Physique du top à CDF

Henri Bachacou

University of California, Berkeley Lawrence Berkeley Laboratory

Introduction...

Après un long shut-down, le Tevatron de Fermilab (Illinois) a redémarré au Printemps 2002.

Top découvert au Tevatron en 1995

Jusqu'au démarrage du LHC (2007), le Tevatron a le monopole du top. Vaste programme d'étude du quark top.

Contenu

- Pourquoi étudier le quark top ?
- Propriétés du top.
- Le Tevatron et CDF : description et performances.
- Programme d'étude du top à CDF.
 - Mesure de la section efficace de production
 - ~ Etiquetage des B
 - ~ Bruits de fond
 - Taux de branchements, hélicité du W, etc... Mesure de la masse

Pourquoi étudier le top ?

Le top est très mal connu :

Dans le Modèle Standard, le top est un quark comme les autres, mais expérimentalement :

- Seule sa masse est mesurée avec ≈ précision ! → Important paramètre électrofaible.
- La largeur, le spin ou même la charge du top n'ont pas été mesurés !

Nouvelle physique peut apparaître dans le signal top :

Ex: $\mathbf{t} \rightarrow \mathbf{H}^+ \mathbf{b}$; production de paires $\mathbf{\tilde{t}} \ \mathbf{\tilde{t}}$

<u>Au LHC, le signal top sera la principale source de bruit de fond</u>

\Rightarrow Des mesures de précision sont nécessaires.

Une brève histoire du top...

Quelques propriétés du top

Η Grande masse \Rightarrow Corrections radiatives : W⁺ W⁺ W⁺ W+ Important paramètre électrofaible W+ Contraint la masse du Higgs : 80.6 LEP electroweak WG ('04) LEP1, SLD Data Run I: $m_t = 178.0 \pm 4.3 \text{ GeV/c}^2 \Rightarrow m_H = 126_{48}^{+73} \text{ GeV/c}^2$ ····· LEP2, pp Data 80.5 68% CL $et < 280 \text{ GeV}/c^2 \text{ a } 95\% \text{ C.L.}$ [Ge√] ™ Grande masse \Rightarrow Courte vie : $\tau \approx 10^{-24} \text{ s} >> 1/\Lambda_{QCD}$ 80.3 Seul quark à se désintégrer avant hadronisation : peut être observé dans un état libre ! m_µ [GeV Preliminary 000 80.2 130 150 170 190 210 Désintégration : $t \rightarrow W b$ ($\approx 100\%$) $\Rightarrow \underline{\acute{etiquetage}}$ m, [GeV]

6

Mécanismes de production

Production en paires

Production électrofaible "single-top"

Canal "s" : q

 $\sigma_{t}^{NLO} = 0.88 \pm 0.07 \text{ pb}$ - Pas encore observé (bruit de fond important) - Mesure directe de V_{tb}

Henri Bachacou

Canaux de désintégration des paires tī

Dans le Modèle Standard, t→Wb ≈100% ⇒ Etat final : W⁺W⁻ bb

On catégorise les canaux en fonction de la désintégration des W:

- <u>- Lepton+Jets : 1 W → Iv , 1 W → qq (30%)</u>
- Di-lepton : $2 W \rightarrow 1 \upsilon$ (5%, peu de bruit de fond)
- Hadronique : 2 W → qq (46%, bruit de fond important)
- Canaux τ : traités à part (identification des τ difficile)

lepton = e ou μ

Programme d'étude du Top

Le Tevatron

Collider Run II Peak Luminosity

Henri Bachacou

"Collider Detector at Fermilab"

Détecteur de Vertex au Silicium

- Principale amélioration du Run II.
- Nécessaire à la mesure précise des traces à proximité du point d'interaction.
- 8 couches de micro-pistes.
- 3 sous-systèmes :
 - LOO : sur le tube à vide (r=1.3cm)
 SVX : 5 couches avec angle stéréo (1.3° et 90°)
 ISL : 2 couches avec angle stéréo (1.3°)
 Etend l'acceptance → | η | = 2

Silicium : Problèmes d'installation

Plusieurs problèmes ont du être résolus après le démarrage du faisceau:

Accès au détecteur limite (en temps et espace) Liste choisie : refroidissement de l'ISL, connections optiques, bruit analogue dans LOO.

