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The Particle-In-Cell (PIC) simulation of plasmas

from Laboratory Plasmas ...
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The Vlasov-Maxwell description

Introduction to plasma theory,

Vlasov Eq - Species of the plasma > NCno o (1983)
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Maxwell Eqs - Electromagnetic Fields
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VIasov equation in a nutshell

PT g3z d3p D(t,x,p) If the exact state of the system is know at a time tg
E y [ ] ..
2 “oes,” D, (to,x,p) = 2., 6(x — xp(t0)) 6(p — Pp(to))
& ety the evolution of the system at later times is known exactly and satisfies the
2 ot Klimentovich equation:
8tDs -I-p . VDS + qs(Etot + v X Btot) . VpDS =0.

position X




VIasov equation in a nutshell

Starting point : Klimontovich's exact picture
pﬂ

d3z d3p D,(t,x, p) If the exact state of the system is know at a time tg
E y [ ] ..
2 “oes,” D, (to,x,p) = 2., 6(x — xp(t0)) 6(p — Pp(to))
& e, the evolution of the system at later times is known exactly and satisfies the
2 ot Klimentovich equation:
8tl)s +p- VDS + QS(Etot + v X Btot) : vas =0.

position X

Ensemble averaging : towards the plasma kinetic equation and Vlasov equation

total smooth, average microscopic fluctuations
pt d’zd’p fs(t,x,p) Ds(x,v,t) = fs(x,v,t) + dDs(x,v,t)
c Ewi(xt) = Bt + JE(x1)
-]
*GC—’) Btot (X t) = B(X, t) + 5B (X, t))
S
g Pluging this in Klimontovich equation and ensemble averaging leads:

Otfs + P Vis+eg(E+vXxB) -V, fs=—qs ((E+VvxdB)dfs) .

position X
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VIasov equation in a nutshell

Starting point : Klimontovich's exact picture
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& e, the evolution of the system at later times is known exactly and satisfies the
2 ot Klimentovich equation:
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position X

Ensemble averaging : towards the plasma kinetic equation and Vlasov equation

total smooth, average microscopic fluctuations
pt d’zd’p fs(t,x,p) Ds(x,v,t) = fs(x,v,t) + dDs(x,v,t)
c Ewi(xt) = Bt + JE(x1)
-]
*GC—’) Btot (X t) = B(X, t) + 5B (X, t))
S
g Pluging this in Klimontovich equation and ensemble averaging leads:

Otfs + P Vis+eg(E+vXxB) -V, fs=—qs ((E+VvxdB)dfs) .
collective behavior microscopic/collisions

position X




Solving Vlasov-Maxwell with the PIC method

Vlasov Eq - Species of the plasma

Oufs+ 2 Vo +FL Vyfy =0

p(t,x) = / dpfs(t,x,p)
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Maxwell Eqs - Electromagnetic Fields
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The PIC ansatz

We want to solve a discretized version of Vlasov equation:
p
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The PIC ansatz

We want to solve a discretized version of Vlasov equation:

atfs va+FL pfSZO

This is done using approximating the distribution function at all times
as a sum of quasi/macro/pseudo particles

s(t,x,p) Z wyp S p(t))6(P — Pp(t))

numerical weight shape-function
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The PIC ansatz

We want to solve a discretized version of Vlasov equation:

atfs va+FL pfszo

This is done using approximating the distribution function at all times
as a sum of quasi/macro/pseudo particles

fult,x,p) = pr 2(1))8(p — py(1))

numerical weight shape-function

Solving Vlasov then reduces to solving the (relativistic) equations of motion of the
macro-particles:

Opp =qs (E, + v xB,) with (E,B), = /dx (E,B)(x) S(x — x,)
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The PIC loop: (1) Field interpolation

Field Interpolation

[E’ B] - [EPaBP]
Maxwell Solver Particle Pusher
HE=-J+VxB dipp = ¢s (E, + v X By)
0B =-VxE dixp = pp/ (Ms7)

Current Projection
[Xp, Pp] = [Ps5 T s]




The PIC loop: (2) Particle pusher

_ , the Boris (leap-frog) Pusher
Field Interpolation

E,B] - [, B,) plr 2 B At

....... »
Maxwell Solver Particle Pusher [ 7 e “‘
. _ S '-B(n) At
OE=-J+VxB dipp =¢s (B, +vxBy,) | TR p
8B = -V x E dix, = A2 (1) = n
t X tXp = Pp/ (Ms7) Eé >At/2

Current Projection

[Xp, Pp] = [ps,Js]
time




The PIC loop: (3) Current deposition

the Esirkepov method for

charge-conserving current deposition
Field Interpolation

[E’ B] — [EPaBP]
Maxwell Solver Particle Pusher N
atE=—J+VXB dtppzqs(Ep'l'VXBp) | | |
n l n l A n l
5B =—V x E dixp = Py (M) o) 52 = (1) ™52 4 gowp, S (W) "1
i+, i—5,J At i+5,]
— (n+3) (n+3) Ay (n+1)
Current Projection (Jyp) 1 =yp), 1 +aswp o (Wy) 1
"',.7'*'2 '5,.7_2 t Ja"'+2
[Xp, Pp) = [ps,J 5]

Esirkepov, Comp. Phys. Comm. 135, 144 (2001)

