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Quantum noise

Total quantum noise : sum of two 
sources

● Radiation pressure (RP) noise
● Shot noise
● Cross each other at frequency Ωc
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Squeezed states of light

Coherent state

Uncertainty disk: 
Heisenberg principle 

ΔA Δφ ≥ 1
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Squeezed states of light

Coherent state Phase sq. state Amplitude sq. state

Uncertainty disk: 
Heisenberg principle 

ΔA Δφ ≥ 1

● For both cases, the area of uncertainty region is 
equal to the uncertainty of initial coherent state

● Choose either to reduce phase noise at the prize of 
increasing amplitude noise or the invert
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Squeezed states of light

Phase sq. state Amplitude sq. state

How the injection of squeezed 
states into the detector 

modulate the total quantum 
noise ?

● For both cases, the area of uncertainty region is 
equal to the uncertainty of initial coherent state

● Choose either to reduce phase noise at the prize of 
increasing amplitude noise or the invert
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Squeezed states of light – phase squeezing

Phase sq. state Amplitude sq. state

The total quantum noise 
increase at low frequencies 

while decease at high 
frequencies

● For both cases, the area of uncertainty region is 
equal to the uncertainty of initial coherent state

● Choose either to reduce phase noise at the prize of 
increasing amplitude noise or the invert
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Squeezed states of light – amplitude squeezing

Phase sq. state Amplitude sq. state

The total quantum noise 
decrease at low frequencies 

while increase at high 
frequencies

● For both cases, the area of uncertainty region is 
equal to the uncertainty of initial coherent state

● Choose either to reduce phase noise at the prize of 
increasing amplitude noise or the invert
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The squeezed beam produced in the OPO 
enters into a « filter cavity »
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The squeezed beam produced in the OPO 
enters into a « filter cavity »

The configuration of the filter cavity define a 
frequency Ωt around which a transition of 

squeezing nature (amplitude / phase) occurs

L: cavity length 

F: finesse of the cavity (depends 
on mirrors reflectivities ri)
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The squeezed beam produced in the OPO 
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Resulting 
situation: below 
Ωc the RP noise 

is decreased 
while the shot 

noise is 
increased, 

above Ωc the 
situation is 

inverted
⇒ QN reduced 

at all
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Frequency dependent squeezing & filter cavity
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The squeezed beam produced in the OPO 
enters into a « filter cavity »

The configuration of the filter cavity define a 
frequency Ωt around which a transition of 

squeezing nature (amplitude / phase) occurs
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Frequency dependent squeezing & three-mirror cavity

Fabry-Perot 
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Frequency dependent squeezing & three-mirror cavity

Fabry-Perot 
cavity Three-mirror

cavity
Impact on squeezing properties ?

C
on

te
xt

To understand the squeezing 
behavior in a three-mirror cavity, we 

need first to understand its optical 
behavior. 
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Three-mirror cavity

● Simple Fabry-Perot cavity + third, “middle” mirror (two “sub” cavities)

● Three optical resonators

● Despite simple configuration, non-trivial behavior 

Third, middle mirror

Fabry-Perot cavity
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Modelisation and simulation setup

To characterize the system: how the global transmissivity and reflectivity of a three-mirror 
cavity change when we modify the configuration ?

 

1 - Modelisation
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Modelisation and simulation setup

 

1 - Modelisation

 

2 - Simulations

A - Fields propagation through the system:

k: wave-vector; ri and ti: reflection and transmission coefficients of mirror “i”

B - Global reflection and transmission coefficients:

C - Cavity behavior depend on a complex combination of 
configuration parameters → simulations
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Modelisation and simulation setup

 

1 - Modelisation

 

2 - Simulations

● Implement global reflection and 
transmission coefficients in a code

● Parameters to change:

○ Laser wavelength 
(wave-vector)

○ First, second and third mirrors 
coefficients

○ L1 and L2 distances
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Modelisation and simulation setup

 

1 - Modelisation

 

2 - Simulations

● Implement global reflection and 
transmission coefficients in a code

● Parameters to change:

○ Laser wavelength 
(wave-vector)

○ First, second and third mirrors 
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○ L1 and L2 distances

A - Fields propagation through the system:
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The doubling of transmission peak

For Fabry-Perot cavity: 
transmission peak 
for each resonance 

condition (cavity 
length = integer 

number of 
half-wavelength)

Scan the input field 
detuning
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A three-mirror cavity can show off a doubling of the 
transmission peak 

Variation of 
“double-peak” shape 
as function of cavity 

parameters ? 

Variation of 
“double-peak” shape 
as function of cavity 

parameters ? 
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Mirrors transmissivity
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Second mirror transmissivity → symmetrical 
variation of space between maxima
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Mirrors transmissivity

First (or third) mirror transmissivity → sharpen 
each maxima

Second mirror transmissivity → symmetrical 
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Th
re

e-
m

irr
or

 c
av

it
ie

s 
op

ti
cs

2024/06/17 11/14



Paul Stevens

Mirrors transmissivity
Th

re
e-

m
irr

or
 c

av
it

ie
s 

op
ti

cs

First (or third) mirror transmissivity → sharpen 
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Microscopic mirrors spacing

Asymmetrical variation of maxima spacing 
(same power in each maxima)
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Mirrors transmissivity (again)

Variation of power along resonance lines
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Conclusion

● Simulations of three-mirror cavity optics: ✅

○ Doubling of resonance peak 

○ Position, height and sharpness of “double-peak” maxima almost completely 
modulable by changing the cavity configuration + real-time tuning
⇒ Quantum noise reduction for next GW detectors

○ Full analysis on ArXiv (+ submission to Classical and Quantum Gravity) : Resonant 
behavior and stability of a linear three-mirror cavity

● Currently: 

○ Implementation of a meter-scale prototype on CALVA platform, IJCLab
○ Simulations of squeezing properties in a three-mirror cavity

2024/06/17 14/14

https://doi.org/10.48550/arXiv.2406.07752
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Frequency dependant squeezing for next generation of GW detectors

Future detectors:

⇒ Is it possible to develop a system for more complex 
QN shape, Einstein Telescope - Low Frequency 
(ET-LF) ?  
⇒ Current proposition: two Fabry-Perot cavities in 
series 

Problematic: 

⇒ Replace the two Fabry-Perot cavities with a 
three-mirror cavity ? 

To understand the squeezing behavior in a three-mirror 
cavity, we need first to understand its optical behavior. 
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Frequency dependant squeezing in current detectors:

⇒ Squeezed beam filtered with a “simple” Fabry-Perot cavity → allow to reduce QN at all frequencies
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Condition for doubling of transmission peak

Each 
sub-cavity 
have to be 
resonantB
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Macroscopic mirrors spacing

Asymmetrical variation of maxima spacing 
and power ratio
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