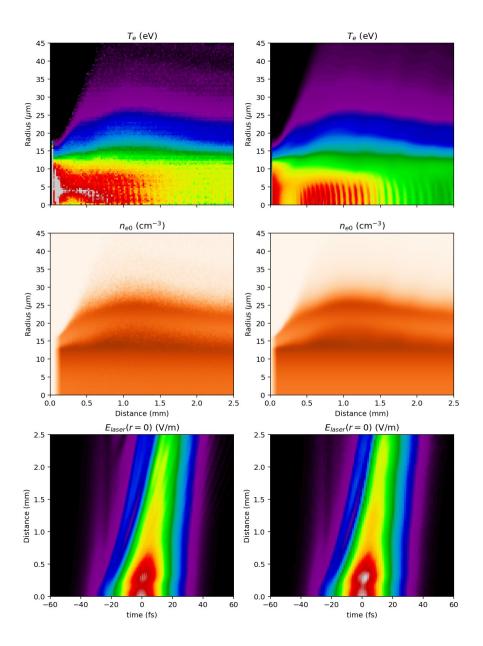
Optical propagation in ionizable media

Axiprop [https://github.com/hightower8083/axiprop]

- Paraxial and non-paraxial, *RT* and *XYT* optical vacuum propagators
- Explicit (RK4, adaptive) and implicit (AM2) solvers for the envelope wave equation in plasma
- ADK ionization for enveloped and frequency-resolved field
- used as propagator engine in LASY project

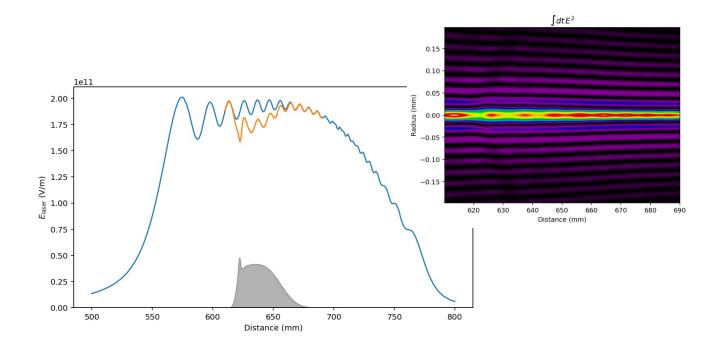

Example:

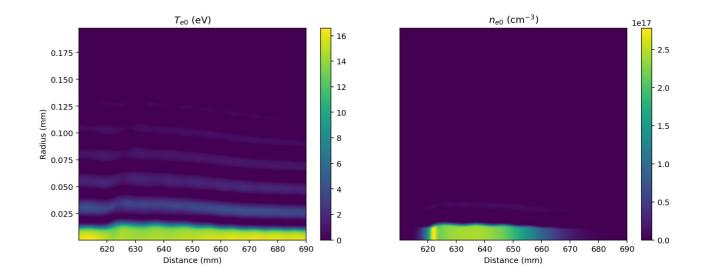
```
from axiprop.lib import PropagatorResampling,
PropagatorResamplingFresnel
from axiprop.simulation.lib import PropagatorResamplingStepping
from axiprop.simulation.plasma import PlasmaIonizationRefine
from axiprop.simulation.solvers import SolverAM2  # SolverRK4
```


From simulation to simulation

LASY makes it easier to combine codes with different laser representations

- **FBPIC** [5]: electromagnetic PIC code capturing injection Laser pulse: self-consistent electric and magnetic fields
- Wake-T [6]: quasi-static code for fast & accurate simulations on a laptop Laser pulse: envelope of the vector potential

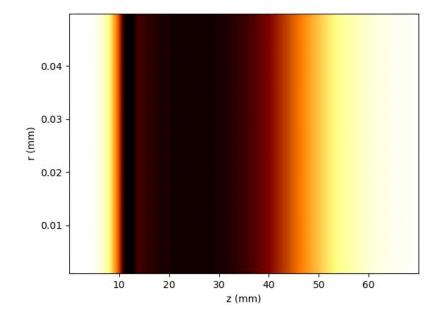

benchmarking vs FBPIC (left)


Guided LWFA example:

```
# Propagators: initial and in-plasma
prop0 = PropagatorResamplingFresnel(**init_fresnel_rt())
  dz=z_0, kz_axis=kz_axis, r_axis=(R_0, Nr_0),
  r_axis_new=(R_1, Nr_1) ))
prop_plasma = PropagatorResamplingStepping(r_axis=prop0.r_new,
kz_axis=kz_axis )
# create field, apply axiparabola and bring to plasma
E0 = ScalarFieldEnvelope(k0, t_axis).make_gaussian_pulse(
  prop0.r, tau, R_las, Energy=LaserEnergy, n_ord=10).Field ft
E0 = E0 * mirror_axiparabola_num(prop0.kz, prop0.r, f0, d0, R_mirr)
E0 = prop0.step(E0, z 0)
# create a solver, add plasma physics, run
sim = SolverAM2 (prop_plasma, t_axis+z_0/c, k0, z_0)
sim.physprocs = [
 PlasmaIonizationRefine(n0_gas, dens_func, sim, my_element='H') ]
sim.run(E0, Lz=Lz, dz0=dz0, N_diags=N_diags)
```

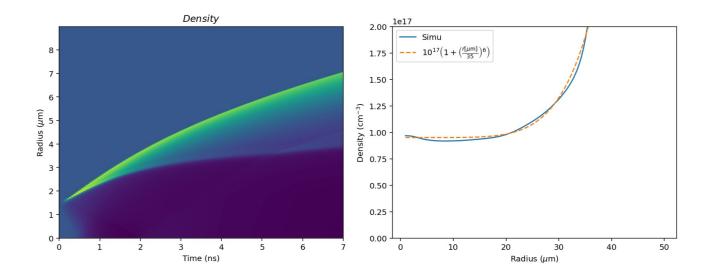
Propagation in the Helium jet

Propagation in the Helium jet



Channel formation modeling

• FRONT multidimensional Eulerian MHD (Riemann solvers, ionization, conductivity)


Channel formation modeling

• FRONT multidimensional Eulerian MHD (Riemann solvers, ionization, conductivity)

LWFA in the optically produced channel Channel formation modeling

• FRONT multidimensional Eulerian MHD (Riemann solvers, ionization, conductivity)

Acceleration in the channel

- Lorentz-boosted frame simulations with FBPIC
- Laser 10J, 30fs, plasma from MHD