Certains modules sont irréversiblement endommagés :

Brisure des "Jumpers" (connexion entre côtés φ et z d'un module) :

Force de Lorentz créée par le champ de 1.4T Résonance dans certaines conditions de trigger

Brisure de connexions argent-Epoxy sur les hybrides :

le problème n'a pas pu être reproduit.
corrélé avec incidents de faisceau.

Opérations devenues plus stables : 92% des modules opérationnels.

Monitoring du Détecteur au Silicium

Henri Bachacou

Performance du Détecteur au Silicium

Algorithme de reconstruction "Outside-In" :

- "Seed" : trace du COT.
- Ajout des amas par itération, couche par couche, vers l'intérieur.
- Ajout des amas z dans $2^{\mbox{\scriptsize ème}}$ itération.

Efficacité \approx 94% (\geq 3 amas en φ).

Résolution du paramètre d'impact \approx 25 μ m à grand p_T.

LOO améliore la résolution à bas p_T et faible occupation (physique du B).

Algorithme "Stand-Alone" devrait étendre le tracking jusqu'à | ŋ | =2 (bientôt...).

(largeur du faisceau incluse, \approx 30 μ m)

Mesure de la section efficace de production avec b-tagging

Canal Lepton+Jets. b-tagging pour réduire le bruit de fond.

<u>Motivation</u> :

Test élémentaire du mécanisme de production.

Définition de l'échantillon pour toutes les autres analyses :

Comparaison de différents canaux

→ Taux de branchement, Désintégrations exotiques (Higgs chargé)

Bruits de fond similaire pour la recherche du Higgs (MS).

Estimation du bruit de fond Nombre de candidats $\sigma_{t\bar{t}} = \frac{N_{t\bar{t}}}{\mathcal{L}} = \frac{N_{ob}}{A_{t}}$ Acceptance Luminosité intégrée

Canal Lepton+Jets : Signature et Sélection

Produits de désintégration :

- 1 lepton chargé,
- 1 neutrino,
- 2 quarks "légers",
- 2 quarks b.

Déclenchement sur lepton de grand p_{T.} Sélection :

W±

1 Electron ou Muon isolé, p_T > 20 GeV,
Energie transverse manquante > 20 GeV,
≥ 3 iets. E_T > 15 GeV et | n | < 2,
≥ 1 jet étiqueté.

Evénements top plus énergétiques que bruit de fond

⇒ Optimise la sélection :
 H_T = Energie transverse totale > 200 GeV

L'algorithme SecVtx : Vertex Secondaire

Hadrons B : longue vie (c $\tau \approx$ 450 μm) et grande masse Plusieurs étapes :

- Sélection de traces avec grand paramètre d'impact.
- Tentative de reconstruction vertex.
- Sélection de vertex avec grande longueur de désintégration L_{xy} :

$$\frac{|L_{xy}|}{\sigma_{L_{xy}}} > 3$$

L_{xy} : projection sur l'axe du jet dans le plan transverse.

Tags négatifs : utilisés pour estimer la pureté.

Mesure de la Performance du Tagger

Nécessite un échantillon dont le contenu en saveur lourde est bien connu.

LEP : Z en bb bar / cc bar

LHC : Grand échantillon Top-Antitop.

O-tag / 1-tag / 2-tag : efficacité et taux de branchement

Le Tevatron n'a pas ce luxe... \Rightarrow leptons de basse énergie

- Jets riches en désintégrations semi-leptoniques
- Tag du jet opposé pour purifier le côté de l'électron

Mesure de l'efficacité de SecVtx (I)

Mesure de l'efficacité de SecVtx (II)

Efficacité mesurée dans les données et Monte Carlo sur le même échantillon.

La simulation surévalue l'efficacité :

ϵ (données)/ ϵ (MC) = 0.82±0.06

Ce ratio est utilisé pour dégrader l'efficacité du tagger dans MC ttbar.

