ALESSIA BONGALLINO Universidad del País Vasco

Resummation, Evolution, Factorization 2024

Based on

- arXiv:2409.18078v1 [hep-ph] A. Bacchetta, A.B., M. Cerutti, M. Radici, L. Rossi
- ➤ Work in progress, A.B., M. G. Echevarria, G. Schnell

HELICITY TMD AT NLO

eman ta zabal zazu

RECENT RESULTS ON HELICITY TMD

RECENT RESULTS ON HELICITY TMD

PARTON DISTRIBUTION FUNCTION $g_1(x, k_{\perp})$

Based on arXiv:2409.18078v1 [hep-ph], A. Bacchetta, **A.B.**, M. Cerutti, M. Radici, L. Rossi

RECENT RESULTS ON HELICITY TMD

PARTON DISTRIBUTION FUNCTION $g_1(x, k_{\perp})$

Based on arXiv:2409.18078v1 [hep-ph], A. Bacchetta, A.B., M. Cerutti, M. Radici, L. Rossi

Alessia Bongallino

FRAGMENTATION FUNCTION $G_1(z, k_{\parallel})$

Work in progress, A.B., M. G. Echevarria, G. Schnell

HELICITY PDF g_1

Collinear component $g_1(x)$ is well known

 $g_1^q(x) = q^+ - q^-$

J. J. Ethier and E. R. Nocera, Ann. Rev. Nucl. Part. Sci. 70, 43 (2020)

Alessia Bongallino

+ How the polarization of the proton reflects on its internal structure?

HELICITY TMD PDF g1

Alessia Bongallino

HELICITY TMD PDF g_1

$g_1^q(x, \mathbf{k}_\perp) = q^+ - q^-$

Alessia Bongallino

HELICITY TMD PDF g_1

$g_1^q(x, \mathbf{k}_\perp) = q^+ - q^-$

Alessia Bongallino

HELICITY TMD PDF g1

$g_1^q(x, \mathbf{k}_\perp) = q^+ - q^-$

- How the polarization of the proton reflects on its internal structure in 3 dimensions?
- How the polarization of the quark distorts their transverse momentum?
- Do quarks with spin parallel to the proton's spin have smaller or larger transverse momentum?

HELICITY EXTRACTION: PROCESS AND OBSERVABLE

Analysis of longitudinally polarized process

HELICITY EXTRACTION: PROCESS AND OBSERVABLE

Analysis of longitudinally polarized process

SIDIS $\ell^{\rightleftharpoons}(l) + N^{\leftrightarrows}(P) \to \ell(l') + h(P_h) + X$

A. Bacchetta et al., Phys.Rev.D 70 (2004), 117504

HELICITY EXTRACTION: PROCESS AND OBSERVABLE

Analysis of longitudinally polarized process

SIDIS $\ell^{\rightleftharpoons}(l) + N^{\leftrightarrows}(P) \to \ell(l') + h(P_h) + X$

A. Bacchetta et al., Phys.Rev.D 70 (2004), 117504

Alessia Bongallino

DOUBLE SPIN ASYMMETRY

$$A_1 = \frac{d\sigma^{\rightarrow \leftarrow} - d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} - d\sigma^{\leftarrow \leftarrow}}{d\sigma^{\rightarrow \leftarrow} + d\sigma^{\rightarrow \rightarrow} + d\sigma^{\leftarrow \rightarrow} + d\sigma^{\leftarrow \leftarrow}}$$

M. Diehl and S. Sapeta, Eur. Phys. J. C 41, 515 (2005)

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

Invariant mass Q of exchanged γ^* is the hard scale of the process Power corrections of the type P_{hT}^2/Q^2 , P_{hT}^2/z^2Q^2 , M_h^2/Q^2 are neglected

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

Invariant mass Q of exchanged γ^* is the hard scale of the process Power corrections of the type P_{hT}^2/Q^2 , P_{hT}^2/z^2Q^2 , M_h^2/Q^2 are neglected

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q) \hat{D}_{1}^{a \to h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

Invariant mass Q of exchanged γ^* is the hard scale of the process Power corrections of the type P_{hT}^2/Q^2 , P_{hT}^2/z^2Q^2 , M_h^2/Q^2 are neglected

$$A_{1}(x, z, Q, |\mathbf{P}_{hT}|) = \frac{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{g}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q, \hat{D}_{1}^{a}) \hat{h}(z, |\mathbf{b}_{T}|^{2}, Q)}{\sum_{a=q,\bar{q}} e_{a}^{2} \int_{0}^{+\infty} d|\mathbf{b}_{T}|^{2} J_{0}\left(\frac{|\mathbf{b}_{T}||\mathbf{P}_{hT}|}{z}\right) \hat{f}_{1}^{a}(x, |\mathbf{b}_{T}|^{2}, Q, \hat{D}_{1}^{a}) \hat{h}(z, |\mathbf{b}_{T}|^{2}, Q)}$$

Invariant mass Q of exchanged γ^* is the hard scale of the process Power corrections of the type P_{hT}^2/Q^2 , P_{hT}^2/z^2Q^2 , M_h^2/Q^2 are neglected

Alessia Bongallino

The evolution of the TMDs follows the CSS approach consistently: J. C. Collins, Foundations of perturbative QCD

 $\hat{f}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^f \otimes f_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) f_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \\ \hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \right]$

J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B 250, 199 (1985)

The evolution of the TMDs follows the CSS approach consistently: J. C. Collins, Foundations of perturbative QCD

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q)\right]$$

Analogously for $D_1(z, |\boldsymbol{b}_T|^2, Q)$.

