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Outline

Diffraction in γA interactions: DIS or AA UPCs

Controlled by strong scattering =⇒ sensitive to unitarity corrections

multiple scattering, gluon saturation

Large A� 1 and/or small xP � 1: high gluon density, smallish αs(Qs)

Q2
s(A, xP) ∼ A1/3

(
1

xP

)λ
with λ ' 0.25

CGC effective theory: pQCD + all order resummations of high-density effects

For large virtuality and/or transverse momenta Q2, P 2
⊥ � Q2

s(A, xP)

collinear (TMD) factorisation emerges from CGC calculations

Explicit expressions for the quark and gluon diffractive TMDs/PDFs

Transparent physical picture for the Pomeron
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Colour dipole picture (talks by Jamal J.-M., Paul C., Michael F.)

Factorisation scheme for DIS at small-x: saturation, higher order corrections

Start in the Breit frame: the target (p, A) is a left mover: P−N �MN

Large boost in the positive z direction: ultrarelativistic photon q+ � Q

The qq̄ pair can now be seen as a part of the photon wavefunction

γ∗ fluctuates into a qq̄ color dipole, which then scatters off the target
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Collinear factorisation for diffractive jets

Elastic scattering ⇒ “Pomeron” exchange ⇒ rapidity gap: YP = ln 1
xP

xP � 1: longitudinal momentum fraction taken by the Pomeron

Diffractive SIDIS: γ∗ absorbed by a quark constituent of the Pomeron

Diffractive Dijets: photon-gluon fusion with a gluon from the Pomeron

x ≤ 1: splitting fraction w.r.t. the Pomeron
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Collinear factorisation for diffractive jets

Diffractive PDFs: xqP(x, xP, Q2), xGP(x, xP, P 2
⊥)

Non-perturbative quantities, but DGLAP evolution with the hardest scale

What is the nature/structure of the Pomeron ?

Can one predict the dependencies upon xP, or x ?

Or the K⊥-distribution of the measured jet/hadron in diff-SIDIS ?

Or the momentum imbalance K⊥ between the two jets in diff-Dijets ?
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Colour dipole picture

The would-be Pomeron constituents now belong to the photon wavefunction

The Pomeron: Elastic scattering in the t-channel

2 (or more) gluon exchanges in a colour-singlet state

Large rapidity phase-space YP = ln 1
xP

for the high energy evolution

JIMWLK evolution of the scattering amplitude: T (K⊥, YP)

saturation dual to strong scattering: T ∼ 1 when K⊥ ∼ Qs(A, YP)
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Colour dipole picture

The would-be Pomeron constituents now belong to the photon wavefunction

The Pomeron: Elastic scattering in the t-channel

2 (or more) gluon exchanges in a colour-singlet state

Emergent TMD factorisation when Q2 � Q2
s (SIDIS) & P 2

⊥ � Q2
s (dijets)

hard factors × quark or gluon diffractive TMDs

Operator definitions clarified in Hatta, Xiao, Yuan, 2205.08060
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Diffraction is strong scattering

Why should saturation be important when Q2, P 2
⊥ � Q2

s ?

Elastic scattering is either strong, or strongly suppressed !

σel ∝ |T |2 ←→ σtot ∝ 2ImT

Tqq̄(r, x) '

r
2Q2

s(A, x), for rQs � 1 (color transparency)

1, for rQs & 1 (black disk/saturation)
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Diffraction is strong scattering

Why should saturation be important when Q2, P 2
⊥ � Q2

s ?

Elastic scattering is either strong, or strongly suppressed !

σel ∝ |T |2 ←→ σtot ∝ 2ImT

F2D controlled by large dipoles, r ∼ 1/Qs, even when Q2 � Q2
s

“aligned jet”: r2z(1− z)Q2 ∼ 1 ⇒ large r when z(1− z)� 1

The produced fermions have semi-hard momenta: k⊥ ∼ Qs
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TMD factorisation for diff-SIDIS

Leading order in αs & leading twist in K2
⊥/Q

2 � 1

dσγ
∗
TA→qAX

d ln(1/x) d2K
=

8π2αeme
2
f

Q2
QP(x, xP,K

2
⊥)

x =
Q2

Q2 +M2
qq̄

=
x

Bj

xP
≡ β

QP(x, xP,K2
⊥): quark diffractive TMD

Unintegrated quark distribution of the Pomeron:

QP(x, xP,K
2
⊥) ' x

2π


1 for K⊥ � Q̃s(x, YP)

Q̃4
s(x, YP)

K4
⊥

for K⊥ � Q̃s(x, YP) .