_



The PIC loop: (4) Maxwell solver

the Finite-Domain Time-Difference

Maxwell solver
nAt J(n+3)
o —x @

Field Interpolation oM Bn+3) Bn+s)
(n) (n+1)
[E’ B] — [Epa BP] E\BEU
Maxwell Solver Particle Pusher (dEy)(n) PO (B (B2
o.E=-J+VxB dtpp=qs(Ep+V><Bp) at /i . Az
Taflove, Computation Electrodynamics (2005)
8,B=-V xE dexp = pp/ (Ms7) Nuter et al., EPID 68, 1 (2014)

Current Projection
[Xp, Pp] = [Ps5 T s]
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The PIC loop: (4) Maxwell solver
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The PIC loop: (4) Maxwell solver

Field Interpolation
[E’ B] - [EP7BP]

Maxwell Solver
BtE = —J + VxB
81;B =-VXE

Particle Pusher
dipp = ¢s (Ep +v X By)

dtxp pp/ (ms')')

Current Projection
(%p, Pp] = [ps,Js]

the Finite-Domain Time-Difference
Maxwell solver

ko Ax

Taflove, Computation Electrodynamics (2005)
Nuter et al., EPJD 68, 1 (2014)

Spectral methods are also interesting

Yee PSTD PSATD

1

Vay et al., J. Comp. Phys. 243, 260 (2013)
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Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Initialization: entering the PIC loop

- * initialize your macro-particles
» solve Poisson equation(s)
« add divergence-free fields

Field Interpolation

[E’ B] - [EPaBP]
Maxwell Solver Particle Pusher
HE=-J+VxB dipp = ¢s (E, + v X By)
0B =-VxE dixp = pp/ (Ms7)

Current Projection
[Xp, Pp] = [Ps5 T s]
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Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Initialization: entering the PIC loop

* initialize your macro-particles
» solve Poisson equation(s)
« add divergence-free fields

My Simulation (LWFA)

< Boundary conditions:

« on electromagnetic fields (reflecting,
injecting, absorbing, etc)

* on macro-particles (reflecting,
injecting, thermalizing, etc)




Around the PIC loop: Initialization, Boundary Conditions, Parallelization

Initialization: entering the PIC loop

* initialize your macro-particles
» solve Poisson equation(s)
« add divergence-free fields

My Simulation (LWFA)

Boundary conditions:

« on electromagnetic fields (reflecting,
injecting, absorbing, etc)

* on macro-particles (reflecting,
injecting, thermalizing, etc)

< Parallelization:

* domain decomposition
* (dynamic) load balancing
 vectorization & much more

_




References to go beyond this introduction

Plasma Physics via Comp. Sim.

Birdsall & Langdon

SERIES IN PLASMA PHYSICS

PLASMA PHYSICS
VIA COMPUTER
SIMULATION

C K BIRDSALL
A B LANGDON

The Smilei PIC code website
Extensive documentation & tutorials

m Overview Understand Use Q
Quasi-particles Sections

The Particle-In-Cell method owes its name to the discretization of the distribution function f; as a sum of
N quasi-particles (also referred to as super-particles or macro-particles):

LTS 5)

Foltsxp) =D 3 S(x—x,(6) 5(p —py(1),
=1 7€

where w, is a quasi-particle weight, x,, is its position, p, is its momentum, V is the hypervolume of the
cell, S'is the shape-function of all quasi-particles, and § is the Dirac distribution.

In PIC codes, Vlasov's equation (1) is integrated along the continuous trajectories of these quasi-particles,
while Maxwell’s equations (3) are solved on a discrete spatial grid, the spaces between consecutive grid
points being referred to as cells. Injecting the discrete distribution function of Eq. (5) in Vlasov’s equation
(1), multiplying the result by p and integrating over all p and over the volume of the quasi-particles, leads
to the relativistic equations of motion of individual quasi-particles:

dx, _
a
du,

el
& =T (E,,-%—ZXBP),

where 7, = g,/ is the charge-over-mass ratio (for species s), u,, = p,/m; is the reduced momen-

tumand y, = 4/1+

2 is the Lorentz factor.

Time and space discretization

Maxwell’s equations are solved here using the Finite Difference Time Domain (FDTD) approach as well as
refined methods based on this algorithm. In these methods, the electromagnetic fields are discretized onto

Derouillat et al., Comp. Phys. Comm. 222, 351 (2018) 1

Series of online lectures by Paolo Ricci
EPFL lectures, available on youtube

®Plasma time scales

® The simulation approaches

® Numerical solution of the Vlasov
equation: the PIC method

Plasm

) tutorials PIC basics Performances Advanced Q
Physical configuration [T )

Download the two input files weibel_1d.py and two_stream_1d.py.

In both simulations, a plasma with density 7 is initialized (rg = 1). This makes code units equal to
plasma units, i.e. times are normalized to the inverse of the electron plasma frequency

wyo = 1/€no/(egme), distances to the electron skin-depth ¢/wp, etc...

Ions are frozen during the whole simulation and just provide a neutralizing background. Two electron
species are initialized with density 729/2 and a mean velocity £vy.

Check input file and run the simulation

The first step is to check that your input files are correct. To do so, you will run (locally) Smilei in test
mode:

./smilei_test weibel_1d.py
./smilei_test two_stream_1d.py

If your simulation input files are correct, you can run the simulations.

Before going to the analysis, check your /ogs.

Weibel instability: analysis
In an ipython terminal, open the simulation:

S = happi.Open( " /path/to/your/sinulation/weibel _1d')

The streak function of happi can plot any 1D diagnostic as a function of time. Let’s look at the time
evolution of the total the current density J and the magnetic field By:



Thanks for your attention!
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