Alessia Bongallino

J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B 250, 199 (1985)

 $b_T|^2) f_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$ $b_T|^2) g_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$

The evolution of the TMDs follows the CSS approach consistently: J. C. Collins, Foundations of perturbative QCD

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q)\right]$$

Analogously for $D_1(z, |\boldsymbol{b}_T|^2, Q)$.

Alessia Bongallino

J. C. Collins, D. E. Soper, and G. F. Sterman, Nucl. Phys. B 250, 199 (1985)

 $b_T|^2) f_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$ $b_T|^2) g_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$

MAPTMD22

A. Bacchetta et al., JHEP 10 (2022), 127

8

The evolution of the TMDs follows the CSS approach **consistently**: J. C. Collins, Foundations of perturbative QCD

 $\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = [C^{f} \otimes f_{1}](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_{T}|^{2}))f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$ $\hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = C^{g} \otimes g_{1}](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}))g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$

Analogously for $D_1(z, |\boldsymbol{b}_T|^2, Q)$.

Known only up to NLO D. Gutiérrez-Reyes et al., Phys. Lett. B 769, 84 (2017)

Alessia Bongallino

J. C. Collins, D. E. Soper, and G. terman, Nucl. Phys. B 250, 199 (1985)

MAPT

A. Bacchetta et al., JHEP 10 (2022), 127

8

Choice of the collinear sets:

$\hat{f}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^f \otimes f_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) f_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \\ \hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \right]$

Choice of the collinear sets:

Alessia Bongallino

$\hat{f}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^f \bigotimes f_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) f_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \\ \hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \bigotimes g_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)} \right]$

Choice of the collinear sets:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \begin{bmatrix} C^{f} \bigotimes f_{1} \end{bmatrix} (x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \\ \hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \begin{bmatrix} C^{g} \bigotimes g_{1} \end{bmatrix} (x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \end{bmatrix}$$

Same datasets as MAPTMD22 for unpolarized collinear functions

 $\bullet f_1(x) \to MMHT2014 \text{ set } L.A. Harland-Lang et$ al., Eur.Phys.J.C 75

D. de Florian, et al., *Phys. Rev. D* 91 (2015) 014035 $\star D_1(z) \rightarrow \text{DSS14},$

DSS17 sets D. de Florian, et al., Phys. Rev. D 95 (2017) 094019

Choice of the collinear sets:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_{T}|^{2}))f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$$
$$\hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_{T}|^{2}))g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}$$

Same datasets as MAPTMD22 for unpolarized collinear functions

 $f_1(x) \rightarrow MMHT2014 \text{ set } L.A. Harland-Lang et$ al., Eur.Phys.J.C 75

D. de Florian, et al., *Phys. Rev. D* 91 (2015) 014035 $\bullet D_1(z) \rightarrow \text{DSS14},$

DSS17 sets D. de Florian, et al., Phys. Rev. D 95 (2017) 094019

Choice of the collinear sets:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}))f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \\ \hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}))g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \right]$$

Same datasets as MAPTMD22 for unpolarized collinear functions

 $\bullet f_1(x) \to MMHT2014 \text{ set } L.A. Harland-Lang et$ al., Eur.Phys.J.C 75

D. de Florian, et al., *Phys. Rev. D* 91 (2015) 014035 $\bullet D_1(z) \rightarrow \text{DSS14},$

DSS17 sets D. de Florian, et al., Phys. Rev. D 95 (2017) 094019

Choice of the collinear sets:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}))f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \\ \hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}))g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \right]$$

Same datasets as MAPTMD22 for unpolarized collinear functions

 $f_1(x) \rightarrow MMHT2014 \text{ set } L.A. Harland-Lang et$ al., Eur.Phys.J.C 75

D. de Florian, et al., *Phys. Rev. D* 91 (2015) 014035 $\bullet D_1(z) \rightarrow \text{DSS14},$

DSS17 sets D. de Florian, et al., Phys. Rev. D 95 (2017) 094019

$g_1(x) \rightarrow$ NNPDFpol1.1 set

E. R. Nocera et al. (NNPDF), Nucl. Phys. B 887, 276 (2014)

Parameterization of the nonperturbative part:

 $\hat{f}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^f \otimes f_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) f_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_{b_\star}^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}$ $\hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1\right](x, \boldsymbol{b}_{\star}(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) \ e^{S(\mu_{b_{\star}}^2, Q^2)} \ e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}$

Parameterization of the nonperturbative part:

$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}) (f_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \\ \hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})} \\ \end{pmatrix}$

MAPTM

A. Bacchetta et al., JHEP 10 (2022), 127

Parameterization of the nonperturbative part:

$$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2}, Q)\right]$$

$$f_{NP}^{MAP22}(x,k_{\perp}^2,Q_0) = \frac{\exp\left(-\frac{k_{\perp}^2}{g_{1A}(x)}\right) + k_{\perp}^2\lambda^2 \exp\left(-\frac{k_{\perp}^2}{g_{1A}(x)}\right)}{\pi\left(g_{1A}(x) + \lambda^2 g_{1B}(x)\right)}$$

$$g_{\{1A,1B,1C\}}(x) = N_{\{1,2,3\}} \frac{(1-x)^{\alpha_{\{1,2,3\}}^2} x^{\sigma_{\{1,2,3\}}}}{(1-\hat{x})^{\alpha_{\{1,2,3\}}^2} \hat{x}^{\sigma_{\{1,2,3\}}}}$$

Alessia Bongallino

 $b_T |^2) (f_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_*}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$ $b_T |^2)) g_{NP}(x, |b_T|^2, Q_0) e^{S(\mu_{b_*}^2, Q^2)} e^{g_K(b_T) \ln(Q^2/Q_0^2)}$

