

Energy scaling of the intrinsic-kT in the Parton Branching Method

Bugra Bilin on behalf of CASCADE Team REF 2024, Institut de Physique Théorique, Saclay France 18 Oct 2024

Foreword

- This talk is not a CMS presentation
- This is neither a theory talk
- This is more about an experimentalist's point of view on a challenging topic
 - What do we need experimentally?
 - How we can achieve it using MC techniques
 - How accurate do we want our modeling of the whole spectrum of interest?

Motivation

- Processes involving W or Z/γ^* boson productions are one of the best understood processes at hadron colliders
 - W->lnu & Z->II, (I=e, μ) are among the cleanest final states experimentally
 - Allows probing various QCD effects by studying kinematics precisely
 - Color singlet final-state: probing **QCD ISR effects**
 - Different kinematics regions probing Ο pQCD as well as npQCD effects

Illustrations from N.Raičević

PBTMD formalism

- Evolution from a small scale
- Branchings governed by scale evolution
 - \circ ~ Every branching generates some ${\rm q}_{_{\rm T}}$

$$\blacksquare q_{\rm T}, c ~ \mu' ~ (1-z)$$

- Divided into two regions:

• a non-resolvable region with
$$z_{dyn}$$

• Where
$$z_{dyn}^{M} = 1 - q_0/\mu$$
.

kT accumulates through repeated parton branchings
Using TMD evolution at each branching

$$k_T = k_{T,0} + \sum_c q_{T,c}$$

<

Parton k_T distribution at small scale

- Probing Fermi motion effects of incoming partons
- Present in all formalisms
 - Parton showers as well as analytic resummation methods
- Not calculable by perturbative theory
 - Need to be extracted from experimental results

Introduce a scale dependent $\alpha_s = \alpha_s (\mu'^2 (1 - z)^2) = \alpha_s (q_{\pi}^2)$

intrinsic k_

PBTMD: Comparisons with various experiments results

- Fitted only to HERA Data (named *PB-NLO-2018 set2*) (q_=0.5 GeV)
- Compared to several measurements existing at range

• Very good description for all \sqrt{s} w/o extra fitted parameters

Fit of $\mathbf{q}_{\mathbf{s}}$: Using DY measurement over wide mass range at 13 TeV

CMS: EPJ C 83 (2023) 628

- Measurement of p_T¹¹ carried out in 5 mass bins
- Compared to traditional collinear MC as well as predictions with TMDs

intrinsic $\ k_{_{\! T}}$: Sensitivity to low $p_{_{\! T}}$ CMS data

- Low-pT DY data is sensitive to the quark kT distributions
- In PB TMD:
 - Gaussian distribution at $\mu_0 =$
 - 1 GeV
 - Width given by $\sigma = q_s / \sqrt{2}$
 - Evolved to the scale of interest

Can be used to fit the ${\rm q}_{\rm s}$ to CMS results, using full systematics

CMS_2022_I2079374

How to extract the qs variable

The qs variable in the PB-NLO-Set 2 is varied and compared to the CMS data in each mass bin.

$$\chi^{2} = \sum_{i,k} (m_{i} - \mu_{i}) C_{ik}^{-1} (m_{k} - \mu_{k})$$

X² minimized to extract the qs, where the Cik are the covariance matrices for measurement and theory uncertainties

- Compared to ${\rm q}_{\rm s}$ values obtained from other experiments.
 - \sim ~Consistent values of q_s for a large range of DY invariant masses

Dependency on srqt(s): Collinear vs PDTMD

CMS-GEN-22-001 , submitted to PRL

- Slope observed for the CMS study on Herwig (CH X) and Pythia (CP X) PS models
- Cascade PBTMD results show a milder slope, reducing further with q_0 (soft emissions for > q_0)
- A study has been carried for PBTMD, to mimic the coll PB results

introduce energy dependence of the intrinsic-kT in PB

Try to mimic parton-shower event generators by demanding a minimal parton transverse momentum ($q_0 = 1 \text{ and } 2 \text{ GeV}$) $\rightarrow q_T > q_0$ Real emissions with $z > (1-q_0)/\mu'$ neglected

For every q_0 value, all the measurements are fitted to extract a qs An increasing trend wrt \sqrt{s} is observed for higher values of q_0 This can be interpreted as if the lack of soft radiations has to be compensated by artificially large qs

Conclusions & Outlook

- Challenge to get a global description of dynamically generated transverse momentum throughout a phase-space spanned
 - Traditional general purpose MC generators are not able to describe coherently the evolution wrt ${\tt Q}$ and ${\tt \sqrt{s}}$
 - $\circ~$ PBTMD provides promising results, with milder dependence on \sqrt{s}
 - Simple, coherent estimation of the transverse momenta with few parameters
 - Providing universal description
 - Intrinsic k_m has been extracted from data
 - First principle, it is possible in general purpose MC generators.

BACKUP

CASCADE

- Implementing PB-TMD in the ISR
 - Generates the full hadron event record according to the HEP common standards
- FSR handled by pythia
- Can be linked to other generators for the Martix Element part
- Used extensively for comparing experimental results
- Supports multileg merging à la TMD merging

DY over wide Q range

- Need higher order pQCD for high pT region
 - Special treatment
 needed for low
 pT region.
- PBTMD shows an overall good agreement in the low pT region

Other measurements used

Experiment	Collision type	\sqrt{s} [GeV]	<i>Q</i> [GeV]
E866/NuSea [11,12]	pp/pd, fixed target	38.8	4–12.85
R209 [13]	рр	62	5–8
PHENIX [14]	рр	200	4.8-8.2
D0/CDF [15,16]	pp	1800	$m(\mathbf{Z})$
D0/CDF [17,18]	pp	1960	$m(\mathbf{Z})$
CMS [19]	рр	2760	$m(\mathbf{Z})$
ATLAS [20]	рр	8000	46–150
CMS [21]	pPb	8160	15–120
CMS [22]	рр	13000	50-1000
LHCb [23]	рр	13000	$m(\mathbf{Z})$