Breakdown of collinear factorisation at the leading twist in exclusive $\pi^0\gamma$ photoproduction: Collinear-to-soft Glauber exchanges

Resummation, Evolution, Factorisation 2024 IPhT, Saclay, France

Saad Nabeebaccus University of Manchester

The oniversity of Manerieste

Oct 17, 2024

Based on 2311.09146 and 2409.16067 with J. Schönleber, L. Szymanowski and S. Wallon

Exclusive photon-meson photoproduction

Original motivation: Extraction of chiral-odd GPDs at leading twist.

 $ho \gamma N \to
ho_T^0 \pi^+ N'$:
M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, S. Wallon: [1001.4491]

Exclusive photon-meson photoproduction

Original motivation: Extraction of chiral-odd GPDs at leading twist.

- $\gamma N \to \rho_T^0 \pi^+ N'$:
 M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, S. Wallon: [1001.4491]
- $ightharpoonup \gamma N \rightarrow \gamma M N'$:
 - $M=
 ho^0$: R. Boussarie, B. Pire, L. Szymanowski, S. Wallon: [1609.03830]
 - $M=\pi^{\pm}$: G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [1809.08104]
 - $M=\pi^\pm,~\rho^{0,\pm}$, wider kinematical coverage, various observables: G. Duplančić, **S.N.**, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]

Exclusive photon-meson photoproduction

Original motivation: Extraction of chiral-odd GPDs at leading twist.

- $\gamma N \to \rho_T^0 \pi^+ N'$:
 M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, S. Wallon: [1001.4491]
- $ightharpoonup \gamma N \rightarrow \gamma M N'$:
 - $M=
 ho^0$: R. Boussarie, B. Pire, L. Szymanowski, S. Wallon: [1609.03830]
 - $M=\pi^{\pm}$: G. Duplančić, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [1809.08104]
 - $M=\pi^\pm,~\rho^{0,\pm}$, wider kinematical coverage, various observables: G. Duplančić, **S.N.**, K. Passek-Kumerički, B. Pire, L. Szymanowski, S. Wallon: [2212.00655, 2302.12026]

Richer kinematics of 3-body final state processes allows the sensitivity of GPDs wrt x to be probed (beyond moment-type dependence, e.g. in DVCS)

J. Qiu, Z. Yu: [2305.15397]

Exclusive photon-meson photoproduction

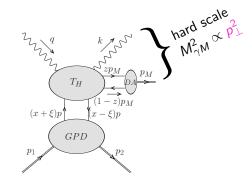
$$\gamma(q) + N(p_1) \rightarrow \gamma(k) + M(p_M) + N'(p_2)$$

$$A = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x, \xi, z) \ H(x, \xi, t) \ \Phi_{M}(z)$$

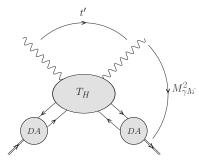
$$\gamma(q) + N(p_1) \rightarrow \gamma(k) + M(p_M) + N'(p_2)$$

$$\mathcal{A} = \int_{-1}^{1} dx \int_{0}^{1} dz \ T(x, \xi, z) \ H(x, \xi, t) \ \Phi_{M}(z)$$

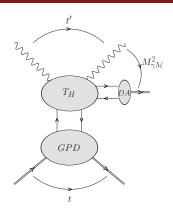
- ► Fully differential cross-section differential covering $S_{\gamma N}$ from $\sim 4 \, \text{GeV}^2$ to 20000 GeV^2 .
- ► Good statistics at various experiments, particularly at *JLab*.
- Polarisation asymmetries also sizeable.
- Small ξ limit of quark GPDs can be studied at collider experiments.



Is collinear factorisation justified?



large angle factorisation à la Brodsky Lepage



We thus argue *collinear factorisation* of the amplitude at large $M_{\gamma M}^2$, t', u', and small t.

$$t = (p_2 - p_1)^2,$$
 $u' = (p_M - q)^2,$ $t' = (k - q)^2,$ $S_{\gamma N} = (q + p_1)^2.$

Is Collinear factorisation justified?

- ▶ Recently, factorisation has been proved for the process $\pi N \to \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ► This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]

Is Collinear factorisation justified?

- ▶ Recently, factorisation has been proved for the process $\pi N \to \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- ▶ The proof relies on having large p_T , rather than large invariant mass (e.g. photon-meson pair).

Is Collinear factorisation justified?

- ▶ Recently, factorisation has been proved for the process $\pi N \to \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- ▶ The proof relies on having large p_T , rather than large invariant mass (e.g. photon-meson pair).
- ▶ In fact, NLO computation has been performed for $\gamma N \to \gamma \gamma N'$ by O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- ▶ Also, NLO computation for $\gamma\gamma\to\pi^+\pi^-$ by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

Is Collinear factorisation justified?