 $-\frac{k_{\perp}^2}{g_{1B}(x)}\right) + \lambda_2^2 \exp\left(-\frac{k_{\perp}^2}{g_{1C}(x)}\right)$ $(x)^2 + \lambda_2^2 g_{1C}(x)$

MAPTMD22

A. Bacchetta et al., JHEP 10 (2022), 127

Parameterization of the nonperturbative part:

$\hat{f}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{f} \otimes f_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) \left[f_{NP}^{MAP22}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}\right]$ $\hat{g}_{1}(x, |\boldsymbol{b}_{T}|^{2}, Q) = \left[C^{g} \otimes g_{1}\right](x, b_{\star}(|\boldsymbol{b}_{T}|^{2})) g_{NP}(x, |\boldsymbol{b}_{T}|^{2}, Q_{0}) e^{S(\mu_{b_{\star}}^{2}, Q^{2})} e^{g_{K}(\boldsymbol{b}_{T})\ln(Q^{2}/Q_{0}^{2})}\right]$

MAPTM

A. Bacchetta et al., JHEP 10 (2022), 127

Parameterization of the nonperturbative part:

 $\hat{f}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^f \otimes f_1\right](x, b_\star(|\boldsymbol{b}_T|^2)) f_{NP}^{MAP22}(x, |\boldsymbol{b}_T|^2, Q_0) e^{S(\mu_b^2, Q^2)} e^{g_K(\boldsymbol{b}_T)\ln(Q^2/Q_0^2)}\right]$ $\hat{g}_1(x, |\boldsymbol{b}_T|^2, Q) = \left[C^g \otimes g_1 \right](x, b_\star(|\boldsymbol{b}_T|^2)) g_{NP}(x, |\boldsymbol{b}_T|^2, Q_0) \ e^{S(\mu_{b_\star}^2, Q^2)} \ e^{g_K(\boldsymbol{b}_T) \ln(Q^2/Q_0^2)}$

 $g_{NP}(x, k_{\perp}^2, Q_0) = f_{NP}^{MAP22}(x, k_{\perp}^2, Q_0)$ $K_{norm}(x)$

 $g_{NP}(x, k_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, k_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{x_{\perp}}{\omega_{1}(x)}}}{k_{norm}(x)}$

 $g_{NP}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$

 $g_{NP}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$

Alessia Bongallino

Proportional to *f*^{MAP22}_{NP}
x-dependent

$g_{NP}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$

$$k_{norm}(x) \to \int d^2 k_{\perp} g_{NP} = 1$$

Alessia Bongallino

Proportional to *f*^{MAP22}_{NP}
 x-dependent

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

$$k_{norm}(x) \to \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$

Alessia Bongallino

► Proportional to f_{NP}^{MAP22}

► x-dependent

$$g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$$

$$k_{norm}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

Alessia Bongallino

► Proportional to f_{NP}^{MAP22}

► x-dependent

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ x-dependent}$

$$k_{norm}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

 $\frac{g_1(x, k_{\perp}^2, Q_0)}{f_1(x, k_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}$

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ x-dependent}$

$$k_{norm}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)}$

$$k_{norm}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

Alessia Bongallino

► Proportional to f_{NP}^{MAP22}

► x-dependent

 $\stackrel{|k_{\perp}| \to 0}{\longrightarrow} \infty$ $\frac{g_1(x, k_{\perp}^2, Q_0)}{f_1(x, k_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

 $\frac{g_1(x, \boldsymbol{k}_{\perp}^2, Q_0)}{f_1(x, \boldsymbol{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

 $\frac{g_1(x, \mathbf{k}_{\perp}^2, Q_0)}{f_1(x, \mathbf{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

 $\frac{g_1(x, k_{\perp}^2, Q_0)}{f_1(x, k_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

$\omega_1(x) \to \infty \implies g_1 \simeq f_1$

 $\frac{g_1(x, k_{\perp}^2, Q_0)}{f_1(x, k_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

$\omega_1(x) \rightarrow 0 \implies$ Positivity broken

 $\frac{g_1(x, k_{\perp}^2, Q_0)}{f_1(x, k_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}{k_{norm}(x)}$

Alessia Bongallino

Ratio taken from our fit

REF2024

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ x-dependent}$

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ x-dependent}$

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{1}{k_{norm}(x)} \le 1$$

 $g_{NP}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, \mathbf{k}_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ x-dependent}$

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{1}{k_{norm}(x)} \le 1$$

 $g_{NP}(x, k_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, k_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\blacktriangleright \text{ roportional to } f_{NP}^{MAP22}$

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{1}{k_{norm}(x)} \le 1$$

$$\frac{g_1(x, \mathbf{k}_{\perp}^2, Q_0)}{f_1(x, \mathbf{k}_{\perp}^2, Q_0)} = \frac{g_1(x, Q_0)}{f_1(x, Q_0)} \underbrace{e^{-\frac{k_{\perp}^2}{\omega_1(x)}}}_{k_{norm}(x)} \xrightarrow{|\mathbf{k}_{\perp}| \to 0} \infty$$

$$\omega_1(x) = f_{pos.}(x) + N_{1g}^2 \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $g_{NP}(x, k_{\perp}^{2}, Q_{0}) = f_{NP}^{MAP22}(x, k_{\perp}^{2}, Q_{0}) \frac{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}{k_{norm}(x)} \rightarrow \text{Proportional to } f_{NP}^{MAP22}$ $\Rightarrow \text{ Arrow and the set of } x - \text{dependent}$

