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@ Diffraction in vA interactions: DIS or AA UPCs

Controlled by strong scattering = sensitive to unitarity corrections

e multiple scattering, gluon saturation

Large A > 1 and/or small 2p < 1: high gluon density, smallish o (Q;)

A
Q% (A, xp) ~ AY? (;) with A ~0.25
P

@ CGC effective theory: pQCD + all order resummations of high-density effects

For large virtuality and/or transverse momenta %, P? > Q%(A, zp)

o collinear (TMD) factorisation emerges from CGC calculations

@ Explicit expressions for the quark and gluon diffractive TMDs/PDFs

@ Transparent physical picture for the Pomeron
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Colour dipole picture

@ Factorisation scheme for DIS at small-z: saturation, higher order corrections
@ Start in the Breit frame: the target (p, A) is a left mover: Py > My

@ Large boost in the positive z direction: ultrarelativistic photon ¢ > Q
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@ The ¢g pair can now be seen as a part of the photon wavefunction

@ ~* fluctuates into a gq color dipole, which then scatters off the target

REF 2024, IPhT Saclay TMDs for diffractive jets in vA Edmond lancu



Collinear factorisation for diffractive jets

@ Elastic scattering = “Pomeron” exchange = rapidity gap: Yp = In lirp
e zp < 1: longitudinal momentum fraction taken by the Pomeron
@ Diffractive SIDIS: v* absorbed by a quark constituent of the Pomeron

@ Diffractive Dijets: photon-gluon fusion with a gluon from the Pomeron

o x < 1. splitting fraction w.r.t. the Pomeron

Py (I-we)Py. ~AL
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Collinear factorisation for diffractive jets

e Diffractive PDFs: zqp(x, zp, Q?), xGp(z,zp, P?)

@ Non-perturbative quantities, but DGLAP evolution with the hardest scale
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@ What is the nature/structure of the Pomeron ?
@ Can one predict the dependencies upon xp, or = 7

@ Or the K| -distribution of the measured jet/hadron in diff-SIDIS 7

@ Or the momentum imbalance K | between the two jets in diff-Dijets ?
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Colour dipole picture

@ The would-be Pomeron constituents now belong to the photon wavefunction

@ The Pomeron: Elastic scattering in the ¢t-channel

e 2 (or more) gluon exchanges in a colour-singlet state
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@ Large rapidity phase-space Yp = In Eiw for the high energy evolution
e JIMWLK evolution of the scattering amplitude: T'(K |, Yp)

e saturation dual to strong scattering: T' ~ 1 when K| ~ Qs(A4,Yp)
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Colour dipole picture

@ The would-be Pomeron constituents now belong to the photon wavefunction

@ The Pomeron: Elastic scattering in the ¢t-channel

o 2 (or more) gluon exchanges in a colour-singlet state
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@ Emergent TMD factorisation when Q% > Q2 (SIDIS) & P? > Q2 (dijets)

e hard factors x quark or gluon diffractive TMDs

@ Operator definitions clarified in Hatta, Xiao, Yuan, 2205.08060
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Diffraction is strong scattering

@ Why should saturation be important when Q2 P? > Q% ?

@ Elastic scattering is either strong, or strongly suppressed !

oo X |T]* < 010r x 2ImT

r?Q%(A,x), for rQs < 1 (color transparency)
1, for rQs 2 1 (black disk/saturation)
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Diffraction is strong scattering

@ Why should saturation be important when Q% P? > Q% ?

@ Elastic scattering is either strong, or strongly suppressed !

Oel OX |T|2 —— opor < 2ImT

CUGET00THToC00™

@ Fyp controlled by large dipoles, 7 ~ 1/Q), even when Q? > ()2
o “aligned jet": r?2(1 — 2)Q? ~ 1 = large 7 when 2(1 — 2) < 1

@ The produced fermions have semi-hard momenta: &k, ~ Q)
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TMD factorisation for diff-SIDIS

@ Leading order in as & leading twist in K2 /Q2 <1

z~1
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Py (6)/—\4)\ @ Op(x,zp, K7): quark diffractive TMD

@ Unintegrated quark distribution of the Pomeron:
1 for K| < Qs(x, Yp)
x
QP(QL’7£L']P>7KJ2_) ~ — 4 Y, N
2m | Qs ¥e) for K > Qs(x,Yp).