- ▶ Recently, factorisation has been proved for the process $\pi N \to \gamma \gamma N'$ by J. Qiu, Z. Yu [2205.07846].
- ▶ This was extended to a wide range of $2 \rightarrow 3$ exclusive processes by J. Qiu, Z. Yu [2210.07995]
- ▶ The proof relies on having large p_T , rather than large invariant mass (e.g. photon-meson pair).
- ▶ In fact, NLO computation has been performed for $\gamma N \to \gamma \gamma N'$ by O. Grocholski, B. Pire, P. Sznajder, L. Szymanowski, J. Wagner [2110.00048, 2204.00396]
- ▶ Also, NLO computation for $\gamma\gamma\to\pi^+\pi^-$ by crossing symmetry G. Duplancic, B. Nizic: [hep-ph/0607069].

Issues with exclusive $\pi^0 \gamma$ photoproduction...

Gluon GPD contributions to exclusive $\pi^0\gamma$ photoproduction

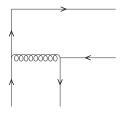
▶ Because of the quantum numbers of π^0 ($J^{PC} = 0^{-+}$), the exclusive photoproduction of $\pi^0 \gamma$ is also sensitive to gluon GPD contributions.

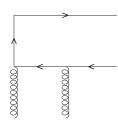
Gluon GPD contributions to exclusive $\pi^0\gamma$ photoproduction

- ▶ Because of the quantum numbers of π^0 ($J^{PC}=0^{-+}$), the exclusive photoproduction of $\pi^0\gamma$ is also sensitive to *gluon GPD contributions*.
- ▶ A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries ($x \rightarrow -x$ and $z \rightarrow 1-z$ separately).

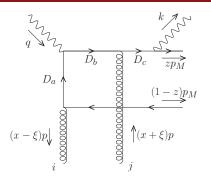
Gluon GPD contributions to exclusive $\pi^0\gamma$ photoproduction

- ▶ Because of the quantum numbers of π^0 ($J^{PC} = 0^{-+}$), the exclusive photoproduction of $\pi^0 \gamma$ is also sensitive to *gluon GPD contributions*.
- ▶ A total of 24 diagrams contribute in this case (compared to 20 diagrams from quark GPD contributions), with 6 groups of 4 related by symmetries ($x \rightarrow -x$ and $z \rightarrow 1-z$ separately).
- Diagrams amount to connecting photons to the following two topologies.





Specific diagram



$$CF \sim \frac{\operatorname{Tr}\left[\not p_{M}\gamma^{5}\not \epsilon_{k}\left(\not k+z\not p_{M}\right)\gamma^{j}\left(\not q-(x-\xi)\not p-\bar{z}\not p_{M}\right)\not \epsilon_{q}\left(-(x-\xi)\not p-\bar{z}\not p_{M}\right)\gamma^{i}\right]}{\left[2z\ kp_{M}\right]\left[-2\left(x-\xi\right)qp-2\bar{z}\ qp_{M}+2\bar{z}\left(x-\xi\right)pp_{M}+i\epsilon\right]\left[2\bar{z}\left(x-\xi\right)pp_{M}+i\epsilon\right]}$$

$$\stackrel{x \to \xi, \bar{z} \to 0}{\longrightarrow} \propto \frac{x - \xi}{\left[(x - \xi) + A\bar{z} - i\epsilon \right] \left[\bar{z} \left(x - \xi \right) + i\epsilon \right]}, \qquad A \equiv \frac{qp_M}{qp} > 0.$$

(Assuming p_M is along minus direction)

Result assuming collinear factorisation Specific diagram

Need to dress coefficient function CF with gluon GPD $\left(\frac{H_g(x)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)}\right)$, and DA $(z\bar{z})$. This gives

$$\mathcal{A} \sim \frac{\bar{z}(x-\xi)H_g(x)}{(x-\xi+i\epsilon)[(x-\xi)+A\bar{z}-i\epsilon][\bar{z}(x-\xi)+i\epsilon]}$$

$$\longrightarrow \frac{H_g(x)}{[(x-\xi)+A\bar{z}-i\epsilon][x-\xi+i\epsilon]}$$

Result assuming collinear factorisation Specific diagram

Need to dress coefficient function CF with gluon GPD $\left(\frac{H_g(x)}{(x-\xi+i\epsilon)(x+\xi-i\epsilon)}\right)$, and DA $(z\bar{z})$. This gives

$$\mathcal{A} \sim \frac{\bar{z}(x-\xi)H_g(x)}{(x-\xi+i\epsilon)[(x-\xi)+A\bar{z}-i\epsilon][\bar{z}(x-\xi)+i\epsilon]}$$

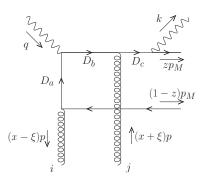
$$\longrightarrow \frac{H_g(x)}{[(x-\xi)+A\bar{z}-i\epsilon][x-\xi+i\epsilon]}$$