$$k_{\text{norm}}(x) \rightarrow \int d^2 k_{\perp} g_{NP} = 1$$

 $\omega_1(x) \rightarrow \text{crucial to satisfy } |g_1| \leq f_1$
At $Q_0 = 1$ GeV, the ratio g_1/f_1 reads:

$$\frac{g_1(x, Q_0)}{f_1(x, Q_0)} \frac{1}{k_{norm}(x)} \le 1$$

$$g_{1}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0}) = \frac{g_{1}(x, Q_{0})}{f_{1}(x, \boldsymbol{k}_{\perp}^{2}, Q_{0})} = \frac{g_{1}(x, Q_{0})}{f_{1}(x, Q_{0})} \underbrace{e^{-\frac{k_{\perp}^{2}}{\omega_{1}(x)}}}_{k_{norm}(x)} \xrightarrow{|\boldsymbol{k}_{\perp}| \to 0} \infty$$

$$\omega_1(x) = f_{pos.}(x) + N_{1g}^2 \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

$$\omega_1(x) = f_{pos.}(x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $\omega_1(x) = f_{pos.}(x)$

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $\omega_1(x) = f_{pos.}(x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$

 $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$

 $\omega_1(x) = f_{pos.}(x)$

+ $f_{pos.}(x)$ guarantees the positivity bound

Alessia Bongallino

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

ty bound $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$

 $\omega_1(x) = f_{pos.}(x)$

+ $f_{pos.}(x)$ guarantees the positivity bound

• at TMD level

Alessia Bongallino

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

ty bound $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$

 $\omega_1(x) = f_{pos.}(x)$

+ $f_{pos.}(x)$ guarantees the positivity bound

- at TMD level
- for all values of x in the analysed range

Alessia Bongallino

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$

 $\omega_1(x) = f_{pos.}(x)$

+ $f_{pos.}(x)$ guarantees the positivity bound

- at TMD level
- for all values of x in the analysed range

Alessia Bongallino

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

 $f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$

 $10^{-4} \le x \le 0.7$

 $\omega_1(x) = f_{pos.}(x)$

+ $f_{pos.}(x)$ guarantees the positiv

- at TMD level
- for all values of x in the analysed range

+ N_{1g} , α_{1g} , σ_{1g} are the free parameters of the fit, $\hat{x} = 0.1$.

Alessia Bongallino

$$x) + N_{1g} \frac{(1-x)^{\alpha_{1g}^2} x^{\sigma_{1g}}}{(1-\hat{x})^{\alpha_{1g}^2} \hat{x}^{\sigma_{1g}}}$$

vity bound
$$f_{pos.}(x) \approx c + h^2 e^{-\frac{(x-\mu)^2}{\sigma^2}}$$

 $10^{-4} \le x \le 0.7$

RESULTS

Alessia Bongallino

DATASET

REF2024

KINEMATICAL CUTS

Alessia Bongallino

DATASET

KINEMATICAL CUTS Applicability of perturbation theory $Q \gg \Lambda_{QCD}$ $Q > 1.4 { m GeV}$

Alessia Bongallino

DATASET

KINEMATICAL CUTS• Applicability of perturbation theory
 $Q \gg \Lambda_{QCD}$ $Q \gg \Lambda_{QCD}$ • TMD region $|P_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$
 $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$

KINEMATICAL CUTS Applicability of perturbation theory $Q \gg \Lambda_{QCD}$ Q > 1.4 GeV+ TMD region $|\mathbf{P}_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$ $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ + SIDIS fragmentation region 0.2 < z < 0.7

KINEMATICAL CUTS Applicability of perturbation theory $Q \gg \Lambda_{QCD}$ Q > 1.4 GeV+ TMD region $|\mathbf{P}_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$ $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ + SIDIS fragmentation region 0.2 < z < 0.7 as MAPTMD22 analysis

KINEMATICAL CUTS Applicability of perturbation theory $Q > 1.4 { m GeV}$ $Q \gg \Lambda_{QCD}$ + TMD region $|\mathbf{P}_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$ $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ + SIDIS fragmentation region 0.2 < z < 0.7 as MAPTMD22 analysis - Consistency with f_1 , D_1 - TMD factorization conditions fulfilled

KINEMATICAL CUTS Applicability of perturbation theory $Q > 1.4 \,\,{\rm GeV}$ $Q \gg \Lambda_{OCD}$ + TMD region $|\mathbf{P}_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$ $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ + SIDIS fragmentation region 0.2 < z < 0.7as MAPTMD22 analysis - Consistency with f_1 , D_1 - TMD factorization conditions fulfilled

Alessia Bongallino

INCLUDED HERMES Collaboration SIDIS data

A. Airapetian et al. (HERMES), Phys. Rev. D 99, 112001 (2019)

KINEMATICAL CUTS Applicability of perturbation theory $Q > 1.4 \,\,{\rm GeV}$ $Q \gg \Lambda_{OCD}$ + TMD region $|\mathbf{P}_{hT}| < \min[\min[c_1Q, c_2zQ] + c_3 \text{ GeV}, zQ]$ $c_1 = 0.2, c_2 = 0.5, c_3 = 0.3$ + SIDIS fragmentation region 0.2 < z < 0.7as MAPTMD22 analysis - Consistency with f_1 , D_1 TMD factorization conditions fulfilled

Alessia Bongallino

► HERMES Collaboration SIDIS data

A. Airapetian et al.
(HERMES), Phys.
Rev. D 99, 112001
(2019)

NOT INCLUDED

- COMPASS Collaboration deuteron target data
- ► CLAS6 Collaboration data

REF2024

Nanga Parbat: a TMD fitting framework

Alessia Bongallino

FITTING FRAMEWORK

https://github.com/MapCollaboration/NangaParbat

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^{-})$	53	0.86	0.86
Total	291	1.11	1.09

