First look at Constantin's cosmological parameter fitting code Narei (with help from Vincent)

April 2nd 2024

Code explanation

Constantin's code: <u>https://github.com/LSSTDESC/CLCosmo_Sim/blob/main/notebooks/</u> produce_chi2_map.ipynb

1. Building the binned observed number of clusters

How: Take a given simulated catalog (here *skysim_v1.1.1_small*), perform bins in redshift and masseur clusters (*logm_bin:{13, 13.3, 13.6, 13.9, 14.2, 14.5}*; *z_bin{0.2, 0.4, 0.6, 0.8}* and create a 2D map from that

- why not using larger/smaller z and masses ?
- using here M200c, could use also mass_fof

–> This provides the « data » sample

Code explanation

2. Building the binned predicted number of clusters How: using the formula below, and computing each term (differential comoving volume

renormalise to full sky area (here we have only a partial sky) $N_{ij}^{
m th} = \Omega_{
m SkySim} \int_{z_i}^{z_{i+1}} dz rac{dV(z)}{dzd\Omega} \int_{\log_{10}M_j}^{\log_{10}M_{j+1}} rac{dn(M,z)}{d\log_{10}M} d\log_{10}M$ integration on redshift integration on mass differential comoving volume Mass function

Comoving volume

- Definition found in: <u>http://arxiv.org/abs/astro-ph/9905116v4</u>
- Depends on which cosmology you assume !

Hubble distance

$$D_{
m H} \equiv rac{c}{H_0} = 3000 \, h^{-1} \, {
m Mpc} = 9.26 imes 10^{25} \, h^{-1} \, {
m m}$$
 DM=DC for $dV_{
m C} = D_{
m H} \, rac{(1+z)^2 \, D_{
m A}^2}{E(z)} \, d\Omega \, dz$

$$E(z)$$
 =

angular diameter distance r Ωk=0

$$D_{\rm A} = \frac{D_{\rm M}}{1+z}$$

line-of-sight comoving distance, h/H0

 $\equiv \sqrt{\Omega_{\mathrm{M}} \left(1+z\right)^3 + \Omega_k \left(1+z\right)^2 + \Omega_\Lambda}$

- Cosmology of skysim5000 (or cosmoDC2)

 - Parameters found in simu vs parameters found in literature:

• not sure to understand why the skysim parameters are different ?

	sskysim	Planck 2015	2018	WMAP combined
Om0	0.2648	0.3089	0.315	0.236
Ob0	0.0448	0.0486	_	0.0461
sigma80	0.8	0.8159	0.811	0.817
h0	0.71	0.677	0,674	0.697
ns0	0.963	0.9667	0.965	0.9646

ns0 is the spectral index of primordial fluctuations : how density fluctuations vary with scale. An index of 1 means that the variations are the same on all scale

Chosen cosmology

taken from OuterRim -> supposedly WMAP-7 combined results (<u>https://arxiv.org/abs/1904.11970</u>)

WMAP 7	-year	Cosmological	Interpretation
--------	-------	--------------	----------------

Summary of the cosmological parameters of ΛCDM model ^a								
Class	Parameter	$WMAP$ 7-year ML^{b}	$WMAP+BAO+H_0 ML$	WMAP 7-year Mean ^c	WMAP+BAO+H ₀			
Primary	$100\Omega_b h^2$	2.227	2.253	$2.249^{+0.056}_{-0.057}$	2.255 ± 0.05			
	$\Omega_c h^2$	0.1116	0.1122	0.1120 ± 0.0056	0.1126 ± 0.00			
	Ω_{Λ}	0.729	0.728	$0.727^{+0.030}_{-0.029}$	0.725 ± 0.01			
	n_s	0.966	0.967	0.967 ± 0.014	0.968 ± 0.01			
	au	0.085	0.085	0.088 ± 0.015	0.088 ± 0.014			
	$\Delta^2_{\mathcal{R}}(k_0)^{\mathrm{d}}$	$2.42 imes 10^{-9}$	2.42×10^{-9}	$(2.43 \pm 0.11) imes 10^{-9}$	$(2.430 \pm 0.091) imes$			
Derived	σ_8	0.809	0.810	$0.811^{+0.030}_{-0.031}$	0.816 ± 0.02			
	H_0	$70.3 \mathrm{~km/s/Mpc}$	$70.4 \mathrm{~km/s/Mpc}$	$70.4 \pm 2.5 \text{ km/s/Mpc}$	$70.2\pm1.4~\mathrm{km/s}$			
	Ω_b	0.0451	0.0455	0.0455 ± 0.0028	0.0458 ± 0.00			
	Ω_c	0.226	0.226	0.228 ± 0.027	0.229 ± 0.01			
	$\Omega_m h^2$	0.1338	0.1347	$0.1345\substack{+0.0056\\-0.0055}$	0.1352 ± 0.00			
	${z_{ m reion}}^{ m e}$	10.4	10.3	10.6 ± 1.2	10.6 ± 1.2			
	${t_0}^{ m f}$	13.79 Gyr	13.76 Gyr	$13.77\pm0.13~\mathrm{Gyr}$	13.76 ± 0.11 C			

