Determination of α_{s} from the Z-boson q_{T} distribution at hadron colliders

Giancarlo Ferrera Milan University & INFN, Milan

INFN

Results from:

S. Camarda, G. F., M. Schott, e-Print:2203.05394, EPJC 84 (2024)

ATLAS Coll., e-Print:2309.12986

REF 2024 IPhT – Saclay – 16/10/2024

Stefano Catani (1958-2024)

Wonderful person, outstanding physicist

Giancarlo Ferrera – Milan University & INFN Determination of α_S from the Z-boson q_T distribution

The idea: α_{S} from semi-inclusive processes

QCD COHERENT BRANCHING AND SEMI-INCLUSIVE PROCESSES AT LARGE x*

S. CATANI** and B.R. WEBBER

Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0H3, UK

G. MARCHESINI

Dipartimento di Fisica, Università di Parma, INFN, Gruppo Collegato di Parma, Italy

Received 22 June 1990

 $\alpha_{\rm s}^{\rm (MC)} = \alpha_{\rm s}^{\rm (\overline{\rm MS})} \left(1 + K \frac{\alpha_{\rm s}^{\rm (MS)}}{2\pi} \right),$

 $\Lambda_{\rm MC} = \Lambda_{\rm \overline{MS}} \exp(K/4\pi\beta_0)$ $\approx 1.569 \Lambda_{\rm \overline{MS}} \quad \text{for } N_{\rm f} = 5.$

In this paper we have studied [...] the next-to-leading logarithmic terms in semi-inclusive hard processes such as the DIS and DY processes at large x. Since the Monte Carlo algorithm with these improvements is accurate to next-to-leading order in the large-x region, it can be used to determine the fundamental QCD scale Λ_{MS}

The idea: $\alpha_{\rm S}$ from semi-inclusive processes

Advantages:

- higher sensitivity to α_s w.r.t. *inclusive* observables;
- calculable at **higher theoretical accuracy** w.r.t. *exclusive* observables.

Challenges:

- sensitivity to infrared (Sudakov) logs;
- sensitivity non perturbative QCD effects.

Classical semi-inclusive obs. at hadron colliders: high invariant-mass Drell–Yan lepton pair at small transverse-momentum (q_T).

α_{S} from Z-boson q_T distribution

0.10

0.08

0.02

Spp̄S ($\sqrt{s} = 0.63$ TeV)

Tevatron ($\sqrt{s} = 1.96 \text{ TeV}$) LHC ($\sqrt{s} = 7 - 8 \text{ TeV}$)

80 100 12

u- variations

15

[UA2 Coll.('92)]
compared with
[Altarelli et al.('84)]

[D0 Coll.('08,'10)]
compared with
[Catani et al.('10)]

 $nn \rightarrow Z^0 + X \rightarrow 1^+1^- + X$

96 TeV MSTW2

0.0200

0.0100

0.0050

0.0020

0.0010

0.0005

10

a. (GeV)

[ATLAS Coll.('14)] compared with [Catani et al.('15)]

Drell–Yan q_T distribution

$$\begin{split} \mathbf{h}_1(\mathbf{p}_1) + \mathbf{h}_2(\mathbf{p}_2) &\to \mathbf{V} + \mathbf{X} \to \ell_1 + \ell_2 + \mathbf{X} \\ \text{where} \quad V = Z^0 / \gamma^*, W^{\pm} \end{split}$$

QCD factorization formula:

$$\frac{d\sigma}{dq_T^2} = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1,\mu_F^2) f_{b/h_2}(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2} (\alpha_S(\mu_R^2),\mu_R^2,\mu_F^2).$$

Fixed-order perturbative expansion reliable

only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_T^2} \sim 1 + \alpha_S \bigg[c_{12} L_{q_T}^2 + c_{11} L_{q_T} + \cdots \bigg]$$
$$+ \alpha_S^2 \bigg[c_{24} L_{q_T}^4 + \cdots + c_{21} L_{q_T} + \cdots \bigg] + \mathcal{O}(\alpha_S^3)$$

with $\alpha_{S}^{n}L_{q_{T}}^{m} \equiv \alpha_{S}^{n}\log^{m}(M^{2}/q_{T}^{2}) \gtrsim 1.$

Resummation of logarithmic corrections mandatory.