The integral over z and x diverges if the GPD $H_g(x)$ is non-vanishing at $x = \xi$:

$$\int_{-1}^{1} dx \int_{0}^{1} dz \frac{1}{[(x-\xi) + A\bar{z} - i\epsilon][x-\xi + i\epsilon]}$$

$$\supset \int_{-1}^{1} dx \frac{\ln(x-\xi - i\epsilon)}{[x-\xi + i\epsilon]} \implies \text{divergent imaginary part!}$$

Result assuming collinear factorisation Specific diagram



$$\int_{-1}^{1} dx \int_{0}^{1} dz \frac{1}{\left[\left(x-\xi\right) + A\bar{z} - i\epsilon\right]\left[x-\xi + i\epsilon\right]}$$

 \implies The "pinching" is caused by propagators D_a and D_b .

Result assuming collinear factorisation Full Amplitude

What about the sum of diagrams?

$$\sum \mathcal{A} \sim \frac{z\bar{z} \left(x^{2} - \xi^{2}\right) \left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + 8x^{2}\xi^{2}z\bar{z}\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{z\bar{z} \left[x - \xi + i\epsilon\right]^{2} \left[\bar{z} \left(x + \xi\right) - \alpha z \left(x - \xi\right) - i\epsilon\right] \left[z \left(x - \xi\right) + \alpha \bar{z} \left(x + \xi\right) - i\epsilon\right]}$$

$$\times \frac{1}{\left[x + \xi - i\epsilon\right]^{2} \left[\bar{z} \left(x - \xi\right) + \alpha z \left(x + \xi\right) - i\epsilon\right] \left[z \left(x + \xi\right) - \alpha \bar{z} \left(x - \xi\right) - i\epsilon\right]}$$

$$\xrightarrow{x \to \xi, \bar{z} \to 0} \propto \frac{\left[-\alpha \left[\left(x^{2} - \xi^{2}\right)^{2} \left(1 - 2z\bar{z}\right) + 8x^{2}\xi^{2}z\bar{z}\right] - \left(1 + \alpha^{2}\right) z\bar{z} \left(x^{4} - \xi^{4}\right)\right] H_{g}(x)}{\left[x - \xi + i\epsilon\right] \left[2\xi\bar{z} - \alpha \left(x - \xi\right) - i\epsilon\right] \left[\left(x - \xi\right) + 2\xi\alpha\bar{z} - i\epsilon\right]}$$

What about the sum of diagrams?

$$\sum A \sim \frac{z\bar{z}\left(x^2 - \xi^2\right)\left[-\alpha\left[\left(x^2 - \xi^2\right)^2\left(1 - 2z\bar{z}\right) + 8x^2\xi^2z\bar{z}\right] - \left(1 + \alpha^2\right)z\bar{z}\left(x^4 - \xi^4\right)\right]H_g(x)}{z\bar{z}\left[x - \xi + i\epsilon\right]^2\left[\bar{z}\left(x + \xi\right) - \alpha z\left(x - \xi\right) - i\epsilon\right]\left[z\left(x - \xi\right) + \alpha \bar{z}\left(x + \xi\right) - i\epsilon\right]}$$

$$\times \frac{1}{\left[x + \xi - i\epsilon\right]^2\left[\bar{z}\left(x - \xi\right) + \alpha z\left(x + \xi\right) - i\epsilon\right]\left[z\left(x + \xi\right) - \alpha \bar{z}\left(x - \xi\right) - i\epsilon\right]}$$

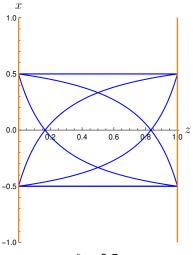
$$\xrightarrow{x \to \xi, \bar{z} \to 0} \propto \frac{\left[-\alpha \left[\left(x^2 - \xi^2 \right)^2 \left(1 - 2z\bar{z} \right) + \boxed{8x^2 \xi^2 z\bar{z}} \right] - \left(1 + \alpha^2 \right) z\bar{z} \left(x^4 - \xi^4 \right) \right] H_{g}(x)}{\left[x - \xi + i\epsilon \right] \left[2\xi\bar{z} - \alpha \left(x - \xi \right) - i\epsilon \right] \left[\left(x - \xi \right) + 2\xi\alpha\bar{z} - i\epsilon \right]}$$

Full amplitude (anti)-symmetric in $x\to -x$ and $z\to \bar z$ for (anti)-symmetric GPD. (only symmetric result shown above)

⇒ divergence survives, and actually adds up.

Singularity structure of the full amplitude

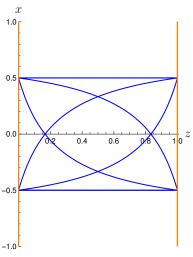
'Phase Space' for amplitude



$$\xi = 0.5$$

Singularity structure of the full amplitude

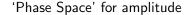
'Phase Space' for amplitude

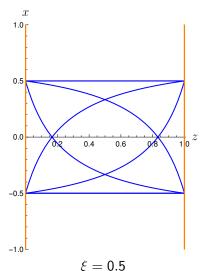


Unfortunately, no cancellations between the 4 corners.

