

DiHiggs searches in CMS

PhD days

Elise Jourd'huy

Supervised by Maxime Gouzevitch

The Higgs boson

The BEH mechanism

The self-coupling constant λ

Higgs boson self-interaction

 $\operatorname{Re}(\phi)$

PHYSIQUE ET ASTROPHYSIQU

(பீத) Lyon 1

HH spectrum in the SM

The SM Higgs mechanism is minimal

BEH potential different from the SM \rightarrow **Deformation of Higgs pair invariant mass (** m_{HH} **)**

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

(UB)

iP'2i

Lyon 1

ÉCOLE DOCTORALE CMS

Non-resonnant :

Deformation of m_{HH} spectrum

Resonnant :

Resonance in the m_{HH} spectrum

ECOLE BOCTORALE PHAST PHSIQUE ET ASTROPHYSIQUE UNIVERSITE DE LYON

Some **BSM theories** predict additionnal particles Like a **resonnance X decaying into a Higgs pair**

 $-X \rightarrow HH$

And what do I do?

I worked on the **Run 2 (2015-2018) statistical combination** of the **X** \rightarrow **HH** searches Channels considered : *bbyy*, *bbVV* (*resolved and boosted*), *bbbb boosted*, *bb* $\tau\tau$, *multilepton*

PhD days

Combination recipe

• Check the compatibility of input analyses

- ✓ Overlaps : An event can not appear in two different analyses
- ✓ Parameters should be correctly correlated among analyses
- ✓ Same normalisation

• Perform your combination

• Check the sanity of your combination with statistical tests

- ✓ Impacts and pulls of the parameters
- ✓ Injection tests
- ✓ ...

"Compatibility of the analyses"

✓ One event cannot appear in two different analyses

✓ Correlation between parameters :

Systematic uncertainties \Rightarrow Nuisance parameters in the fit : some of them are correlated across analyses

The combination counts over 1000 nuisance parameters !

✓ Same normalization for all analysis

" Perform your combination "

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

ഗ്ള Lyon 1

iP 2i

CMS

The statistical tests are performed for 3 representative X masses : $M_X = 280$, 500, 1000 GeV

They are done to check if our fit worked correctly, that the nuisances parameters are well defined (and well correlated)

Injection test

We need to check if no bias is introduced by our analysis → If a signal is injected, we should ge it back as it is, *not much more, not much less*

If no bias is introduced, we should get a $\mathcal{N}(0,1)$

HH spectrum

$HH \rightarrow b\overline{b}\gamma\gamma$

Analysis strategy for Run 2

PhD days

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ÉCOLE Doctorale

(பீத) Lyon 1

iP'2i

CMS

My work

Main Backgrounds

- Resonant : single Higgs production
 - ggF H → γγ○ VBF H → γγ○ tt(H → γγ)○ V(H → γγ)
- Non resonant
 - $\circ \gamma \gamma + \text{jets}$ $\circ \gamma + \text{jets}$

Main Backgrounds

• Resonant : single Higgs production

```
 ◦ ggF H → γγ 
◦ VBF H → γγ 
◦ tt(H → γγ) 
◦ V(H → γγ)
```


Object Selection

Construction of a workflow analyzing, selecting events and applying systematics and corrections

Selection of the photon pair

Same as the $H \rightarrow \gamma \gamma$ analysis :

- Identification : Conditions on the photon identification score (photon ID MVA)
- Highest $p_T^{\gamma\gamma}$
- $p_T^{\gamma 1} > 35 \text{ GeV}, p_T^{\gamma 2} > 25 \text{ GeV}$

Selection of the jet pair

- Identification : ParticleNet b-tagging score > 0
- The 2 b-jets are selected as the highest sum of PNet scores (≈ more likely to be b-jets) (same as Run2 for now)
- $p_T^j > 20 \; GeV$

These selections are not detailed because not relevant yet (they are taken as loose or as the same as Run 2 to developpe the analysis tool and waiting for further investigation)

Run 3 kinematic distributions

Kinematic properties help to differentiate signal from backgrounds \rightarrow Use of Monte Carlo simulations

The invariant mass of the two jets and two photons selected should be close the $m_H = 125 \text{ GeV}$

PHAST PHYSIQUE ET ASTROPHYSIQUE

UNIVERSITÉ DE LYON

ÉCOLE Doctorale

ഗ്ള) Lyon 1

iP'2i

CMS.

Run 3 kinematic distributions

Kinematic properties help to differentiate signal from backgrounds \rightarrow Use of Monte Carlo simulations

Angular variables : The Higgs boson has a spin of 0 , and its decay is isotropic

PHYSIQUE

ÉCOLE DOCTORALE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ഗ്ര്ദ

iP 2

Run 3 kinematic distributions

Kinematic properties help to differentiate signal from backgrounds \rightarrow Use of Monte Carlo simulations

Non exhaustive plots ...

PhD days

PHAST PHYSIQUE ET ASTROPHYSIQUE

UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

(பீத) Lyon 1

iP'2i

CMS.