15/10/2024

5/26

q_T resummation in QCD [Catani,deFlorian,Grazzini('01)] [Bozzi,Catani,deFlorian,Grazzini('03,'06)]

$$rac{d\hat{\sigma}}{dq_T^2} = rac{d\hat{\sigma}^{(res)}}{dq_T^2} + rac{d\hat{\sigma}^{(fin)}}{dq_T^2};$$

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(\mathbf{b}, \mathbf{M}),$$

In the Mellin space (with respect to $z = M^2/\hat{s}$) we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with $L \equiv \log(M^2 b^2)$ and $\alpha_S L \sim 1$

$$\mathcal{G}(\alpha_{\mathcal{S}}, \mathcal{L}) = \mathcal{L}g^{(1)}(\alpha_{\mathcal{S}}\mathcal{L}) + g^{(2)}(\alpha_{\mathcal{S}}\mathcal{L}) + \frac{\alpha_{\mathcal{S}}}{\pi}g^{(3)}(\alpha_{\mathcal{S}}\mathcal{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = \hat{\sigma}^{(0)}\left(1 + \frac{\alpha_{\mathcal{S}}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots\right)$$

 $\mathsf{LL} \ (\sim \alpha_S^n L^{n+1}): \ \mathbf{g}^{(1)}, \ (\hat{\sigma}^{(0)}); \ \mathsf{NLL} \ (\sim \alpha_S^n L^n): \ \mathbf{g}^{(2)}, \ \mathcal{H}^{(1)}; \ \cdots \ \mathsf{N}^k \mathsf{LL} \ (\sim \alpha_S^n L^{n+k-1}): \ \mathbf{g}^{(k+1)}, \ \mathcal{H}^{(k)};$

Resummed result at small q_T matched with corresponding fixed "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$ via all-order formula [Catani,Cieri,deFlorian,G.F.,Grazzini('14)].
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

 Perturbative unitarity constraint: recover *exactly* the total cross-section (upon integration on q_T)

$$\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2 + 1) \quad \Rightarrow \quad \exp\left\{\alpha_S^n \widetilde{L}^k\right\}\Big|_{b=0} = 1 \quad \Rightarrow \quad \int_0^\infty dq_T^2\left(\frac{d\widehat{\sigma}}{dq_T^2}\right) = \widehat{\sigma}^{(tot)};$$

• General procedure to treat the q_T recoil [Catani, de Florian, G.F., Grazzini('15)]:

$$\frac{d\hat{\sigma}^{(0)}}{d\boldsymbol{\Omega}} = \hat{\sigma}^{(0)}(M^2) F(\mathbf{q}_{\mathsf{T}}; M^2, \boldsymbol{\Omega}) \text{ with } F(\mathbf{q}_{\mathsf{T}}; M^2, \boldsymbol{\Omega}) = F(\mathbf{0}; M^2, \boldsymbol{\Omega}) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2)$$

Connection with CSS and TMD formalisms

[Collins,Soper,Sterman('85)]

$$\begin{split} h_{1}(p_{1}) & = \int_{z_{1}}^{z_{1}} \int_{z_{1}}^{z_{1}} \int_{z_{1}}^{z_{1}} \int_{z_{1}}^{z_{1}} \int_{z_{2}}^{z_{2}} \int_{z_{2}}$$

$$\tilde{F}_{q_f/h}(x, b, M) = \sum_a \int_x^1 \frac{dz}{z} \sqrt{S_q(M, b)} C_{q_f a}(z; \alpha_S(b_0^2/b^2)) f_{a/h}(x/z, b_0^2/b^2)$$