Alessia Bongallino

FITTING FRAMEWORK

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NN}$
HERMES $(d \to \pi^+)$	47	1.34	
HERMES $(d \rightarrow \pi^{-})$	47	1.10	
$ \text{HERMES } (d \to K^+) $	46	1.26	
$ \text{HERMES } (d \to K^-) $	45	0.93	(
HERMES $(p \to \pi^+)$	53	1.17	
HERMES $(p \rightarrow \pi^{-})$	53	0.86	
Total	291	1.11	

FITTING FRAMEWORK

✤ 291 fitted data points

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

REF2024

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NN}$
HERMES $(d \to \pi^+)$	47	1.34	
HERMES $(d \rightarrow \pi^{-})$	47	1.10	
$ \text{HERMES } (d \to K^+) $	46	1.26	
$ \text{HERMES } (d \to K^-) $	45	0.93	(
HERMES $(p \to \pi^+)$	53	1.17	
HERMES $(p \rightarrow \pi^{-})$	53	0.86	
Total	291	1.11	

FITTING FRAMEWORK

- ✤ 291 fitted data points
- Perturbative order: NLO

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

REF2024

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \rightarrow \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^{-})$	53	0.86	0.86
Total	291	1.11	1.09

FITTING FRAMEWORK

Highest possible since C^g known up to NLO

✤ 291 fitted data points

Perturbative order: NLO

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

REF2024

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

FITTING FRAMEWORK

Highest possible since C^g known up to NLO

- + 291 fitted data points
- Perturbative order: NLO
- Perturbative accuracy: NLL & N2LL

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

FITTING FRAMEWORK

Highest possible since C^g known up to NLO

- + 291 fitted data points
- Perturbative order: NLO
- Perturbative accuracy: NLL & N2LL
- ✤ 3 fitted parameters

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

REF2024

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

FITTING FRAMEWORK

Highest possible since C^g known up to NLO

- ✤ 291 fitted data points
- Perturbative order: NLO
- Perturbative accuracy: NLL & N2LL
- ✤ 3 fitted parameters
- Error analysis with bootstrap method

Parameters	N_{1g}	$lpha_{1g}$	σ_{1g}
NLL	0.70 ± 0.54	27.81 ± 27.70	0.42 ± 0.86
NNLL	0.87 ± 0.72	6.73 ± 6.58	3.04 ± 3.09

REF2024

REPLICA METHOD

$f_1(x) \rightarrow MMHT2014 \text{ set}, D_1(z) \rightarrow DSS14, DSS17 \text{ sets}$ $g_1(x) \rightarrow NNPDFpol1.1: 100 \text{ MC} \text{ members}$

Alessia Bongallino

REPLICA METHOD

Alessia Bongallino

 $f_1(x) \rightarrow MMHT2014$ set, $D_1(z) \rightarrow DSS14$, DSS17 sets $g_1(x) \rightarrow$ **NNPDFpol1.1**: 100 MC members

- 100 replicas of A_1 data points to be fitted
- **i-th replica** of $g_1(x)$ and the extracted g_1 TMD associated with the same replica of unpolarized TMDs

REPLICA METHOD

Alessia Bongallino

 $f_1(x) \rightarrow MMHT2014$ set, $D_1(z) \rightarrow DSS14$, DSS17 sets $g_1(x) \rightarrow$ **NNPDFpol1.1**: 100 MC members

- 100 replicas of A_1 data points to be fitted
- **i-th replica** of $g_1(x)$ and the extracted g_1 TMD associated with the same replica of unpolarized TMDs

Uncertainty of extracted collinear PDF propagated onto TMD's uncertainty

EXTRACTION OF THE HELICITY TMD

Alessia Bongallino

RATIO PLOT AT NNLL

Alessia Bongallino

 $Q = 1 {
m ~GeV}$

x = 0.1

0.250.250.500.750.00 0.500.75 $|k_{\perp}| \; [{
m GeV}]$ $|k_{\perp}| \; [{
m GeV}]$

REF2024

x = 0.3

RATIO PLOT AT NNLL

Alessia Bongallino

 $Q = 1 \; {
m GeV}$

x = 0.1

0.250.500.750.00 0.250.500.75 $|k_{\perp}| \; [{
m GeV}]$ $|k_{\perp}| \; [{
m GeV}]$

REF2024

x = 0.3

RATIO PLOT AT NNLL

Alessia Bongallino

REF2024

COMPARISON WITH LATTICE

B. U. Musch et al., Phys. Rev. D 83, 094507 (2011)

Alessia Bongallino

- + g_1/f_1 TMD ratio for u_v integrated over x , at NNLL
- Yellow and blue bands correspond to two lattice predictions
- Milder slope but fair agreement

THEORY COMPARISON

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\left \chi^2_{ m NNLL}/N_{ m o} ight $
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \to K^-)$	45	0.93	0.89
HERMES $(p \rightarrow \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

Experiment	$N_{ m dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m c}$
HERMES $(d \rightarrow \pi^+)$	47	1.34	1.30
HERMES $(d \rightarrow \pi^{-})$	47	1.10	1.08
HERMES $(d \to K^+)$	46	1.26	1.25
HERMES $(d \rightarrow K^{-})$	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \rightarrow \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

Largest χ^2 are obtained for π^+ channels (observed also in MAPTMD22 extraction)

due to smaller exp. uncertainties

Alessia Bongallino

REF2024

At small- b_T :

 $G_{1,f \to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f \to f'}(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1,f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$

