Test of global symmetries

of the Standard Model in the top quark sector

With CMS at LHC

Phd Days 2024

David Amram

Under the supervision of Nicolas Chanon IP2I Lyon - CMS

16 avril 2024

PHAST PHYSIQUE ET ASTROPHYSIQUE **UNIVERSITÉ DE LYON**

ÉCOLE DOCTORALE $-52-$

IP2I – CMS Test of global symmetries of the Standard Model 2/21

Motivations – Lepton Flavor Universality (LFU)

The top quark isthe **heaviest elementary particle** in the Standard Model.

Many models beyond the SM predict a **special coupling** of the top quark with new resonances at high energy scales.

Testing **lepton flavor universality** with top quarks at CMS

Search for LFU violation with Run 2 CMS data

Modeling the violation of lepton flavor universalitywith an effective theory

CMS Analysis - Signal Region

Targeting our signal $t\bar{t} + \ell t$

This signal region will be used to :

- 1) Measure the process $t\bar{t}\gamma^*$ (inside $t\bar{t}Z$ in this plot)
- 2) Measure the EFT coefficients for lepton flavor violation

Variable to test to extract the signal :

- The invariant mass of the leptons
- The angles between the leptons
- Advanced methods such as Matrix Element Method (MEM) or Machine Learning

CMS Analysis - Phenomenology of the Signal Region

CMS Analysis - Phenomenology of the Signal Region

Leptons' invariant mass (gen level)

This signal region will be used to :

- 1) Measure the process $t\bar{t}\gamma^*$ (inside $t\bar{t}Z$ in this plot)
- 2) Measure the EFT coefficients for lepton flavor violation

Variable to test to extract the signal :

- The angles between the leptons
- **The invariant mass of the leptons**
- Advanced methods such as Matrix Element Method (MEM) or Machine Learning

CMS Analysis – Matrix Element Method

• Calculation of the partial cross-section corresponding to the phase space of the reconstructed event

$$
w_{i,\alpha}(\Phi') = \frac{1}{\sigma_{\alpha}} \int d\Phi_{\alpha} \cdot \delta^{4}\left(p_{1}^{\mu} + p_{2}^{\mu} - \sum_{k \geq 3} p_{k}^{\mu}\right) \cdot \frac{f(x_{1}, \mu_{F})f(x_{2}, \mu_{F})}{x_{1}x_{2}s} \cdot \left(\frac{1}{\mathcal{M}_{\alpha}(p_{k}^{\mu})}\right)^{2} \cdot W(\Phi'|\Phi_{\alpha})
$$
\n
$$
\begin{array}{c}\n\text{B the case of the New Physics, the element is computed using MadGraph of the New Physics, the element is computed using MadGraph of the Newton term, and the form of the Keyroder algebra of the function of background noise}\n\end{array}
$$
\n
$$
\begin{array}{c}\n\text{Matrix Element}\n\\
\text{Solution: } \text{Matrix} \to \text{Matrix} \text{Element}:\n\\
\text{Matrix} \to \text{Matrix} \text{matrix} \text{ element}:\n\\
\text{Matrix} \to \text{Matrix} \text{matrix} \text{ product} \text{ matrix} \
$$

CMS Analysis – Boosted Decision Tree

- We select input variables that should be discriminative
- We construct weak classifiers slightly better than random classification.
- Each classifier depends on the previous ones.
- We construct the strong classifier by weighted averaging of the weak classifiers
- Ranking at each step into 2 categories: here, Standard Model (background noise) and New Physics(signal)
- Decision cascade until a condition on the weights is met

CMS Analysis – Boosted Decision Tree

- The BDT response shows the classification of events.
- A good polarization of the samples.
- The MEM allows for better classification.

CMS Analysis - Control Regions

Similar topology with the signal, but **negligible signal yield**

The goal is to **control the background processes**

Monte Carlo – data agreement will be improved after adding the recommended corrections

CMS Analysis – Improvement of lepton selection

Improved lepton identification using a multivariable discriminant (LeptonMVA)

The goal isto i**mprove background rejection**

The selection criterion in the analysis has an efficiency of approximately 70%

The LeptonMVA**effectively rejects** a substantial amountof **background**

It was developedwithin the CMS collaboration

Lagrangian under Lorentz-violation

Lorentz-violating Standard Model Extension (SME) is motivated by string theory, quantum loop theory and non commmutative field theory. All operators that break Lorentz symmetry are added.

$$
\mathcal{L}_{SME} = -\frac{1}{4} (\eta^{\mu\rho} \eta^{\nu\sigma} + \underbrace{(\kappa^{\mu\nu\rho\sigma})}_{\text{F}\mu\nu} F_{\rho\sigma} + \frac{1}{2} \bar{\psi} (\gamma^{\mu} i D_{\mu} - m_f) \psi + h.c
$$

The dispersion relation is modified such as :

$$
\omega = \sqrt{\frac{1 - \tilde{\kappa}_{tr}}{1 + \tilde{\kappa}_{tr}}} |\mathbf{k}|
$$

2 Cases :

Cherenkov radiation $\tilde{\kappa}_{tr} \in (0,1) \implies v_{qr} < 1$

 $\tilde{\kappa}_{tr} \in (-1,0) \implies v_{gr} > 1$ Photon decay in vacuum

- **Parametrize** the Lorentz invariance violation
- Contains **19 independants coefficients**
- They are **tensors**, staying **constant** (not transforming) under a **Lorentz transformation**, thereby breaking Lorentz invariance
- Only **one degree of freedom** describes Lorentz violation effects that are **spatially isotropic** :

In the SM, photons decaying in the vacuum **isforbidden**

We look at photons decaying to **fermions-** This process is governed by a **threshold**: **antifermions pairs**

This process is only allowed for $\tilde{\kappa}_{tr} < 0$, and we retrieve the SM limit for $\tilde{\kappa}_{tr} \to 0$ where the threshold goes to infinity since this process is forbidden when the symmetry is intact

Photon decay : constraint on

To constrain $\tilde{\kappa}_{tr}$, we need to find the **threshold energy** above which photons could decay in the vaccum.

