The Particle-In-Cell (PIC) Simulation of Plasmas

Mickael Grech, LULI SCIPAC • Atelier Calcul • IJClab, Orsay • October 16-18, 2024

The Particle-In-Cell (PIC) simulation of plasmas

from Laboratory Plasmas ...

... to Space & Astrophysical Plasmas

The Vlasov-Maxwell description

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$egin{aligned} egin{aligned} \mathbf{F_L} = q_s \left(\mathbf{E} + rac{\mathbf{p}}{m_s \gamma} imes \mathbf{B}
ight) & egin{aligned} eta(t, \mathbf{x}) = \int & d\mathbf{p} f_s(t, \mathbf{x}, \mathbf{p}) \ J(t, \mathbf{x}) = q_s \int & d\mathbf{p} rac{\mathbf{p}}{m_s \gamma} f_s(t, \mathbf{x}, \mathbf{p}) \end{aligned}$$

Maxwell Eqs - Electromagnetic Fields

$$abla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$abla \cdot \mathbf{B} = 0 \quad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Introduction to plasma theory,

D. R. Nicholson (1983)

Vlasov equation in a nutshell

Starting point: Klimontovich's exact picture

If the exact state of the system is know at a time t_0

$$D_s(t_0, \mathbf{x}, \mathbf{p}) = \sum_p \delta(\mathbf{x} - \mathbf{x}_p(t_0)) \, \delta(\mathbf{p} - \mathbf{p}_p(t_0))$$

the evolution of the system at later times is known exactly and satisfies the **Klimontovich equation**:

$$\partial_t D_s + \mathbf{p} \cdot \nabla D_s + q_s (\mathbf{E}_{\text{tot}} + \mathbf{v} \times \mathbf{B}_{\text{tot}}) \cdot \nabla_p D_s = 0.$$

Vlasov equation in a nutshell

Starting point: Klimontovich's exact picture

If the exact state of the system is know at a time t_0

$$D_s(t_0, \mathbf{x}, \mathbf{p}) = \sum_p \delta(\mathbf{x} - \mathbf{x}_p(t_0)) \, \delta(\mathbf{p} - \mathbf{p}_p(t_0))$$

the evolution of the system at later times is known exactly and satisfies the **Klimontovich** equation:

$$\partial_t D_s + \mathbf{p} \cdot \nabla D_s + q_s (\mathbf{E}_{\text{tot}} + \mathbf{v} \times \mathbf{B}_{\text{tot}}) \cdot \nabla_p D_s = 0.$$

Ensemble averaging: towards the plasma kinetic equation and Vlasov equation

Pluging this in Klimontovich equation and ensemble averaging leads:

$$\partial_t f_s + \mathbf{p} \cdot \nabla f_s + q_s (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_p f_s = -q_s \langle (\delta \mathbf{E} + \mathbf{v} \times \delta \mathbf{B}) \delta f_s \rangle$$
.

Vlasov equation in a nutshell

Starting point: Klimontovich's exact picture

If the exact state of the system is know at a time t_0

$$D_s(t_0, \mathbf{x}, \mathbf{p}) = \sum_p \delta(\mathbf{x} - \mathbf{x}_p(t_0)) \, \delta(\mathbf{p} - \mathbf{p}_p(t_0))$$

the evolution of the system at later times is known exactly and satisfies the **Klimontovich** equation:

$$\partial_t D_s + \mathbf{p} \cdot \nabla D_s + q_s (\mathbf{E}_{\text{tot}} + \mathbf{v} \times \mathbf{B}_{\text{tot}}) \cdot \nabla_p D_s = 0.$$

Ensemble averaging: towards the plasma kinetic equation and Vlasov equation

Pluging this in Klimontovich equation and ensemble averaging leads:

$$\partial_t f_s + \mathbf{p} \cdot \nabla f_s + q_s (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_p f_s = -q_s \left\langle (\delta \mathbf{E} + \mathbf{v} \times \delta \mathbf{B}) \, \delta f_s \right\rangle \, .$$
 collective behavior microscopic/collisions