Giancarlo Ferrera – Milan University & INFN

Determination of α_S from the Z-boson q_T distribution

q_T resummation: perturbative accuracy

• Formalism implemented in numerically efficient and publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

• We have explicitly included in DYTurbo up to:

- N⁴LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-3})$);
- Approximated N⁴LO corrections (i.e. up to $\mathcal{O}(\alpha_S^4)$) at small q_T ;
- NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α_S³)) at large q_T from results in [Boughezal et al.('16)], [Gehrmann-DeRidder et al.('16)], [MCFM ('23)];
- Results up to N³LO (i.e. up to $\mathcal{O}(\alpha_5^3)$) recovered for the total cross section (from unitarity).

q_T resummation: perturbative accuracy

• Formalism implemented in numerically efficient and publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

• We have explicitly included in DYTurbo up to:

- N⁴LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-3})$);
- Approximated N⁴LO corrections (i.e. up to $\mathcal{O}(\alpha_{S}^{4})$) at small q_{T} ;
- NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α_S³)) at large q_T from results in [Boughezal et al.('16)], [Gehrmann-DeRidder et al.('16)], [MCFM ('23)];
- Results up to N³LO (i.e. up to $\mathcal{O}(\alpha_{S}^{3})$) recovered for the total cross section (from unitarity).

\mathbf{Z}/γ^* production at $\mathbf{N}^4\mathbf{L}\mathbf{L}+\mathbf{N}^4\mathbf{L}\mathbf{O}\mathbf{a}$ resummed

[Camarda,Cieri,G.F.('23)]

DYTurbo results. Left: Resummed NLL, NNLL, N³LL and N⁴LLa bands for Z/γ^* (left). Right: Uncertainties from approximations of the perturbative coefficients at N4LL+N4LOa compared to scale variations.

\mathbf{Z}/γ^* production: finite part

[Camarda,Cieri,G.F.('21)]

Finite part at $\mathcal{O}(\alpha_5)$, $\mathcal{O}(\alpha_5^2)$ and $\mathcal{O}(\alpha_5^3)$ (left) and ratio wrt matched results (right).

Combining QED and QCD q_T resummation

[Cieri,G.F.,Sborlini('18)]

We start considering QED contributions to the q_T spectrum in the case of colourless and **neutral** high mass systems, e.g. on-shell Z boson production

$$h_1 + h_2 \rightarrow Z^0 + X$$

In the impact parameter and Mellin spaces resummed partonic cross section reads:

 $\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}'_{N}(\alpha_{S},\alpha) \times \exp\left\{\mathcal{G}'_{N}(\alpha_{S},\alpha,L)\right\}$

$$\mathcal{G}'(\alpha_{\mathcal{S}}, \alpha, L) = \mathcal{G}(\alpha_{\mathcal{S}}, L) + L g'^{(1)}(\alpha L) + g'^{(2)}(\alpha L) + \sum_{n=3}^{\infty} \left(\frac{\alpha}{\pi}\right)^{n-2} g'^{(n)}(\alpha L)$$

+
$$g'^{(1,1)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$$
 + $\sum_{\substack{n,m=1\\n+m\neq 2}}^{\infty} \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{n-1} \left(\frac{\alpha}{\pi}\right)^{m-1} g_{\mathsf{N}}'^{(n,m)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$

$$\mathcal{H}'(\alpha_{\mathcal{S}},\alpha) \quad = \quad \mathcal{H}(\alpha_{\mathcal{S}}) + \ \frac{\alpha}{\pi} \mathcal{H}'^{(1)} + \sum_{n=2}^{\infty} \left(\frac{\alpha}{\pi}\right)^n \ \mathcal{H}_N^{\prime(n)} \ + \ \sum_{n,m=1}^{\infty} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^n \left(\frac{\alpha}{\pi}\right)^m \ \mathcal{H}_N^{\prime F(n,m)}$$