Effective saturation momentum: Q̃2
s(x, YP) ≡ (1− x)Q2

s(YP)
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Numerical results (2402.14748)

The bulk of the distribution lies at saturation: K⊥. Q̃s(x, YP)

Left: McLerran-Venugopalan model. Right: BK evolution of Tgg

QP(x, xP,K2
⊥) multiplied by K⊥: Pronounced maximum at K⊥ ' Q̃s

MV, Q2
s = 0.88 GeV2 BK, ∆YP = 3
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BK evolution: increasing Qs(YP), approximate geometric scaling

a function of the ratio K⊥/Q̃s(x, YP) alone
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Diffractive jets in UPCs at the LHC

A jet with K⊥ ∼ 1÷ 2 GeV: interesting for the EIC ... but not for the LHC

Pb+Pb UPCs: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045
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Diffractive di-jets with large P⊥ ≥ 30 GeV and imbalance K⊥ ∼ 10 GeV

How to produce a hard jets (P⊥ � Qs(A, xP)) via elastic scattering ?
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TMD factorisation for 2+1 jets

“Hard jets”: cross-section with leading-twist power-tail at large P⊥ � Qs

1/P 2
⊥ for single jets, 1/P 4

⊥ for dijets ...

Naturally produced via a hard splitting: e.g. q → q + g

A system of 3 jets (qq̄g) which must suffer strong elastic scattering

hard quark-gluon pair in the final state: P⊥ � Qs

semi-hard antiquark K⊥ ∼ Qs to ensure strong scattering

TMD factorisation: antiquark “transferred” to the target (2402.14748)
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TMD factorisation for 2+1 jets

“Hard jets”: cross-section with leading-twist power-tail at large P⊥ � Qs

1/P 2
⊥ for single jets, 1/P 4

⊥ for dijets ...

Naturally produced via a hard splitting: e.g. q → q + g

dσγ
∗
TA→qg(q̄)A

dz1dzgd2Pd2K d ln(1/x)
= HT (z1, zg, P

2
⊥, Q

2)QP(x, xP,K
2
⊥)

Hard factor HT decaying like 1/P 4
⊥

Same quark diff-TMD as in SIDIS: controls the dijet imbalance: K⊥ ∼ Qs
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Target picture for diffractive dijets

The corresponding processes in collinear factorisation

dijet imbalance K⊥ = intrinsic K⊥ of a quark from the Pomeron

however, TMD factorisation was not addressed in that context

We have computed these processes in the colour dipole picture

“top-down” proof for TMD factorisation

explicit expression for the quark diffractive TMD

universality of the quark diff-TMD (SIDIS & dijets)
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Diffractive qq̄ jets (2112.06353 & 2207.06268)

A hard qq̄ pair P⊥ � Qs plus a semi-hard gluon: K⊥ ∼ Qs � P⊥

the exclusive production of hard qq̄ jets is higher twist

effective gluon-gluon dipole with transverse size R ∼ 1/Qs

TMD factorisation involving the gluon diff-TMD GP(x, xP,K⊥)

the unintegrated gluon distribution of the Pomeron
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The gluon diffractive TMD

Same behaviour in K⊥ as the quark diff-TMD, but different behaviour in x:

GP(x, xP,K
2
⊥) ' (1− x)


1, K⊥. Q̃s(x)

Q̃4
s(x)

K4
⊥

, K⊥� Q̃s(x)

Effective saturation momentum: Q̃2
s(x, YP) = (1− x)Q2

s(YP)

Diffractive PDFs: integrate over K⊥ up to the resolution scale Q2 � Q2
s

rapidly converging and effectively cut off at K⊥ ∼ Q̃s(x)

xGP(x, xP, Q
2) ≡

∫ Q2

dK2
⊥ GP(x, xP,K

2
⊥) ∝ (1− x)2Q2

s(YP)

xqP(x, xP, Q
2) ∝ x(1− x)Q2

s(YP)

Initial conditions for DGLAP evolution with Q2: controlled by saturation
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Diffractive SIDIS at large P⊥

Start with 2 + 1 jets and measure only the hard quark (P⊥ � Qs)

integrate out q̄, g: NLO corrections to SIDIS

∆QP(x, xP, P⊥) =
αsCF
2π2

1

P 2
⊥

∫ ξM

x

dξ
1 + ξ2

1− ξ
x

ξ
q

(0)
P

(
x

ξ
, xP, P

2
⊥

)
TMD factorisation preserved with new contributions to the quark diff-TMD

O(αs) but leading-twist: a dominant contribution at large P⊥
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Diffractive SIDIS at large P⊥