@ Effective saturation momentum: Q?(z,Yp) = (1 — 2)Q2(Vs)
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Numerical results

@ The bulk of the distribution lies at saturation: K| < Qs(a:, Yp)

@ Left: McLerran-Venugopalan model. Right: BK evolution of Ty,

® Op(x,xp, K?) multiplied by K : Pronounced maximum at K| ~ Q.

6l MV, Q% =0.88 GeV? BK, AYp =3

(K /Q.(x, Yp)][Vs/a]
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@ BK evolution: increasing Qs(Yp), approximate geometric scaling

e a function of the ratio K, /Q(x, Yp) alone
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Diffractive jets in UPCs at the LHC

@ A jet with K| ~ 1+ 2 GeV: interesting for the EIC ... but not for the LHC

@ Pb+Pb UPCs: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045
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@ Diffractive di-jets with large P, > 30 GeV and imbalance K| ~ 10 GeV

@ How to produce a hard jets (P > Q,(A, zp)) via elastic scattering ?
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TMD factorisation for 2+1 jets

@ “Hard jets": cross-section with leading-twist power-tail at large P, > Q
o 1/P? for single jets, 1/P} for dijets ...
@ Naturally produced via a hard splitting: e.g. ¢ > q¢+g
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@ A system of 3 jets (¢gg) which must suffer strong elastic scattering
e hard quark-gluon pair in the final state: P, > Q
e semi-hard antiquark K| ~ Qs to ensure strong scattering

@ TMD factorisation: antiquark “transferred” to the target (2402.14748)
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TMD factorisation for 2+1 jets

@ "Hard jets": cross-section with leading-twist power-tail at large P, > Qs
o 1/P? for single jets, 1/P} for dijets ...
@ Naturally produced via a hard splitting: eg. ¢ > q¢+g
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@ Hard factor Hy decaying like 1/P}

@ Same quark dif-TMD as in SIDIS: controls the dijet imbalance: K| ~ Q)
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Target picture for diffractive dijets

@ The corresponding processes in collinear factorisation
e dijet imbalance K| = intrinsic K| of a quark from the Pomeron

o however, TMD factorisation was not addressed in that context
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@ We have computed these processes in the colour dipole picture
e “top-down” proof for TMD factorisation
e explicit expression for the quark diffractive TMD
e universality of the quark dif-TMD (SIDIS & dijets)
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Diffractive ¢q jets

@ A hard qq pair P; > Qs plus a semi-hard gluon: K| ~ Q, < P,

o the exclusive production of hard ¢ jets is higher twist

o effective gluon-gluon dipole with transverse size R ~ 1/Q
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@ TMD factorisation involving the gluon dift-TMD Gp(z, xp, K| )

o the unintegrated gluon distribution of the Pomeron
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The gluon diffractive TMD

@ Same behaviour in K| as the quark diff-TMD, but different behaviour in x:

1, KJ_S Qs(x)

Qi(z)
KT

g]p(x,:vp,Ki) ~ (1—x)

K> Qs(2)

e Effective saturation momentum: Q2(z, V%) = (1 — 2)Q%(Ys)

@ Diffractive PDFs: integrate over K| up to the resolution scale Q2 > Q2
o rapidly converging and effectively cut off at K| ~ Q(x)

2

2Gp(z, 7p, Q%) E/ dK? Gp(z,ap, K1) o (1—2)*Q2(Yr)

CL’(]P(LC,(E[P,QQ) ES LL’(]. - fﬂ) Qg(YP)

@ Initial conditions for DGLAP evolution with Q?: controlled by saturation
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Diffractive SIDIS at large P,

@ Start with 2 + 1 jets and measure only the hard quark (P > Q5)
e integrate out ¢, g: NLO corrections to SIDIS

asCrp 1 [ 1462 ¢ x
AQuteaesP1) = G e [ a6 T Gl (Lot
1 Jx

@ TMD factorisation preserved with new contributions to the quark diff-TMD

@ O(ay) but leading-twist: a dominant contribution at large P
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Diffractive SIDIS at large P,