LL QED (
$$\sim \alpha^n L^{n+1}$$
): $g'^{(1)}$; NLL QED ($\sim \alpha^n L^n$): $g'^{(2)}$, $\mathcal{H}'^{(1)}$; LL mixed QCD-QED ($\sim \alpha_5^n \alpha^n L^{2n}$): $g'^{(1,1)}$;

Combined QED and QCD q_T resummation for Z production at

[Cieri,G.F.,Sborlini('18)]

the Tevatron

Z qT spectrum at the LHC. NNLL+NNLO QCD combined with the LL (red dashed) and NLL+NLO (blue solid) QED with corresponding QED uncertainty bands. Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

Non perturbative effects

- Up to now discussed result in a complete perturbative framework (except for PDFs).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \, \underline{S}_{NP}$

e.g. $S_{NP} = \exp\{-gb^2\}$ with $g \sim 0.5 \ GeV^2$:

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects.
- However possible to disentangle the effects: scale of the NP effects is $\langle q_T \rangle \sim 1 \ GeV$ $(g \sim 0.5 \ GeV^2)$, scale of "soft gluon" recoil is $\langle q_T \rangle \sim 10 \ GeV$.

Non perturbative effects

- Up to now discussed result in a complete perturbative framework (except for PDFs).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \, \underline{S}_{NP}$

e.g. $S_{NP} = \exp\{-gb^2\}$ with $g \sim 0.5 \ GeV^2$:

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects.
- However possible to disentangle the effects: scale of the NP effects is $\langle q_T \rangle \sim 1 \ GeV$ $(g \sim 0.5 \ GeV^2)$, scale of "soft gluon" recoil is $\langle q_T \rangle \sim 10 \ GeV$.

Non perturbative effects

$$S_{\text{NP}}(b) = \exp\left[-g_{j}(b) - g_{K}(b)\log\frac{m_{\ell\ell}^{2}}{Q_{0}^{2}}\right]$$

$$g_j(b) = \frac{g b^2}{\sqrt{1 + \lambda b^2}} + \operatorname{sign}(q) \left(1 - \exp\left[-|q| b^4\right] \right)$$
$$g_K(b) = g_0 \left(1 - \exp\left[-\frac{C_F \alpha_s(b_0/b_*)b^2}{\pi g_0 b_{\lim}^2}\right] \right),$$

S_{NP} parameterization from
[Collins,Rogers('15)].

- Up to now discussed result in a complete perturbative framework (except for PDFs).
- Non perturbative intrinsic k_T effects parametrized by a NP form factor:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \, \underline{S}_{NP}$

e.g. $S_{NP} = \exp\{-gb^2\}$ with $g \sim 0.5 \ GeV^2$:

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects.
- However possible to disentangle the effects: scale of the NP effects is $\langle q_T \rangle \sim 1 \text{ GeV}$ $(g \sim 0.5 \text{ GeV}^2)$, scale of "soft gluon" recoil is $\langle q_T \rangle \sim 10 \text{ GeV}$.

Modelling Z (and W) production for $\sin^2 \theta_{eff}^{I}$ and M_W determinations

Comparison of the measurements of the $\sin^2\theta_{eff}^{l}.$

Measured values of M_W compared with the prediction of from the global electroweak fit

Methodology for α_{S} determination

- DYTurbo interfaced to xFitter.
- Defined χ² with experimental (β_{exp}) and PDFs (β_{th}) uncertainties (equivalent to including the new dataset in the PDF using profiling/reweighting).
- The non-perturbative form factor is *S_{NP}* left free in the fit.