 $\xi = 0.5$

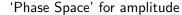
Singularity structure of the full amplitude

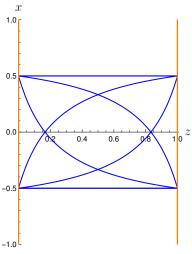




- Unfortunately, no cancellations between the 4 corners.
- ▶ In $\gamma\gamma \rightarrow MM$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.

Singularity structure of the full amplitude

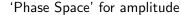


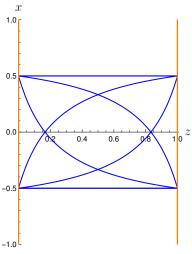


 $\xi = 0.5$

- Unfortunately, no cancellations between the 4 corners.
- ▶ In $\gamma\gamma \rightarrow MM$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??

Singularity structure of the full amplitude

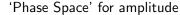


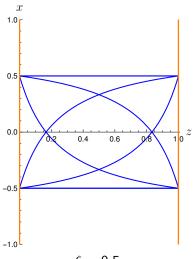


 $\xi = 0.5$

- Unfortunately, no cancellations between the 4 corners.
- ▶ In $\gamma\gamma \rightarrow MM$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??
- Can this divergence be understood from a theoretical point of view?

Singularity structure of the full amplitude





 $\xi = 0.5$

- Unfortunately, no cancellations between the 4 corners.
- ▶ In $\gamma\gamma \rightarrow MM$, only ERBL region exists, no poles are crossed, and endpoint contributions are suppressed by DAs.
- Indication of problem with naive collinear factorisation? At twist-2??
- Can this divergence be understood from a theoretical point of view?

YES! \Longrightarrow [S. N., J. Schönleber,

L. Szymanowski, S. Wallon: 2311.09146, 2409.16067

Libby-Sterman power counting

► How to obtain the dominant contribution of an amplitude (in QCD) given external specific kinematics (e. g. collinear)?

⇒ Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252;

Phys.Rev.D 18 (1978) 4737]

Libby-Sterman power counting

- ► How to obtain the dominant contribution of an amplitude (in QCD) given external specific kinematics (e. g. collinear)?
 - ⇒ Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252;

Phys.Rev.D 18 (1978) 4737]

Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.

Libby-Sterman power counting

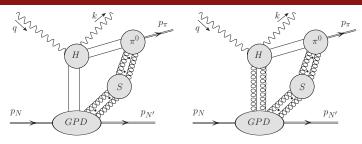
- ► How to obtain the dominant contribution of an amplitude (in QCD) given external specific kinematics (e. g. collinear)?
 - ⇒ Libby-Sterman power counting rule [Phys.Rev.D 18 (1978) 3252;

Phys.Rev.D 18 (1978) 4737]

- ▶ Basic idea is to identify regions of loop momenta of partons (also number of partons), which gives the dominant contribution to the full amplitude.
- \blacktriangleright Collect all contributions to the *smallest* α :

$${\cal A} = {\it Q}^eta \sum_lpha f_lpha \lambda^lpha \,, \qquad \lambda = rac{{\sf \Lambda}_{
m QCD}, \, {\it m}_\pi, \, {\it m}_{\it N}}{\it Q} \ll 1$$

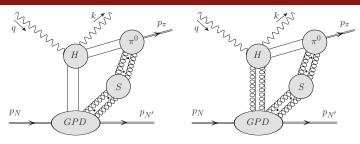
Classic Collinear pinch



In both of the above cases, the power counting is [S. N., J. Schönleber, L. Szymanowski, S. Wallon: 2311.09146]:

$$\mathcal{A} \sim Q^{-1} \lambda^{\alpha} \,, \qquad \lambda = rac{\Lambda_{
m QCD}, \, m_{\pi}, \, m_{N}}{Q} \ll 1 \,, \qquad \alpha = 1$$

Classic Collinear pinch



In both of the above cases, the power counting is [S. N., J. Schönleber, L. Szymanowski, S. Wallon: 2311.09146]:

$$\mathcal{A} \sim Q^{-1} \lambda^{\alpha} \,, \qquad \lambda = rac{\Lambda_{\mathrm{QCD}}, \, m_{\pi}, \, m_{N}}{Q} \ll 1 \,, \qquad \alpha = 1$$

Collinear factorisation at *all orders* and *leading power* provided:

- the above collinear pinch diagrams (standard) are the *only ones contributing* to the leading power of $\alpha = 1$
- ▶ the the soft factor *S* factorises into *process-independent Wilson lines*

Pinches

Landau conditions

Pinches correspond to regions of loop momentum which cannot be avoided through contour deformations.