Alessia Bongallino

M. G. Echevarria et al., JHEP 09 (2016), 004

At small- b_T :

At NLO:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to N}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) - \frac{G_{1, f \to N}^{[1]}(z, \mu, \zeta)}{7^{2-2\varepsilon}}$

Alessia Bongallino

 $G_{1,f \to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f \to f'}(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1,f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$

M. G. Echevarria et al., JHEP 09 (2016), 004

At small-
$$b_T$$
:
 $G_{1,f \to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f \to f'}(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1,f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$

At NLO:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to T}^{[1]}$

Explicitating the relation of the TMD with the unsubtracted*:

$$\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to f'}^{un\,[1]}(z, \mathbf{b}_T; \mu, \zeta) - \frac{S^{[1]}G_{1, f \to f'}^{un\,[0]}}{2} + (Z_{ren.}^{[1]} - Z_{wfr}^{[1]})G_{1, f \to f'}^{un\,[0]} - \frac{G_{1, f \to f'}^{[1]}(z, \mu, \zeta)}{z^{2-2\varepsilon}}$$

Alessia Bongallino

$${}_{N}(z, \mathbf{b}_{T}; \boldsymbol{\mu}, \boldsymbol{\zeta}) - \frac{G_{1, f \to N}^{[1]}(z, \boldsymbol{\mu}, \boldsymbol{\zeta})}{z^{2-2\varepsilon}}$$

*only for $g \to g, q \to q$

At small- b_T : $G_{1,f\to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f\to f'}(z)$

At NLO:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to I}^{[1]}$

Explicitating the relation of the TMD with the unsubtracted*:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to f'}^{un [1]}(z, \mathbf{b}_T; \mu, \zeta) - \frac{S}{-1}$

Fixes rapidity $\frac{\delta^+}{\ln \frac{1}{p^+}}$

Alessia Bongallino

$$(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1, f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$$

$${}_{N}(z, \mathbf{b}_{T}; \boldsymbol{\mu}, \boldsymbol{\zeta}) - \frac{G_{1, f \to N}^{[1]}(z, \boldsymbol{\mu}, \boldsymbol{\zeta})}{z^{2-2\varepsilon}}$$

$$\frac{G^{[1]}G^{un\,[0]}_{1,\,f\to f'}}{2} + (Z^{[1]}_{ren.} - Z^{[1]}_{wfr})G^{un\,[0]}_{1,\,f\to f'} - \frac{G^{[1]}_{1,\,f\to f'}(z,\mu,\zeta)}{z^{2-2\varepsilon}}$$

*only for $g \to g, q \to q$

At small- b_T : $G_{1,f\to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f\to f'}(z)$

At NLO:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to I}^{[1]}$

Explicitating the relation of the TMD with the unsubtracted*:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to f'}^{un [1]}(z, \mathbf{b}_T; \mu, \zeta) - \frac{S^{un [1]}}{-1}$

Fixes rapidity $\ln \frac{\delta^+}{p^+}$ divergence

Alessia Bongallino

$$(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1, f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$$

$${}_{N}(z, \mathbf{b}_{T}; \boldsymbol{\mu}, \boldsymbol{\zeta}) - \frac{G_{1, f \to N}^{[1]}(z, \boldsymbol{\mu}, \boldsymbol{\zeta})}{z^{2-2\varepsilon}}$$

$$\frac{G_{1,f\rightarrow f'}^{[1]}G_{1,f\rightarrow f'}^{un\,[0]}}{2} + (Z_{ren.}^{[1]} - Z_{wfr}^{[1]})G_{1,f\rightarrow f'}^{un\,[0]} - \frac{G_{1,f\rightarrow f'}^{[1]}(z,\mu,\zeta)}{z^{2-2\varepsilon}}$$

Fixes
UV div.
$$sonly for $g \rightarrow g, q$$$

At small- b_T : $G_{1,f\to N}(z, \mathbf{b}_T; \mu, \zeta) = \sum_{f'} \mathscr{C}_{f\to f'}(z)$

At NLO:

 $\mathscr{C}_{f \to f'}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = G_{1, f \to I}^{[1]}$

Explicitating the relation of the TMD with the unsubtracted*:

Fixes rapidity divergence

Alessia Bongallino

$$(z, \mathbf{b}_T; \mu, \zeta, \mu_b) \otimes \frac{G_{1, f' \to N}(z, \mu_b)}{z^{2-2\varepsilon}} + \mathcal{O}(\mu b_T)$$

M. G. Echevarria et al., JHEP 09 (2016), 004

$${}_{N}(z, \mathbf{b}_{T}; \mu, \zeta) - \frac{G_{1, f \to N}^{[1]}(z, \mu, \zeta)}{z^{2-2\varepsilon}}$$

HELICITY TMD FF AT NLO

Alessia Bongallino

Lorentz structures

 $\Gamma = \gamma^{+} \gamma_{5}$ $\Gamma^{\mu\nu} = i\epsilon_{T}^{\mu\nu} \equiv i\epsilon^{+-\mu\nu}$

Scheme choice

 $i\epsilon_T^{\alpha\beta}$ $(\gamma^+\gamma_5)_{Larin^+}$ $\gamma^+ \gamma_{\alpha} \gamma_{\beta}$

D. Gutiérrez-Reyes, et al., Phys. Lett. B 769, 84 (2017)

$$\mathscr{C}_{q \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{2z}{(1-z)_+} + (1-z) \right) + 2(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

$$\mathscr{C}_{q \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2-z) - 4 \right)$$

$$\mathscr{C}_{g \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{T_r \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2z - 1) + 4z \right)$$

$$\mathscr{C}_{g \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_A \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{1+z}{(1-z)_+} + (3-4z) \right) - 8(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