$$\begin{split} \chi^2(\beta_{\mathrm{exp}},\beta_{\mathrm{th}}) &= \sum_{i=1}^{N_{\mathrm{data}}} \frac{\left(\sigma_i^{\mathrm{exp}} + \sum_j \Gamma_{ij}^{\mathrm{exp}} \beta_{j,\mathrm{exp}} - \sigma_i^{\mathrm{th}} - \sum_k \Gamma_{ik}^{\mathrm{th}} \beta_{k,\mathrm{th}}\right)^2}{\Delta_i^2} \\ &+ \sum_j \beta_{j,\mathrm{exp}}^2 + \sum_k \beta_{k,\mathrm{th}}^2 \,. \end{split}$$

Z-boson q_T measurement at CDF

The CDF measurement of $Z/\gamma^* \rightarrow e^+e^-$ ($\sqrt{s} = 1.96 \, TeV$ with $\int \mathcal{L} = 2.1 f b^{-1}$) [CDF Coll.('10)] is ideal for $\alpha_S(m_Z)$ determination.

[CDF Coll.('10)]

- Measurement in full-lepton phase space with small extrapolation using angular coefficients method ⇒ allows fast analytic predictions with DYTurbo.
- *pp̄* collisions: small contribution from heavy-flavour in initial state (0.4% *bb̄* → *Z*, 1.3% *cc̄* → *Z*). Quark mass effects negligible.
- Low pile-up and good electron resolution.
 Fine q_T bins (0.5GeV) with relatively small bin-to-bin correlations.

PDF fit	Hessian profiling
$\begin{array}{c} 0.1188 \pm 0.0008 \\ 0.69 \pm 0.05 \end{array}$	$\begin{array}{c} 0.1184 \pm 0.0006 \\ 0.71 \pm 0.05 \end{array}$
χ^2 /points	χ^2 /points
955/905	
46/39	
219/159	
53/42	
91	
41/55	40/55
1405 / 1184	
	$\begin{array}{c} {\rm PDF fit} \\ 0.1188 \pm 0.0008 \\ 0.69 \pm 0.05 \\ x^2/points \\ 955/905 \\ 46/39 \\ 219/159 \\ 53/42 \\ 91 \\ 41/55 \\ 1405/1184 \end{array}$

Bias from α_S-PDFs correlations [Forte,Kassabov('20)] → PDFs refitted.

- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{||}/2 < \{\mu_R, \mu_F, Q\} < 2m_{||}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$

▶ NP effects:
$$S_{NP} = \exp\{-gb^{2}\}$$
:
 b_{*} -pr. $b_{*} = b/\sqrt{1 + b^{2}/b_{lim}^{2}}$
 $(b_{lim} = 2 - 3 \text{ GeV}^{-1})$ and minimal pr.
 $(b_{lim} \to \infty)$; quartic term $\exp(-qb^{4})$ and S_{NP}
[Collins, Rogers('15)].

- Uncerainty from finite component at $\mathcal{O}(\alpha_{S}^{3})$.
- Check with D0 data and fit boundaries.

15/10/2024 18/26

	$\alpha_S(m_Z)$	$g [GeV^2]$	χ^2/dof
NNPDF4.0	0.1192 ± 0.0008	0.66 ± 0.05	41/53
CT18	0.1189 ± 0.0010	0.67 ± 0.05	40/53
CT18Z	0.1198 ± 0.0009	0.62 ± 0.05	41/53
MSHT20	0.1185 ± 0.0009	0.72 ± 0.05	40/53
HERAPDF2.0	0.1188 ± 0.0008	0.69 ± 0.05	40/53
ABMP16	0.1185 ± 0.0007	0.62 ± 0.05	42/53
MSHT20an3lo (N ⁴ LL)	0.1184 ± 0.0009	0.73 ± 0.05	40/53
PDF fit	0.1184 ± 0.0006	0.71 ± 0.05	1405/1184

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$

• NP effects:
$$S_{NP} = \exp\{-gb^2\}$$
:

$$b_*$$
-pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$
 $(b_{lim} = 2 - 3 \text{ GeV}^{-1})$ and minimal pr.
 $(b_{lim} \to \infty)$; quartic term exp $(-qb^4)$ and S_{NP}
[Collins, Rogers('15)].