Background rejection

Signal efficiency vs. Background rejection

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

பீத

iP 2i

Lyon 1

ÉCOLE DOCTORALE CMS/

✓ Work on Run 2 statistical combination of $X \rightarrow HH$ searches finished

• The nuisances correlations, overlap removals and stastical tests also apply to spin $2X \rightarrow HH$ and $X \rightarrow YH$

X Run 3 non-resonant $HH \rightarrow bb\gamma\gamma$ analysis ongoing

- Construction of a workflow analyzing the events
 - □ Applying all needed corrections, systematics, and fixing the cuts
- Improvement of the background rejection and signal efficiency with machine learning
 Adding more discriminating variables and testing of different architectures
- □ Statistical analysis (fit and Preliminary limits on $\sigma(HH \rightarrow bb\gamma\gamma)$ and λ)

Thank you !

Backup

Analysis strategy for Run 2

Aim for Run 3 (2022-2025)

iP_{2i}

Limite visée pour le Run III :

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

(பீத) Lyon 1

CMS

For those who like theory

- **Extended Higgs sector** : The SM complex Higgs doublet can be extended with additional singlet or doublet
 - Additional SM-like Higgs boson
 - Depending on the precise theory, it can tackle some of the BIG QUESTIONS (matter-antimatter asymetry, dark matter, naturalness and hierarchy problem ...)

The SM Higgs mechanism is minimal \rightarrow Other models predict additionnal particles

For those who like theory

- **Extended Higgs sector** : The SM complex Higgs doublet can be extended with additional singlet or doublet
 - Additional SM-like Higgs boson
 - Depending on the precise theory, it can tackle some of the BIG QUESTIONS (matter-antimatter asymetry, dark matter, naturalness and hierarchy problem ...)
- Warped Extra Dimensions : postulates the existence of one extra dimension
 - > New particles decaying into HH such as a Spin-0 radion and the spin2 Kaluza-Klein excitation of the Graviton.

ECOLE DOCTORALE

X→HY

PhD days

$X \rightarrow HH \text{ spin } 2$

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

ഗ്ര്ള) Lyon 1

iP 2i

CMS

Background composition

PHAST PHYSIQUE ET ASTROPHYSIQUE UNIVERSITÉ DE LYON

ÉCOLE DOCTORALE

ഗ്ള Lyon 1

iP 2i

CMS

Electroweak phase transition

Modèle standard

•Eur.J.Phys. 38 (2017) 6, 065404

 $=HH \rightarrow b\overline{b}\gamma\gamma ==$

Table 17.1 The predicted branching ratios of the Higgs boson for $m_{\rm H} = 125$ GeV.				
Decay mode	Branching ratio			
$H \rightarrow b\overline{b}$	57.8%			
$\mathrm{H} \to \mathrm{W}\mathrm{W}^*$	21.6%			
$H\to\tau^+\tau^-$	6.4%			
$H \rightarrow gg$	8.6%			
$H \to c \overline{c}$	2.9%			
$\mathrm{H} \to \mathrm{Z}\mathrm{Z}^*$	2.7%			
$H\to\gamma\gamma$	0.2%			

Thomson, M. (2013). *Modern Particle Physics*

 \overline{b}

Sections efficaces (1) ===

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
ggF HH	$31.05^{+2.2\%}_{-5.0\%}\pm3.0\%$	$36.69^{+2.1\%}_{-4.9\%}\pm3.0\%$	$139.9^{+1.3\%}_{-3.9\%}\pm2.5\%$	$1224^{+0.9\%}_{-3.2\%}\pm2.4\%$
VBF HH	$1.73^{+0.03\%}_{-0.04\%}\pm2.1\%$	$2.05^{+0.03\%}_{-0.04\%}\pm2.1\%$	$8.40^{+0.11\%}_{-0.04\%}\pm2.1\%$	$82.8^{+0.13\%}_{-0.04\%}\pm2.1\%$
ZHH	$0.363^{+3.4\%}_{-2.7\%}\pm1.9\%$	$0.415^{+3.5\%}_{-2.7\%}\pm1.8\%$	$1.23^{+4.1\%}_{-3.3\%}\pm1.5\%$	$8.23^{+5.9\%}_{-4.6\%}\pm1.7\%$
W ⁺ HH	$0.329^{+0.32\%}_{-0.41\%}\pm2.2\%$	$0.369^{+0.33\%}_{-0.39\%}\pm2.1\%$	$0.941^{+0.52\%}_{-0.53\%}\pm1.8\%$	$4.70^{+0.90\%}_{-0.96\%}\pm1.8\%$
W ⁻ HH	$0.173^{+1.2\%}_{-1.3\%} \pm 2.8\%$	$0.198^{+1.2\%}_{-1.3\%}\pm2.7\%$	$0.568^{+1.9\%}_{-2.0\%}\pm2.1\%$	$3.30^{+3.5\%}_{-4.3\%} \pm 1.9\%$
t <i>ī</i> HH	$0.775^{+1.5\%}_{-4.3\%}\pm3.2\%$	$0.949^{+1.7\%}_{-4.5\%}\pm3.1\%$	$5.24^{+2.9\%}_{-6.4\%}\pm2.5\%$	$82.1^{+7.9\%}_{-7.4\%}\pm1.6\%$
tjHH	$0.0289^{+5.5\%}_{-3.6\%}\pm4.7\%$	$0.0367^{+4.2\%}_{-1.8\%}\pm4.6\%$	$0.254^{+3.8\%}_{-2.8\%}\pm3.6\%$	$4.44^{+2.2\%}_{-2.8\%}\pm2.4\%$

Reviews in Physics (2020) 100045

Sections efficaces (2)