Efficacité d'étiqueter un événement top (≥1 tag):

Source	uncertainty (%)
F_{HF}	3.5
F^a_{HF} method	3.0
mistag subtraction	3.0
E_T dependence	2.5
B-decay	1.2
total systematic error	6.2
data statistics	3.2
MC statistics	3.6
Total	7.8

Henri Bachacou

Mesure de la pureté de SecVtx

Acceptance

-[Monte Carlo PYTHIA (m _t = 175 GeV)		Erreurs sy	
	Identification des lantons imparfaitement		Quantity	
L			Energy Scale	
	décrites par la simulation		PDF	
			ISR/FSR	
	\Rightarrow Evaluees dans les données (Z + jets)		MC modeling	
	Efficacitó du triagor $\approx 0.5\%$		Lepton ID	
	cificacile au friggel ~ 75%	l	B-tagging	L
-[Incertitude relative $\approx 10\%$			
	$\sigma_{t\bar{t}} = \frac{N_{obs}}{A_{t\bar{t}}}$	$-N_{bkd}$ $tag \mathcal{L}$		
	Acc. w/o b-tag (%)	$7.18\pm$	0.04 ± 0.61	L

Tag Efficiency (%)

Acc. with b-tag (%)

Erreurs systématiques

Quantity	Relative error (%)
Energy Scale	4.9
PDF	2.0
ISR/FSR	2.6
MC modeling	1.4
Lepton ID	5.0
B-tagging	6.0

<u>e + µ</u>

Henri Bachacou

 $53.4 \pm 0.3 \pm 3.2$

 $3.84{\pm}0.03{\pm}0.40$

$$\sigma_{t\bar{t}} = rac{N_{obs} - N_{bkd}}{A_{t\bar{t}}\epsilon_{t\bar{t}}^{tag}\mathcal{L}}$$

Bruits de Fond

Comprendre le contenu de l'échantillon W+Jets : crucial pour les analyses top, mais aussi pour la recherche du Higgs du Modèle (W+2jets)

Evalués avec données et simulations.

<u>3 bruits de fond principaux</u> :

- W + jets légers (faux tag) → paramétrisation des tags négatifs
- W + cc, W + bb, W + c, + jets
- QCD : faux W

Autres ("single-top", dibosons) : Monte Carlo

Bruit de fond : W + Saveur Lourde

Section efficace W + jets mal connue (seulement L.O.)

⇒ Mesurée dans l'échantillon sans b-tag
Fraction de saveur lourde estimée par Monte Carlo

Au Run 1 : pas de MC adéquat.

Combinaison de Vecbos et Herwig

```
Au Run 2 : ALPGEN.
```

- Tient compte de la masse des quarks, flux de couleur, spins.

- Mais... seulement premier ordre.

Validation dans l'échantillon QCD multi-jets

Données = 1.5 ± 0.4 ALPGEN

Bruit de fond : QCD (faux W)

Difficile à simuler...

"Lepton" causé par conversion / "punch-through", désintégration en vol, ou désintégration semileptonique de B.

Energie manquante : erreur instrumentale, ou désintégration semi-leptonique de B.

Echantillon de contrôle : lepton non-isolé

Hypothèse : Energie manquante et isolation ne sont pas corrélées pour ce bruit de fond.

 $QCD_D = \frac{N_B \times N_C}{N_A}$

Isolation = $E_T (\Delta R < 0.4) / E_T (lepton)$

Avant étiquetage :1 jet2 jets3 jets ≥ 4 jetsBelectrons0.14 ± 0.040.17 ± 0.040.20 ± 0.05Muons0.034 ± 0.0100.043 ± 0.0110.075 ± 0.023

Données (162 pb⁻¹)

Henri Bachacou

Physique du top à CDF

Résultat avec 162 pb⁻¹

Henri Bachacou

Propriétés cinématiques des candidats

Henri Bachacou

Mesures de la section efficace au Run II

Comparaisons de σ_{tt} dans différents canaux (1) Mesure de BR(t \rightarrow Wb)/BR(t \rightarrow Wq)

Comparaisons de σ_{tt} dans différents canaux (2) Recherche de t \rightarrow H⁺ b

Tests des propriétés cinématiques

600

400

Mesure de la masse du top

Plus important paramètre électrofaible mesuré au Tevatron. Run 1 :

Meilleures mesures :

- ~ CDF : 176.1 ± 5.1 (stat) ± 5.3 (syst) GeV/c²
- ~ D0 : 180.1 ± 3.6 (stat) ± 3.9 (syst) GeV/c^2 (2004)

 \Rightarrow Nouvelle mesure : 178.0 ± 4.3 GeV/c² (était 174.3 ± 5.1 GeV/c²)

Run 2 :

Revenir à la précision du Run 1 prend du temps...
 Objectif : δmt ≈ 2-3 GeV/c²

Techniques de mesure de la masse

Reconstruction de la masse des jets provenant d'un top.