Alessia Bongallino

 $4(1-z)\big)$

 $4(1-z)\big)$

$$\mathscr{C}_{q \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{2z}{(1-z)_+} + (1-z) \right) + 2(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

$$\mathscr{C}_{q \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2 - z) - 4 \right)$$

$$\mathscr{C}_{g \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{T_r \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2z - 1) + 4z \right)$$

$$\mathscr{C}_{g \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_A \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{1+z}{(1-z)_+} + (3-4z) \right) - 8(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

In agreement with D. Gutiérrez-Reyes et al., Phys. Lett. B 769, 84 (2017)

Alessia Bongallino

 $4(1-z)\Big)$

 $4(1-z)\big)$

$$\mathscr{C}_{q \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{2z}{(1-z)_+} + (1-z) \right) + 2(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

$$\mathscr{C}_{q \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2-z) - 4 \right)$$

$$\mathscr{C}_{g \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{T_r \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2z - 1) + 4z \right)$$

$$\mathscr{C}_{g \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_A \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{1+z}{(1-z)_+} + (3-4z) \right) - 8(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

In agreement with D. Gutiérrez-Reyes et al., Phys. Lett. B 769, 84 (2017)

via Gribov-Lipatov relation

Alessia Bongallino

 $4(1-z)\big)$

 $4(1-z)\big)$

$$\mathscr{C}_{q \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{2z}{(1-z)_+} + (1-z) \right) + 2(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

$$\mathscr{C}_{q \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_F \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2-z) - 4 \right)$$

$$\mathscr{C}_{g \to q}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{T_r \alpha_s}{4\pi} \frac{1}{z^2} \left(-2L_T (2z - 1) + 4z \right)$$

$$\mathscr{C}_{g \to g}^{[1]}(z, \mathbf{b}_T; \mu, \zeta) = \frac{C_A \alpha_s}{4\pi} \frac{1}{z^2} \left[-2L_T \left(\frac{1+z}{(1-z)_+} + (3-4z) \right) - 8(1-z) + \delta(1-z) \left(-L_T^2 + 2L_T l_\zeta - \zeta_2 \right) \right]$$

In agreement with D. Gutiérrez-Reyes et al., Phys. Lett. B 769, 84 (2017)

via Gribov-Lipatov relation

Alessia Bongallino

 $4(1-z)\Big)$

 $4(1-z)\big)$

$$\Delta_{f \to f'}(z, \delta) = \frac{-1}{z} N_{ff'} \Phi_{f \leftarrow f'}(z^{-1}, \delta)$$

M. G. Echevarria et al., JHEP 09 (2016), 004

$$N_{qq} = N_{gg} = 1$$

$$N_{qg} = -(1 - \epsilon) \frac{C}{T}$$

$$N_{gq} = \frac{-1}{1 - \epsilon} \frac{T_r}{C_F}$$

REF2024

CONCLUSIONS

CONCLUSIONS AND FUTURE IMPROVEMENTS

HELICITY TMD PDF

- First extraction of the helicity TMD PDF for quarks at NLO with numerator-denominator compatibility, reaching NNLL perturbative accuracy
- + Positivity constraint fulfilled by construction
- Helicity TMD shows a x-dependence and different behaviour from the unpolarized at large x
- Free parameters poorly constrained for limited size of the experimental dataset: new data will refine the model

HELICITY TMD FF

- First computation of the matching coefficients of the helicity TMD FF at NLO
- Phenomenological analysis in the TMD context can be done with data from Λ-production experiments (CC NOMAD, SIDIS COMPASS, HERMES, LEP)

BACKUP SLIDES

$$f_{NP}^{MAP22}(x,k_{\perp}^{2},Q_{0}) = \frac{\exp\left(-\frac{k_{\perp}^{2}}{g_{1A}(x)}\right) + k_{\perp}^{2}\lambda^{2}\exp\left(-\frac{k_{\perp}^{2}}{g_{1B}(x)}\right) + \lambda_{2}^{2}\exp\left(-\frac{k_{\perp}^{2}}{g_{1C}(x)}\right)}{\pi\left(g_{1A}(x) + \lambda^{2}g_{1B}(x)^{2} + \lambda_{2}^{2}g_{1C}(x)\right)}$$

The x-dependent gaussian widths are

$$g_{\{1A,1B,1C\}}(x) = N_{\{1,2,3\}} \frac{(1-x)^{\alpha_{\{1,2,3\}}^2} x^{\sigma_{\{1,2,3\}}}}{(1-\hat{x})^{\alpha_{\{1,2,3\}}^2} \hat{x}^{\sigma_{\{1,2,3\}}}}$$

Alessia Bongallino

4D PDF f_1

2,3}

,3}

Parameter	Average over replica
$g_2 [{ m GeV}]$	0.248 ± 0.008
$N_1 \; [\text{GeV}^2]$	0.316 ± 0.025
α_1	1.29 ± 0.19
σ_1	0.68 ± 0.13
$\lambda \; [{ m GeV}^{-1}]$	1.82 ± 0.29
$N_3 \; [{ m GeV}^2]$	0.0055 ± 0.0006
β_1	10.23 ± 0.29
δ_1	0.0094 ± 0.0012
γ_1	1.406 ± 0.084
$\lambda_F \; [{ m GeV}^{-2}]$	0.078 ± 0.011
$N_{3B} \ [{ m GeV}^2]$	0.2167 ± 0.0055
$N_{1B} \ [{ m GeV}^2]$	0.134 ± 0.017
$N_{1C} \ [{ m GeV}^2]$	0.0130 ± 0.0069
$\lambda_2 \; [{ m GeV}^{-1}]$	0.0215 ± 0.0058
α_2	4.27 ± 0.31
$lpha_3$	4.27 ± 0.13
σ_2	0.455 ± 0.050
σ_3	12.71 ± 0.21
β_2	4.17 ± 0.13
δ_2	0.167 ± 0.006
γ_2	0.0007 ± 0.0110