@ Start with 2 + 1 jets and measure only the hard quark (P > Q5)
e integrate out ¢, g: NLO corrections to SIDIS

asCrp 1 [ 1462 ¢ x
AQuteaesP1) = G e [ a6 T Gl (Lot
1 Jx

@ Integrate over P, < (Q: one step in the DGLAP evolution of diff-PDF

@ Log dependence upon rapidity cutoff £5;: CSS evolution for diff-TMD
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CSS evolution for diffractive TMDs

@ The upper limit £,; depends upon the jet definition (cf. talk by Paul Caucal)

@ The gluon must be emitted outside the measured quark jet : 6, > 0,

N 2
R \xf/ =
@ The quark has virtuality Q% > P? = larger angle than naively expected

PL Q PL PL
>0, ~ — — < — - 1—¢&y ~—
q q+ Zg Q 61\[ CQ

@ “Diagonal” version of the CSS equation: the same as for inclusive TMDs
Caucal, E.I., 2406.04238; Caucal, E.I., Mueller, Yuan, 2408.03129
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Diffractive PDFs from the CGC

@ Initial conditions for DGLAP (MV, or MV+BK): gluon & quark

—— 2Gp (2, 4} = 4 GeV?)
--- 2ny x age(z, pd = 4 GeV?)
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Diffractive structure function: nuclear target

O (8.0.QY) =2 e wap(e. 2. Q)| + FYC
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@ Factorisation scale ;13 ~ 2Q? = 4 GeV? (turn on DGLAP)
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Conclusions

@ Diffraction in vA (EIC, UPC): the best laboratory to study gluon saturation

For small zp < 1072 and/or large A ~ 200: CGC effective theory
@ Emergence of TMD/collinear factorisation when Q2, P? > Q%(A, zp)

@ Top-down approach:
o start with the CGC result for the cross-section (LO, NLO...)

e demonstrate TMD factorisation at leading twist

@ Explicit expressions for the diffractive TMDs, controlled by saturation

@ "“Diagonal” version of the CSS evolution
e UV and rapidity renormalisation scales are identified with each other
and with the largest transverse/virtuality scale in the problem
@ Phenomenology (EIC, UPCs): finally, the smoking gun for gluon saturation ?
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Back-up: CSS evolution in diagonal form

@ The gluon TMD F,(z, K7, P?) as an example: inclusive or diffractive
o Initial condition at P? = K2 from the CGC: 73" (x, K?)
e including BK/JIMWLK evolution down to x (or zp)

@ CSS evolution from K2 up to P?:
K2

OF, (LL‘,KQ,P2) Oéch 1 d€2
galn;’_2 = ot K2 /de2 Fy(x, 63, P}) - / 2 —LF,(x, K%, P?)
1 s &
Fy(z, K?,P?)

@ Diagonal version % = C = P? of the two RG+CS equations (Collins-11):
@ The “natural” relation between TMD and PDF is consistent with DGLAP
Pt
A2
(Ebert, Stewart et al, 2201.07237; del Rio, Prokudin et al, 2402.01836)
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Back-up: CSS equation in coordinate space

@ The CSS equation is usually written/solved in transverse coordinate space

JT:' b2 2\ — d2K 7iK~bf K2 2
g(xa LaQ ) - (27‘(’)2 € g(x7 laQ )

@ After the Fourier transform, the real piece “disappears”

e it provides the lower limit 1/b% on the transverse integration

e coarse-graining of the K | —distribution
0F,(z,02,Q%) N, [ 1 (9 ae .
WZW —2//b2 Ei a9(€2)+/60a5(Q ) -7:9

@ Local in both Q% and b = trivial to solve

. _ R g2 2
fq(ar,bi@):fo(w,bi){—]\[‘/l Ta@) g Cfg—ﬁo]}

m /b2 ZL

. but the Fourier transform back to momentum space can be tricky !
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