Solving Vlasov-Maxwell with the PIC method

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$\begin{pmatrix} \mathbf{F}_{L} = q_{s} \left(\mathbf{E} + \frac{\mathbf{p}}{m_{s} \gamma} \times \mathbf{B} \right) & \rho(t, \mathbf{x}) = \int d\mathbf{p} f_{s}(t, \mathbf{x}, \mathbf{p}) \\ \mathbf{J}(t, \mathbf{x}) = q_{s} \int d\mathbf{p} \frac{\mathbf{p}}{m_{s} \gamma} f_{s}(t, \mathbf{x}, \mathbf{p}) \end{pmatrix}$$

Maxwell Eqs - Electromagnetic Fields

$$abla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$abla \cdot \mathbf{B} = 0 \quad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Solving Vlasov-Maxwell with the PIC method

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$egin{aligned} egin{aligned} \mathbf{F_L} = q_s \left(\mathbf{E} + rac{\mathbf{p}}{m_s \gamma} imes \mathbf{B}
ight) & egin{aligned} egin{aligned} oldsymbol{
ho}(t, \mathbf{x}) = \int \!\! d\mathbf{p} f_s(t, \mathbf{x}, \mathbf{p}) \ J(t, \mathbf{x}) = q_s \int \!\! d\mathbf{p} \, rac{\mathbf{p}}{m_s \gamma} \, f_s(t, \mathbf{x}, \mathbf{p}) \end{aligned} \end{aligned}$$

Maxwell Eqs - Electromagnetic Fields

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$
$$\nabla \cdot \mathbf{B} = 0 \quad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Solving Vlasov-Maxwell with the PIC method

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$\begin{pmatrix} \mathbf{F}_{L} = q_{s} \left(\mathbf{E} + \frac{\mathbf{p}}{m_{s} \gamma} \times \mathbf{B} \right) & \rho(t, \mathbf{x}) = \int d\mathbf{p} f_{s}(t, \mathbf{x}, \mathbf{p}) \\ \mathbf{J}(t, \mathbf{x}) = q_{s} \int d\mathbf{p} \frac{\mathbf{p}}{m_{s} \gamma} f_{s}(t, \mathbf{x}, \mathbf{p}) & \end{pmatrix}$$

Maxwell Eqs - Electromagnetic Fields

$$abla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$abla \cdot \mathbf{B} = 0 \quad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

The PIC ansatz

We want to solve a discretized version of Vlasov equation:

The PIC ansatz

We want to solve a discretized version of Vlasov equation:

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$x$$

$$t \qquad t + dt$$

This is done using approximating the distribution function at all times as a sum of quasi/macro/pseudo-particles:

$$f_s(t,\mathbf{x},\mathbf{p}) \stackrel{!}{=} \sum_{p=1}^N w_p \, S(\mathbf{x} - \mathbf{x}_p(t)) \, \delta(\mathbf{p} - \mathbf{p}_p(t))$$
 numerical weight shape-function

The PIC ansatz

We want to solve a discretized version of Vlasov equation:

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

$$x$$

$$t \qquad t + dt$$

This is done using approximating the distribution function at all times as a sum of quasi/macro/pseudo-particles:

$$f_s(t,\mathbf{x},\mathbf{p}) \stackrel{!}{=} \sum_{p=1}^N w_p \, S(\mathbf{x} - \mathbf{x}_p(t)) \, \delta(\mathbf{p} - \mathbf{p}_p(t))$$
numerical weight shape-function

Solving Vlasov then reduces to solving the (relativistic) equations of motion of the macro-particles: c

$$\partial_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$
 with $(\mathbf{E}, \mathbf{B})_p \equiv \int \!\! d\mathbf{x} \left(\mathbf{E}, \mathbf{B} \right) (\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p)$

The PIC loop: (1) Field interpolation

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection $[\mathbf{x}_p, \mathbf{p}_p] \rightarrow [\rho_s, \mathbf{J}_s]$

$$(\mathbf{E}, \mathbf{B})_p \equiv \int d\mathbf{x} \, (\mathbf{E}, \mathbf{B})(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p)$$