- Uncerainty from finite component at $\mathcal{O}(\alpha_s^3)$.
- Check with D0 data and fit boundaries.

$\mu_R/m_{\ell\ell}$	$\mu_F/m_{\ell\ell}$	$Q/m_{\ell\ell}$	$\alpha_S(m_Z)$	g [GeV ²]	χ ² /dof
1	1	1	0.1192 ± 0.0008	0.66 ± 0.05	41/53
1	1	2	0.1183 ± 0.0007	0.77 ± 0.05	40/53
1	1	0.5	0.1196 ± 0.0008	0.57 ± 0.05	42/53
1	2	1	0.1194 ± 0.0008	0.66 ± 0.05	41/53
1	2	2	0.1183 ± 0.0007	0.77 ± 0.05	41/53
1	0.5	1	0.1193 ± 0.0008	0.68 ± 0.05	42/53
1	0.5	0.5	0.1196 ± 0.0008	0.59 ± 0.05	42/53
2	1	1	0.1193 ± 0.0008	0.67 ± 0.05	42/53
2	1	2	0.1194 ± 0.0008	0.70 ± 0.05	41/53
2	2	1	0.1192 ± 0.0008	0.65 ± 0.05	42/53
2	2	2	0.1192 ± 0.0008	0.67 ± 0.05	41/53
0.5	1	1	0.1184 ± 0.0007	0.75 ± 0.05	42/53
0.5	1	0.5	0.1192 ± 0.0007	0.64 ± 0.05	41/53
0.5	0.5	1	0.1183 ± 0.0007	0.75 ± 0.05	42/53
0.5	0.5	0.5	0.1192 ± 0.0007	0.64 ± 0.05	42/53

- Bias from α_S-PDFs correlations
 [Forte,Kassabov('20)] → PDFs refitted.
- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: $S_{NP} = \exp\{-gb^2\}$: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \to \infty$); quartic term $\exp(-qb^4)$ and S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_{S}^{3})$.
- Check with D0 data and fit boundaries.

	$\alpha_S(m_Z)$	$g [{\rm GeV^2}]$
$b_{lim} = 2 \text{ GeV}^{-1}$	0.1187 ± 0.0007	0.83 ± 0.05
$b_{\lim} \rightarrow \infty$	0.1199 ± 0.0008	0.42 ± 0.05
g _k	0.1186 ± 0.0008	0.65 ± 0.05
$q = 0.1 \text{ GeV}^4$	0.1197 ± 0.0008	0.51 ± 0.05
VFN PDF evolution	0.1190 ± 0.0007	0.71 ± 0.05

- Bias from α_S-PDFs correlations
 [Forte,Kassabov('20)] → PDFs refitted.
- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: $S_{NP} = \exp\{-gb^2\}$: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \rightarrow \infty$); quartic term $\exp(-qb^4)$ and S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_{s}^{3})$.
- Check with D0 data and fit boundaries.

- Bias from α_S-PDFs correlations
 [Forte,Kassabov('20)] → PDFs refitted.
- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$

• NP effects:
$$S_{NP} = \exp\{-gb^2\}$$
:

- b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ $(b_{lim} = 2 - 3 \text{ GeV}^{-1})$ and minimal pr. $(b_{lim} \to \infty)$; quartic term exp $(-qb^4)$ and S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_{s}^{3})$.
- Check with D0 data and fit boundaries.

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- NNPDF4.0 PDF at NNLO. Other sets considered: CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$

• NP effects:
$$S_{NP} = \exp\{-gb^2\}$$
:

$$b_*$$
-pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$

- $(b_{lim} = 2 3 \text{ GeV}^{-1})$ and minimal pr. $(b_{lim} \rightarrow \infty)$; quartic term $\exp(-qb^4)$ and S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_{s}^{3})$.
- Check with D0 data and fit boundaries.