They can be identified efficiently through Landau conditions:

Pinches

Landau conditions

Pinches correspond to regions of loop momentum which cannot be avoided through contour deformations.

They can be identified efficiently through Landau conditions:

$$I(z) = \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^{dL}} d^{dL} \omega \, \frac{N(\omega, z)}{\prod_{j=0}^n (D_j(\omega, z) + i\epsilon)} \, .$$

Given $z, \omega_S \in \mathbb{R}^{dL}$ such that the set

$$\mathcal{D} = \{j \in \{1,...,n\} \mid D_j(\omega_S,z) = 0\}$$

is non-empty, a necessary condition for a pinch at ω_S is that for $j \in \mathcal{D}$, there exist real and non-negative numbers α_j such that

- $\forall i \in \{1, ..., dL\} : \sum_{j \in \mathcal{D}} \alpha_j \frac{\partial D_j}{\partial \omega_i} (\omega_S; z) = 0.$
- ▶ At least one of the α_i is non-zero

Pinches correspond to regions of loop momentum which cannot be avoided through contour deformations.

They can be identified efficiently through Landau conditions:

$$I(z) = \lim_{\epsilon \to 0^+} \int_{\mathbb{R}^{dL}} d^{dL} \omega \, \frac{N(\omega, z)}{\prod_{j=0}^n (D_j(\omega, z) + i\epsilon)} \, .$$

Given $z, \omega_S \in \mathbb{R}^{dL}$ such that the set

$$\mathcal{D} = \{j \in \{1,...,n\} \mid D_j(\omega_S,z) = 0\}$$

is non-empty, a necessary condition for a pinch at ω_S is that for $j \in \mathcal{D}$, there exist real and non-negative numbers α_j such that

- $\blacktriangleright \ \forall i \in \{1,...,dL\} : \ \sum_{j \in \mathcal{D}} \alpha_j \frac{\partial D_j}{\partial \omega_i} (\omega_S; z) = 0.$
- \blacktriangleright At least one of the α_i is non-zero

Note: Existence of pinch does *not* imply existence of a singularity: Need to also perform *power counting*.

Pinches

Soft pinch always present

Consider the bubble integral, with massless internal lines:

$$I_1(p^2) = \lim_{\epsilon \to 0^+} \int d^4k \, \frac{1}{(k^2 + i\epsilon)((p-k)^2 + i\epsilon)}.$$

Consider the bubble integral, with massless internal lines:

$$I_1(p^2) = \lim_{\epsilon \to 0^+} \int d^4k \, \frac{1}{(k^2 + i\epsilon)((p-k)^2 + i\epsilon)}.$$

According to the Landau conditions, there is *always* a pinch related to soft momentum k, independent of p.

This is because when k = 0, both the propagator $k^2 + i\epsilon$ and its first derivative are zero.

 \implies Landau conditions for a pinch at k = 0 are satisfied.

Consider the bubble integral, with massless internal lines:

$$I_1(p^2) = \lim_{\epsilon \to 0^+} \int d^4k \, \frac{1}{(k^2 + i\epsilon)((p-k)^2 + i\epsilon)}.$$

According to the Landau conditions, there is *always* a pinch related to soft momentum k, independent of p.

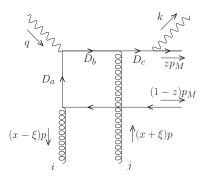
This is because when k = 0, both the propagator $k^2 + i\epsilon$ and its first derivative are zero.

 \implies Landau conditions for a pinch at k = 0 are satisfied.

However, note that the power counting does not give an IR divergence for $p^2 \neq 0$. Take $k^{\mu} \sim \lambda$ (i.e. all components scale as λ):

$$\implies \frac{[\lambda^4]}{[\lambda^2][1]} \sim \lambda^2$$

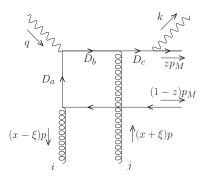
Other leading pinch surfaces?



Divergence obtained when $(x - \xi) p$ and $(1 - z) p_M$ lines become soft:

 \implies D_a becomes soft and D_b becomes collinear with respect to q.

Other leading pinch surfaces?

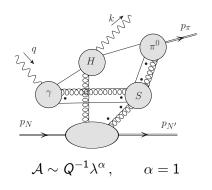


Divergence obtained when $(x - \xi) p$ and $(1 - z) p_M$ lines become soft:

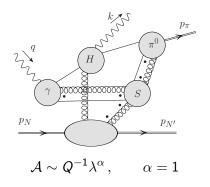
 $\implies D_a$ becomes soft and D_b becomes collinear with respect to q.

Is there a *leading* pinch diagram that corresponds to this region? *Yes!*

Other leading pinch surfaces?

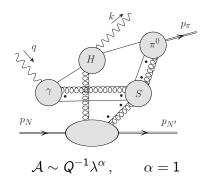


Other leading pinch surfaces?