EXPRESSION OF THE $k_{norm}(x)$ **FACTOR**

 $k_{norm}(x) = w_1(x) \frac{\frac{g_{1A}(x)}{g_{1A}(x) + w_1(x)} + \lambda}{g_{1A}(x)}$

Alessia Bongallino

$$-\lambda^2 \frac{g_{1B}^2(x)w_1(x)}{(g_{1B}(x) + w_1(x))^2} + \lambda_2^2 \frac{g_{1C}(x)}{g_{1C}(x) + w_1(x)}$$
$$x) + \lambda^2 g_{1B}^2(x) + \lambda_2^2 g_{1C}(x)$$

$$\begin{aligned} Z_q^{[1]}(\mu,\zeta) &= \frac{\alpha_s C_F}{2\pi} \left(-\frac{1}{\varepsilon_{UV}^2} - \frac{1}{\varepsilon_{UV}} \left(2 + \ln\frac{\mu^2}{\zeta} \right) \right) \\ Z_g^{[1]}(\mu,\zeta) &= \frac{\alpha_s C_A}{2\pi} \left(-\frac{1}{\varepsilon_{UV}^2} - \frac{1}{\varepsilon_{UV}} \left(1 + \ln\frac{\mu^2}{\zeta} \right) \right) \end{aligned}$$

$$\begin{aligned} Z_2 &= \frac{\alpha_s C_F}{4\pi} \left(-\frac{1}{\varepsilon_{UV}} + \frac{1}{\varepsilon_{IR}} \right) \\ Z_3 &= \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon_{UV}} - \frac{1}{\varepsilon_{IR}} \right) \left(\frac{5}{3} C_A - \frac{4}{3} T_r n_f \right) \equiv \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon_{UV}} - \frac{1}{\varepsilon_{IR}} \right) 2 \left(\frac{\beta_0}{2} - C_A \right) \\ S^{[1]} &= \frac{\alpha_s C_F}{2\pi} \left[-\frac{2}{\varepsilon_{UV}^2} + \frac{2}{\varepsilon_{UV}} \ln\frac{\delta^+ \delta^-}{\mu^2} + L_T^2 + 2L_T \ln\frac{\delta^+ \delta^-}{\mu^2} + \frac{\pi^2}{6} \right] \\ & \ln(\delta^+ \delta^- / \mu^2) \to \ln\left(\frac{\delta^+}{\rho^+}\right)^2 \ln\left(\frac{\zeta}{\mu^2}\right) \end{aligned}$$

Alessia Bongallino

RENORMALIZATION CONSTANTS

UV

REF2024

δ -regularization

$$W_n(y) = P \exp\left[ig \int_{-\infty}^0 d\lambda \,\bar{n} \cdot A(y+\lambda\bar{n})e^{-\delta^+\lambda}\right] = P \int \frac{d^n k}{(2\pi)^n} e^{-iky} \frac{-g \,\bar{n}^\mu t^a}{k^+ - i\delta^+} \tilde{A}^a_\mu(k)$$

$$B_{n\perp}^{\mu} = \frac{1}{g} \left[W_n^{\dagger}(y) i D_{n\perp}^{\mu} W_n(y) \right] \qquad \qquad B_{n\perp}^{(0)\mu\nu}(k) = g_{\perp}^{\mu\nu} - \frac{k_{\perp}^{\mu} \bar{n}^{\nu}}{k^+ - i\delta}$$

QUARK AND GLUON FUNCTIONS

$$G_{q \to N}(z, \mathbf{b}_{\mathbf{T}}) = \frac{1}{4zN_c} \sum_{X} \frac{1}{2} \int \frac{d\xi^-}{2\pi} e^{-ip \cdot \xi/2z} < 0 \left| T \left[W_n^{T\dagger} q_j \right]_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 < X, N \right| \bar{T} \left[\bar{q}_i W_n^T \right]_a 0 \left| 0 > U \right| \right]_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 < X, N \right| \left| \bar{T} \left[\bar{q}_i W_n^T \right]_a \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 < X, N \right| \left| \bar{T} \left[\bar{q}_i W_n^T \right]_a \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 < X, N \right| \left| \bar{T} \left[\bar{q}_i W_n^T \right]_a \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 < X, N \right| \left| \bar{T} \left[\bar{q}_i W_n^T \right]_a \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left| X, N > \gamma_{ij}^+ \gamma_5 \right|_a \left(\xi \right) \left|_a \left(\xi \right) \right|_a \left(\xi \right) \right|_a \left(\xi \right) \left|_a \left(\xi \right) \right|_a \left(\xi \right) \right|_a \left(\xi \right) \left|_a \left(\xi \right) \right|_a \left$$

$$G_{g \to N}(z, \mathbf{b}_T) = \frac{-p^+ z^{-2}}{(d-2)(d-3)(N_c^2 - 1)} i\epsilon_{\mu\nu}^{\perp} \sum_X \frac{1}{2} \int \frac{d\xi^-}{2\pi} e^{-ip \cdot \xi/2z} < 0 | T \left[B_{n\perp}^{\mu} \right] \left(\xi \right) | X, N > < X, N | \bar{T} \left[B_{n\perp}^{\nu} \right] (0) | 0 \rangle$$

Alessia Bongallino