<u>Canal Lepton+Jets</u> :

- 1 neutrino :
 - $\sim \quad E_T \text{ manquante } \Rightarrow p_x \text{ et } p_y$
- ~ Contrainte sur masse du W \Rightarrow p_z (2 solutions) Combinaisons de jets :
- 4 jets, dont 3 proviennent du même top.
 Etiquetage réduit le nombre de combinaisons.
 - ~ $0 \text{ tag} \rightarrow 24 \text{ combinaisons}$
 - ~ 1 tag \rightarrow 12 combinaisons
 - ∼ 2 tags → 4 combinaisons

<u>Canal Dilepton</u> :

2 neutrinos ⇒ reconstruction complête impossible

Mesure de la masse : méthode des templates (I)

Pour chaque combinaison compatible avec les b-tags :

$$\begin{split} \chi^2 \ &= \ \Sigma_{i=\ell,4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i} + \Sigma_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_j} \\ &+ \ \frac{(M_{jj} - M_W)^2}{\Gamma_W^2} + \frac{(M_{\ell\nu} - M_W)^2}{\Gamma_W^2} + \frac{(M_{bjj} - M_t)^2}{\Gamma_t^2} + \frac{(M_{b\ell\nu} - M_t)^2}{\Gamma_t^2} \end{split}$$

Contrainte sur la masse du W

Pour chaque évènement, on choisit la combinaison avec meilleur chi2.

Comparaison avec MC templates, vraisemblance :

$$L_{shape} = \Pi((1-x_b)f_s(m_t, \alpha_K, M_{top}) + x_bf_b(m_t, \beta_K)),$$

Mesure de la masse : méthode des templates (II)

Henri Bachacou

Mesure de la masse : "Dynamic Likelihood Method"

Mesure de la masse : premiers résultats du Run 2

Très préliminaire...

Mesures dans canaux dilepton et lepton+jets.

Erreur systématique \approx 6-7 GeV/c²

(contre ≈ 5 GeV/c² au Run1) dominée par <u>énergie des jets.</u>

Améliorations à venir...

Energie des Jets : Erreur Dominante

- Non-uniformité
- Non-linéarité
- Régions non-instrumentées
- "Out-of-cone"
- "Underlying event"
- Interactions multiples

Nombreuses corrections pour évaluer l'énergie du parton initial.

Depend de la simulation

⇒ énorme travail

Bientôt : amélioration par rapport au Run I.

 \Rightarrow Erreur syst. sur la masse \approx 4 GeV

Comment arriver à $\delta m_t \approx 2-3$ GeV ?

Calibration en énergie des jets b :

- photon + b-jet
- Z en bbbar
- "Soft Lepton Tagging" et corrections spécifiques

Calibration en énergie des jets légers : masse du W dans l'évènement top

nécessite un bon b-tagging: combinaison de différents algorithmes : SecVtx, Probabilité des jets, "Soft Lepton" – Réseau de neurone

Avec plus de données :

Compromis stat. / syst. possible (ex: n'utiliser que les jets centraux)

Conclusion

CDF a dépassé le Run I en termes de résolution sur la calibration des jets, b-tagging, techniques d'analyse. Mesure de la section efficace avec précision accrue (en cours de publication)

Il ne manque plus que davantage de données...

On peut espérer plusieurs fb⁻¹ de données dans les années à venir.

En fonction des performances du refroidissement à électrons : entre 4 et 8 fb-1 d'ici à 2009 Banc d'essais pour le LHC.

Appendice

Production électrofaible de top

Pas encore observée au Tevatron :

section efficace comparable à ttbar mais très important bruit de fond.

Mesure directe de Vtb

Etat final : W (leptonique) + 2 ou 3 jets Sélection :

 * W \rightarrow Lepton (e ou μ) et Energie transverse manquante

* 2 jets (dont un étiqueté)

$$q \xrightarrow{q'} t \qquad q \xrightarrow{$$

Cana "t" $\sigma_t^{NLO} = 1.98 \pm 0.21 \, \text{pb}$

Production électrofaible de top (II)