⇒ power counting is the same as the collinear region!

Other leading pinch surfaces?



⇒ power counting is the same as the collinear region!

Note: Corresponding reduced diagram for quark GPD case is power suppressed.

▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$ar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$\bar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

Ultrasoft:
$$k \sim (\lambda^2, \lambda^2, \lambda^2)$$

Soft:
$$k \sim (\lambda, \lambda, \lambda)$$

$$\bar{n}$$
-coll. to n -coll. Glauber: $k \sim (\lambda^2, \lambda^2, \lambda)$

$$\bar{n}$$
-coll. to soft Glauber: $k \sim (\lambda, \lambda^2, \lambda)$

n-coll. to soft Glauber:
$$k \sim (\lambda^2, \lambda, \lambda)$$

▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$ar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

▶ Distinguish between *ultrasoft*, *soft* $(|k_{\perp}^2| \sim k^+k^-)$ and *Glauber* $(|k_{\perp}^2| \gg k^+k^-)$ gluons:

Ultrasoft:
$$k \sim (\lambda^2, \lambda^2, \lambda^2)$$

Soft: $k \sim (\lambda, \lambda, \lambda)$
 \bar{n} -coll. to n -coll. Glauber: $k \sim (\lambda^2, \lambda^2, \lambda)$
 \bar{n} -coll. to soft Glauber: $k \sim (\lambda, \lambda^2, \lambda)$
 n -coll. to soft Glauber: $k \sim (\lambda^2, \lambda, \lambda)$

▶ Libby-Sterman power counting formula: for *ultrasoft gluons* only.

▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$\bar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

$$\begin{array}{ll} \text{Ultrasoft:} & k \sim \left(\lambda^2, \lambda^2, \lambda^2\right) \\ \text{Soft:} & k \sim \left(\lambda, \lambda, \lambda\right) \\ \hline{\textit{n$$-coll. to n-coll. Glauber:}} & k \sim \left(\lambda^2, \lambda^2, \lambda\right) \\ \hline{\textit{n$$-coll. to soft Glauber:}} & k \sim \left(\lambda, \lambda^2, \lambda\right) \\ \\ \textit{n-coll. to soft Glauber:} & k \sim \left(\lambda^2, \lambda, \lambda\right) \end{array}$$

- ▶ Libby-Sterman power counting formula: for *ultrasoft gluons* only.
- ► However, these are typically suppressed due to *Ward identities*.

▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$\bar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

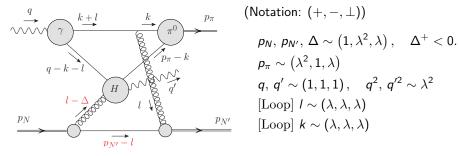
$$\begin{array}{ll} \text{Ultrasoft:} & k \sim \left(\lambda^2, \lambda^2, \lambda^2\right) \\ \text{Soft:} & k \sim \left(\lambda, \lambda, \lambda\right) \\ \bar{\textit{n}}\text{-coll. to } \textit{n}\text{-coll. Glauber:} & k \sim \left(\lambda^2, \lambda^2, \lambda\right) \\ & \bar{\textit{n}}\text{-coll. to soft Glauber:} & k \sim \left(\lambda, \lambda^2, \lambda\right) \\ & \textit{n}\text{-coll. to soft Glauber:} & k \sim \left(\lambda^2, \lambda, \lambda\right) \end{array}$$

- ▶ Libby-Sterman power counting formula: for *ultrasoft gluons* only.
- ► However, these are typically suppressed due to *Ward identities*.
- ► But *not* Glauber gluons!

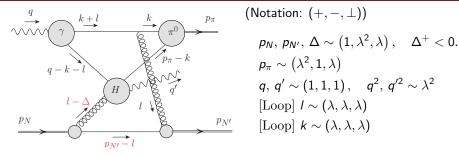
▶ Use Sudakov basis $(+, -, \bot)$ (set Q = 1 for simplicity):

$$\bar{n}$$
-coll.: $k \sim (1, \lambda^2, \lambda)$ n -coll.: $k \sim (\lambda^2, 1, \lambda)$

- ▶ Libby-Sterman power counting formula: for *ultrasoft gluons* only.
- ► However, these are typically suppressed due to *Ward identities*.
- But not Glauber gluons!
- ► Key Question: Is there a Glauber pinch that contributes at leading power?



Recall: Soft loop momenta r and k always need to be considered.



Recall: Soft loop momenta r and k always need to be considered.