The PIC loop: (2) Particle pusher

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection

$$[\mathbf{x}_p, \mathbf{p}_p] o [
ho_s, \mathbf{J}_s]$$

the Boris (leap-frog) Pusher

The PIC loop: (3) Current deposition

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection $[\mathbf{x}_p, \mathbf{p}_p] \rightarrow [\rho_s, \mathbf{J}_s]$

the Esirkepov method for charge-conserving current deposition

$$(J_{x,p})_{i+\frac{1}{2},j}^{(n+\frac{1}{2})} = (J_{x,p})_{i-\frac{1}{2},j}^{(n+\frac{1}{2})} + q_s w_p \frac{\Delta x}{\Delta t} (W_x)_{i+\frac{1}{2},j}^{(n+\frac{1}{2})}$$

$$(J_{y,p})_{i,j+\frac{1}{2}}^{(n+\frac{1}{2})} = (J_{y,p})_{i,j-\frac{1}{2}}^{(n+\frac{1}{2})} + q_s w_p \frac{\Delta y}{\Delta t} (W_y)_{j,i+\frac{1}{2}}^{(n+\frac{1}{2})}$$

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

The PIC loop: (4) Maxwell solver

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection

$$[\mathbf{x}_p, \mathbf{p}_p] o [
ho_s, \mathbf{J}_s]$$

the Finite-Domain Time-Difference

Maxwell solver

$$\left(\frac{dE_y}{dt}\right)_i^{(n)} = -\left(J_y\right)_i^{(n)} + \frac{(B_z)_{i+1/2}^{(n+1/2)} - (B_z)_{i-1/2}^{(n+1/2)}}{\Delta x}$$

Taflove, Computation Electrodynamics (2005) Nuter et al., EPJD **68**, 1 (2014)

The PIC loop: (4) Maxwell solver

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection

$$[\mathbf{x}_p, \mathbf{p}_p] \to [\rho_s, \mathbf{J}_s]$$

the Finite-Domain Time-Difference

Maxwell solver

Taflove, Computation Electrodynamics (2005) Nuter et al., EPJD **68**, 1 (2014)

The PIC loop: (4) Maxwell solver

Field Interpolation

$$[\mathbf{E},\mathbf{B}] o [\mathbf{E}_p,\mathbf{B}_p]$$

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection $[\mathbf{x}_p, \mathbf{p}_p] \rightarrow [\rho_s, \mathbf{J}_s]$

the Finite-Domain Time-Difference

Maxwell solver

Taflove, Computation Electrodynamics (2005) Nuter et al., EPJD **68**, 1 (2014)

Spectral methods are also interesting

Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Maxwell Solver

$$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$$

$$\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Particle Pusher

$$d_t \mathbf{p}_p = q_s \left(\mathbf{E}_p + \mathbf{v} \times \mathbf{B}_p \right)$$

$$d_t \mathbf{x}_p = \mathbf{p}_p / \left(m_s \gamma \right)$$

Current Projection $[\mathbf{x}_p, \mathbf{p}_p] \rightarrow [\rho_s, \mathbf{J}_s]$

Initialization: entering the PIC loop

- initialize your macro-particles
- solve Poisson equation(s)
- add divergence-free fields

Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Initialization: entering the PIC loop

- initialize your macro-particles
- solve Poisson equation(s)
- add divergence-free fields

Boundary conditions:

- on electromagnetic fields (reflecting, injecting, absorbing, etc)
- on macro-particles (reflecting, injecting, thermalizing, etc)

Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Initialization: entering the PIC loop

- initialize your macro-particles
- solve Poisson equation(s)
- add divergence-free fields

Boundary conditions:

- on electromagnetic fields (reflecting, injecting, absorbing, etc)
- on macro-particles (reflecting, injecting, thermalizing, etc)

Parallelization:

- domain decomposition
- (dynamic) load balancing
- vectorization & much more

References to go beyond this introduction

Plasma Physics via Comp. Sim. Birdsall & Langdon

Series of online lectures by Paolo Ricci

EPFL lectures, available on youtube

The Smilei PIC code website

Extensive documentation & tutorials

Thanks for your attention!