TABLE 1

Mass function

- The number of cluster cat a given mass and redshift bin is provided a posteriori by several authors (Bocquet, Tinker, ...)
- Library :<u>github</u>, <u>arxiv</u>)
- Possibility to work with different definition of mass (including mass_fof)

```
# Press & Schechter mass function
hmfs.append(ccl.halos.MassFuncPress74(mass_def=hmd_fof))
# Sheth & Tormen mass function
hmfs.append(ccl.halos.MassFuncSheth99(mass def=hmd fof))
# Tinker 2008 mass function
hmfs.append(ccl.halos.MassFuncTinker08(mass_def=hmd_200m))
# Tinker 2010 mass function
hmfs.append(ccl.halos.MassFuncTinker10(mass def=hmd 200m))
# Bocquet 2016 mass function
hmfs.append(ccl.halos.MassFuncBocquet16(mass def=hmd 200m))
# Nishimichi 2019 mass function
# To use this mass function you need the dark emulator:
# https://dark-emulator.readthedocs.io/en/latest/
hmfs.append(ccl.halos.MassFuncNishimichi19(mass_def=hmd_200m,extrapolate=True))
```

• Several mass functions are available in ccl libraries (CCL=Core Cosmology

Tinker mass function

• From Tinker's paper: <u>https://iopscience.iop.org/article/10.1086/591439/pdf</u>

$$\frac{dn}{dM} = f(\sigma) \frac{\bar{\rho}_m}{M} \frac{d\ln\sigma^{-1}}{dM}.$$
(2)

Here, the function $f(\sigma)$ is expected to be universal to the changes in redshift and cosmology and is parameterized as

$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right]e^{-c/\sigma^2} \tag{3}$$

where

$$\sigma = \int P(k)\hat{W}(kR)k^2dk, \qquad (4)$$

and P(k) is the linear matter power spectrum as a function of wavenumber k, and \hat{W} is the Fourier transform of the real-space top-hat window function of radius R. It is convenient to

A, a, b, c : are parameters to be fitted (called alpha, beta, gamma, phi here)

« critical density » :

overdensity within a sphere of radius *Rdelta with respect to* the mean density of the Universe at the epoch of analysis

Predicted number of haloes vs « observed »

« Observed » = from simulation

Building log-likelihood

- Assuming Gaussian or Poisson statistics
- Likelihood: probably that a given event is produced after N trials-> product of single N probabilities (assuming independents events)
- Log likelihood -> the product becomes a sum
- Likelihood made dependent on on sigma8 and OmegaM (since Nth depends on cosmology)
 - all other parameters kept the same !
 - computed for 10x10 points for **sigma8=[0.68-0.9], OmegaM=[0.2-0.3]**

$$P(X = x | \theta) = f(x) = e^{-\theta} \frac{\theta^x}{x!}, x$$

$$Log(L)(\Omega_m,\sigma_8) \propto \sum_{i,j} N_{ij}^{
m obs} \log(N_{ij}^{
m th}) - N_{ij}^{
m th}$$

 $\in \{0, 1, \dots, \infty\}, \theta > 0$

Building the chi2 and plotting it

- The minimization is made using a chi2 = -2lnL
- Between two points (sigma8, omegaM), an interpolation is performed
 - warning: interpolation used by Constantin is now deprecated ! (interp2d). Used instead RectBivariateSpline
- 2D contours are plotted, using levels: levels = list(np.arange(1,4)**2)