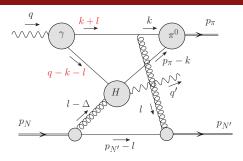
►
$$I^-$$
 pinch:

$$(I - \Delta)^2 + i0 = -2\Delta^+ I^- + \mathcal{O}(\lambda^2) + i0$$

$$\implies I^- = \mathcal{O}(\lambda^2) - i0.$$

$$(p_{N'} - I)^2 + i0 = -2p_{N'}^+ I^- + \mathcal{O}(\lambda^2) + i0$$

$$\implies I^- = \mathcal{O}(\lambda^2) + i0.$$



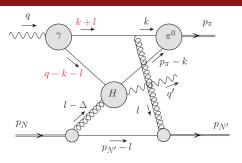
$$I^{+} \text{ pinch:}$$

$$(q - k - l)^{2} + i0 = -2q^{+}k^{-} - 2q^{-}l^{+} + \mathcal{O}(\lambda) + i0$$

$$\implies I^{+} = \mathcal{O}(\lambda) + i0.$$

$$(k + l)^{2} + i0 = 2l^{+}k^{-} + \mathcal{O}(\lambda^{2}) + i0$$

$$\implies I^{+} = \mathcal{O}(\lambda) - \operatorname{sgn}(k^{-})i0.$$



$$I^{+} \text{ pinch:}$$

$$(q - k - l)^{2} + i0 = -2q^{+}k^{-} - 2q^{-}l^{+} + \mathcal{O}(\lambda) + i0$$

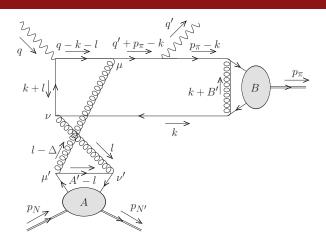
$$\implies I^{+} = \mathcal{O}(\lambda) + i0.$$

$$(k + l)^{2} + i0 = 2l^{+}k^{-} + \mathcal{O}(\lambda^{2}) + i0$$

$$\implies I^{+} = \mathcal{O}(\lambda) - \operatorname{sgn}(k^{-})i0.$$

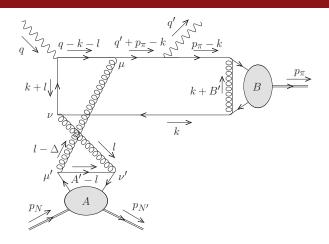
Conclusion: I^+ is pinched to be $\mathcal{O}(\lambda)$, and I^- is pinched to be $\mathcal{O}(\lambda^2)$. \Longrightarrow Glauber pinch, since $I^+I^- \ll |I_\perp|^2$.

Glauber pinch is leading



Explicit 2-loop analysis shows that the Glauber pinch demonstrated previously is leading, i.e. it scales as λ^{α} , with $\alpha=1$.

Glauber pinch is leading



Explicit 2-loop analysis shows that the Glauber pinch demonstrated previously is leading, i.e. it scales as λ^{α} , with $\alpha = 1$.

Glauber pinch persists for any routing of the loop momentum I

Exclusive double diffractive processes

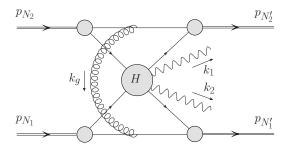
Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$p(p_{N_1}) + p(p_{N_2}) \longrightarrow p(p_{N'_1}) + p(p_{N'_2}) + \gamma(k_1) + \gamma(k_2)$$

Exclusive double diffractive processes

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$p(p_{N_1}) + p(p_{N_2}) \longrightarrow p(p_{N'_1}) + p(p_{N'_2}) + \gamma(k_1) + \gamma(k_2)$$

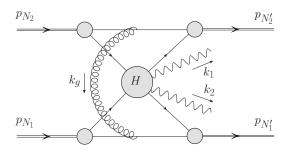


Here, the Glauber pinch corresponds to $k_g \sim \left(\lambda^2, \lambda^2, \lambda\right)$

Exclusive double diffractive processes

Very similar to the exclusive double diffractive process, where the Glauber gluon is pinched between the two pairs of incoming and outgoing collinear hadrons.

$$p(p_{N_1}) + p(p_{N_2}) \longrightarrow p(p_{N'_1}) + p(p_{N'_2}) + \gamma(k_1) + \gamma(k_2)$$



Here, the Glauber pinch corresponds to $k_g \sim (\lambda^2, \lambda^2, \lambda)$

Instead, in our case, the Glauber gluon (which corresponds to one of the active partons) is pinched between a pair of collinear hadrons, and a soft line joining the outgoing pion and the incoming photon.

► Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to *Glauber pinch* in the *gluon exchange channel*.

- ► Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to *Glauber pinch* in the *gluon exchange channel*.
- ▶ Direct calculation assuming collinear factorisation diverges already at leading order and leading twist.
- ▶ The same thing happens for the exclusive process $\pi^0 N \to N \gamma \gamma$.

- ► Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to *Glauber pinch* in the *gluon exchange channel*.
- ▶ Direct calculation assuming collinear factorisation diverges already at leading order and leading twist.
- ► The same thing happens for the exclusive process $\pi^0 N \to N \gamma \gamma$.
- ► Channels where 2-gluon exchanges are forbidden (π^{\pm}) and $\rho^{0,\pm}$ are safe from the effects discussed here.

- ► Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to *Glauber pinch* in the *gluon exchange channel*.
- ▶ Direct calculation assuming collinear factorisation diverges already at leading order and leading twist.
- ► The same thing happens for the exclusive process $\pi^0 N \to N \gamma \gamma$.
- ► Channels where 2-gluon exchanges are forbidden (π^{\pm}) and $\rho^{0,\pm}$ are safe from the effects discussed here.
- Factorisation breaking effects also expected to occur in specific channels that allow for 2-gluon exchanges in exclusive di-meson photoproduction: $\gamma N \to M_1 M_2 N'$. [ongoing]

- ► Collinear factorisation for the exclusive $\pi^0 \gamma$ photoproduction *fails* due to *Glauber pinch* in the *gluon exchange channel*.
- ▶ Direct calculation assuming collinear factorisation diverges already at leading order and leading twist.
- ► The same thing happens for the exclusive process $\pi^0 N \to N \gamma \gamma$.
- ► Channels where 2-gluon exchanges are forbidden (π^{\pm}) and $\rho^{0,\pm}$ are safe from the effects discussed here.
- ► Factorisation breaking effects also expected to occur in specific channels that allow for 2-gluon exchanges in exclusive di-meson photoproduction: $\gamma N \rightarrow M_1 M_2 N'$. [ongoing]
- ► Compute $\gamma N \rightarrow \gamma \pi^0 N$ in high-energy (k_T) factorisation. [ongoing]

Backup

BACKUP SLIDES

Consider the *triangle* integral, with *massless* internal lines:

$$I_2 = \lim_{\epsilon \to 0^+} \int d^4k \, \frac{1}{(k^2 + i\epsilon)((k - p_1)^2 + i\epsilon)((k + p_2)^2 + i\epsilon)}.$$

Again, Landau conditions predict the existence of a pinch at k = 0.

If $p_1^2 = m_1^2$ and $p_2^2 = m_2^2$, then the power counting predicts a *logarithmic divergence*:

$$\implies \frac{[\lambda^4]}{[\lambda^2][\lambda][\lambda]} \sim \lambda^0$$

This is of course the well-known soft singularity of triangle integrals, where the massless particle connects to two on-shell legs.

More about pinches Collinear pinch

Consider the bubble integral, with *massless* internal lines:

$$I_1(p^2) = \lim_{\epsilon \to 0^+} \int d^4k \, \frac{1}{(k^2 + i\epsilon)((p-k)^2 + i\epsilon)}.$$

We apply the Landau conditions:

$$k^{2} = 0,$$
 $p^{2} - 2p \cdot k = 0,$ $\alpha_{1}k + \alpha_{2}(k - p) = 0$
 $\alpha_{1}, \alpha_{2} \ge 0,$ $\alpha_{1} + \alpha_{2} > 0$

This implies

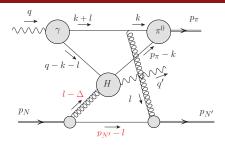
$$k^2 = 0,$$
 $p^2 - 2p \cdot k = 0,$ $k = \alpha p,$

where $1 \ge \alpha \ge 0$. This only has a solution if $p^2 = 0$. This is of course nothing but the well-known collinear singularity.

The power counting indicates a logarithmic divergence:

$$\implies \frac{[\lambda^4]}{[\lambda^2][\lambda^2]} \sim \lambda^0$$
, as expected

Non-analyticity in r^-

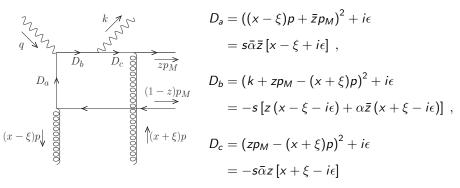


Start with $k \sim (\lambda_s, \lambda_s, \lambda_s)$, where $\lambda_s \ll 1$, but completely general wrt λ . Study pole in k^+ : $k^2 + i0 = 2k^+k^- - |k_\perp|^2 + i0,$ $\Longrightarrow k^+ = \mathcal{O}(\lambda_s) - \mathrm{sgn}(k^-) \, i0.$ $(p_\pi - k)^2 + i0 = -2p_\pi^-k^+ + \mathcal{O}(\max(\lambda^2, \lambda_s^2)) + i0,$

Non-analyticity at $k^-=0$, and k^+ pinched to be $\mathcal{O}(\lambda_s)$ for $\lambda_s \geq \lambda^2$, or k^+ pinched to be $\mathcal{O}(\lambda^2)$ for $\lambda_s < \lambda^2$

 $\implies k^+ = \mathcal{O}(\max(\lambda^2, \lambda_s^2)) + i0.$

Factorisation breaking effects in $\pi^0 \gamma$ photoproduction Gluon GPD contributions



 \implies pinching of poles in the propagators (D_a and D_b) in the limit of $z \to 1$