Start with 2 + 1 jets and measure only the hard quark (P⊥ � Qs)

integrate out q̄, g: NLO corrections to SIDIS

∆QP(x, xP, P⊥) =
αsCF
2π2

1

P 2
⊥

∫ ξM

x

dξ
1 + ξ2

1− ξ
x

ξ
q

(0)
P

(
x

ξ
, xP, P

2
⊥

)
Integrate over P⊥ ≤ Q: one step in the DGLAP evolution of diff-PDF

Log dependence upon rapidity cutoff ξM : CSS evolution for diff-TMD
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CSS evolution for diffractive TMDs

The upper limit ξM depends upon the jet definition (cf. talk by Paul Caucal)

The gluon must be emitted outside the measured quark jet : θg > θq

The quark has virtuality Q2 � P 2
⊥ ⇒ larger angle than naively expected

θg ∼
P⊥
zgq+

> θq ∼
Q

q+
=⇒ zg <

P⊥
Q

=⇒ 1− ξM '
P⊥
Q

“Diagonal” version of the CSS equation: the same as for inclusive TMDs

Caucal, E.I., 2406.04238; Caucal, E.I., Mueller, Yuan, 2408.03129
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Diffractive PDFs from the CGC

Initial conditions for DGLAP (MV, or MV+BK): gluon & quark

MV BK, ∆YP = 3
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Diffractive structure function: nuclear target

F
D(3)
2 (β, xP, Q

2) = 2
∑
f

e2
f xqP(x, xP, Q

2)
∣∣
x=β

+ F
D(3)
L

Factorisation scale µ2
0 ∼ 2Q2

s = 4 GeV2 (turn on DGLAP)

Q2 = 8 GeV2 Q2 = 16 GeV2

Q2 = 30 GeV2 Q2 = 60 GeV2

µ2
0 = 4 GeV2 µ2
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Conclusions

Diffraction in γA (EIC, UPC): the best laboratory to study gluon saturation

For small xP . 10−2 and/or large A ∼ 200: CGC effective theory

Emergence of TMD/collinear factorisation when Q2, P 2
⊥ � Q2

s(A, xP)

Top-down approach:

start with the CGC result for the cross-section (LO, NLO...)

demonstrate TMD factorisation at leading twist

Explicit expressions for the diffractive TMDs, controlled by saturation

“Diagonal” version of the CSS evolution

UV and rapidity renormalisation scales are identified with each other
and with the largest transverse/virtuality scale in the problem

Phenomenology (EIC, UPCs): finally, the smoking gun for gluon saturation ?
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Back-up: CSS evolution in diagonal form

The gluon TMD Fg(x,K2
⊥, P

2
⊥) as an example: inclusive or diffractive

Initial condition at P 2
⊥ = K2

⊥ from the CGC: F (0)
g (x,K2

⊥)

including BK/JIMWLK evolution down to x (or xP)

CSS evolution from K2
⊥ up to P 2

⊥:

∂Fg(x,K2
⊥, P

2
⊥)

∂ lnP 2
⊥

=
αsNc

2π

{
1

K2
⊥

K2
⊥∫

Λ2

d`2⊥ Fg(x, `2⊥, P 2
⊥)−

P 2
⊥∫

K2
⊥

d`2⊥
`2⊥
Fg(x,K2

⊥, P
2
⊥)

}

+β0
αsNc
π
Fg(x,K2

⊥, P
2
⊥)

Diagonal version µ2
F = ζ = P 2

⊥ of the two RG+CS equations (Collins-11):

The “natural” relation between TMD and PDF is consistent with DGLAP

xG(x, P 2
⊥) = π

∫ P 2
⊥

Λ2

dK2
⊥ Fg(x,K2

⊥, P
2
⊥)

(Ebert, Stewart et al, 2201.07237; del Rio, Prokudin et al, 2402.01836)
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Back-up: CSS equation in coordinate space

The CSS equation is usually written/solved in transverse coordinate space

F̃g(x, b2⊥, Q2) ≡
∫

d2K

(2π)2
e−iK·b Fg(x,K2

⊥, Q
2)

After the Fourier transform, the real piece “disappears” ...

it provides the lower limit 1/b2⊥ on the transverse integration

coarse-graining of the K⊥–distribution

∂F̃g(x, b2⊥, Q2)

∂ lnQ2
=
Nc
π

{
−1

2

∫ Q2

1/b2⊥

d`2⊥
`2⊥

αs(`
2
⊥) + β0αs(Q

2)

}
F̃g

Local in both Q2 and b2⊥ =⇒ trivial to solve

F̃g(x, b2⊥, Q2) = F̃0(x, b2⊥)

{
−Nc
π

∫ Q2

1/b2⊥

d`2⊥
`2⊥

αs(`
2
⊥)

[
1

2
ln
Q2

`2⊥
− β0

]}
... but the Fourier transform back to momentum space can be tricky !
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