Fit results

Statistical uncertainty		± 0.7	
Experimental systematic uncertainty		± 0.1	
PDF uncertainty (NNPDF4.0)		± 0.4	
PDF uncertainty (envelope of PDFs)		± 0.7	
Scale variations uncertainties	+0.4		- 0.9
Matching at $O(\alpha_S^3)$		± 0.1	
Non-perturbative model		±0.7	
Flavour model	0		- 0.3
QED ISR		$< \pm 0.1$	
Lower limit of fit range		± 0.2	
Total	+1.3		- 1.6

Simultaneous fit of $\alpha_{S}(m_{Z})$ and g at N³LL+ $O(\alpha_{S}^{3})$ (N³LL+N³LO):

 $\alpha_{\rm S}({\rm m_Z}) = 0.1191^{+0.0013}_{-0.0016}$

Giancarlo Ferrera – Milan University & INFN

Determination of α_S from the Z-boson q_T distribution

Z-boson q_T measurement at ATLAS

First measurement at the LHC of full-lepton phase space cross sections. Double differential in pT and rapidity.

Permille level precision in the central region, subpercent uncertainties up to |y| < 3.6. Dominant uncertainties from lepton calibration. Very small (negligible) theory uncertainties.

	UA1/UA2	LEP	Tevatron 1.96 TeV	LHC 8 TeV	LHC 13 TeV
$Z \rightarrow \ell \ell$ events	200	500 K	300 K	15 M	150 M

Giancarlo Ferrera –	Milan University & INFN
Determination of α_S	from the Z-boson q_T distribution

Z-boson q_T measurement at ATLAS vs theory

DYTurbo predictions at N⁴LLa accuracy compared with data [ATLAS Coll.('23)].

Time performance of $\mathcal{O}(seconds)$: (with exception of V+jet term with fiducial lepton cuts).

Z-boson q_T measurement at ATLAS vs theory

Theory predictions compared with data [ATLAS Coll.('23)].

Giancarlo Ferrera – **Milan University & INFN** Determination of α_S from the Z-boson q_T distribution

Exp. and theory uncertainties

Table 1:	Summary of	the uncertainties in the determination of $\alpha_s(m_Z)$, in units	of 10^{-3} .
----------	------------	--	----------------

Experimental uncertainty	±0.44		
PDF uncertainty	± 0	.51	
Scale variation uncertainties	± 0	±0.42	
Matching to fixed order	0	-0.08	
Non-perturbative model	+0.12	-0.20	
Flavour model	+0.40	-0.29	
QED ISR	± 0	.14	
N ⁴ LL approximation	± 0.04		
Total	+0.91	-0.88	

Fit results

Simultaneous fit of $\alpha_S(m_Z)$ and NP parameters at N⁴LL+ $\mathcal{O}(\alpha_S^3)$:

 $\alpha_{\rm S}({\rm m_Z}) = 0.11828^{+0.00084}_{-0.00088}$

Giancarlo Ferrera – **Milan University & INFN** Determination of α_S from the Z-boson q_T distribution

α_{S} from Energy-Energy-Correlation in e⁺e⁻

Comparison with data of the resummed EEC spectrum at N³LL+NLO with non perturbative k_T dependent effects parameterized by a NP form factor $S_{NP} = \exp\{-g_2b^2\}(1-g_1b)$ [G.F., Aglietti('24)].

Conclusions

- Novel methodology for determination of $\alpha_S(m_Z)$ based on Z-boson small- q_T distribution.
- Based on N⁴LL+ $\mathcal{O}(\alpha_5^3)$ resummed QCD predictions.
- Extraction from CDF Tevatron and ATLAS LHC data.
- Result in agreement with the world average.
- Precise collider determination: less than 1% relative uncertainty.
- Crucial development of DYTurbo program to compute fast and accurate theoretical predictions: https://dyturbo.hepforge.org