We suppose that photons **decay to electrons**. Therefore, we analyze the number of photons as a function of E_γ

We reinterpret ATLAS results of E_{γ}^{T} for the process :

 $(p|p \rightarrow \gamma + X)$ (ATLAS inclusive photon measurement)

Analysis strategy

If the upcoming-photon energy exceeds the threshold, the surplus is used to provide a **nonzero** θ angle between fermions such as

$$
\cos \theta = \frac{E_f (E_\gamma - E_f) + \frac{\tilde{\kappa}_{tr}}{1 - \tilde{\kappa}_{tr}} E_\gamma^2 + m_f^2}{\sqrt{[E_f^2 - m_f^2][(E_\gamma - E_f)^2 - m_f^2]}}
$$

Where E_{γ} and E_f are the energies of the incoming photon and outgoing fermions

As an illustration, we can look at the decay of photons into top quarks pairs

Search for disappearing photon

- If the photon does not decay, we add it's E_T to the histogram
- The procedure mentioned before is **apply to a range of** E_{tr} . We clearly see the effect of the threshold on the histogram
- **Signature: disappearing** photon in the E_T^{γ} spectrum

Measurement : results

The **CLs method** is used to set a limit on $\tilde{\kappa}_{tr}$ With **q the likelihood ratio** of the BSM againstthe SM hypothesis, we define :

$$
CL_{s+b} = p_{s+b} = P(q > q_{obs}|s+b) = \int_{q_{obs}}^{inf} f(q|s+b) dq
$$

$$
CL_b = 1 - p_b = 1 - P(q < q_{obs}|b) = 1 - \int_{inf}^{q_{obs}} f(q|b) dq
$$

$$
CL_s = \frac{CL_{s+b}}{CL_b}
$$

We use the conventional criteria **CLs < 0.05** to set the limit :

 $\tilde{\kappa}_{tr} > -1.06 \times 10^{-13}$

Without systematics uncertainties, the results would be :

 $\tilde{\kappa}_{tr} > -1.045 \times 10^{-13}$

Contribution to the validation of CMS reconstruction

 $\frac{6}{1}$ X

 $\frac{Z}{2}$

 α

In CMS detector, a **reconstucted hits** (RecHits) represent an **energy deposit** of a particle

We look at RecHitsinside the **Hadron Calorimeter,**and only look at **neutrals particles** around electrons

Neutral isolation helpsto distinguish between collision point particles and background sources particles

The neutral isolation is defined as :

$$
\sum_n E_{T_n}
$$

Where n is a neutral RecHits in a ΔR cone around the electron

$$
\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
$$

The RecHits are selected if 0.15 $\angle\Delta R$ < 0.3

EPR task – Hadron Neutral Isolation

There are 2 differents zone inside the HCAL :

- The Barrel
- The Endcap

Reproduced HCAL isolation stored in CMS samples. Working on the HCAL cone size and validating HCAL isolation between data and MC.

Cuts are applied on the RecHits to compute the Isolation :

- For a RecHits in the Barrel, we need $E_t > 0.8$ GeV
- For a RecHits in the Endcap, we need $E_t > 0.2$ GeV

HCAL Neutral Isolation

Lepton Flavor Universality

- **Implementation of the selection** to define control and signal region
- Defined baseline **discriminating variables**
- **Measure** of $t\bar{t}\gamma^*$ process in the SM
- **Generate** signal sample
- **Extraction** of the EFT coefficients

Lorentz Invariance Violation

- Put a **constraint** on the LIV coefficient around **55 times better** than the previous mesurement
- Still no LIV observation
- Publication : arxiv:2312.11307. **Accepted by PRL. Presented at IRN Terrascale 2024**

Contribution to the validation of CMS reconstruction

- **Optimisation** of the HCAL isolation cone size
- Need to **compare Data/MC**

Back-up slides

Estimation of the value of the coefficient

arXiv:1805.04917v

Matrice CKM

Matrix containing the probabilities of flavor change during a weak interaction.

Describing the mixing between mass eigenstates and flavor eigenstate

$$
\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} \vert d \rangle \\ \vert s \rangle \\ \vert b \rangle \end{pmatrix} = \begin{pmatrix} \vert d' \rangle \\ \vert s' \rangle \\ \vert b' \rangle \end{pmatrix}
$$

Existing bounds

arXiv:0801.0287v17 arXiv:0801.0287v17

Table **D16**. Photon sector, $d = 4$ (part 1 of 7)

Table D16. Photon sector, $d = 4$ (part 5 of 8)

Anistropic effects are well constrained with laboratory experiment

Isotropic effects are mainly constrained with astrophysics, but the photon source is not controled

Earth-based laboratory experiments are **less model dependent**

²⁵ David Amram - New constraintfor Isotropic Lorentz Violation – IRN Terrascale 2024

Fermion momentum construction CIIS

We construct the fermion momentum following :

$$
\cos \theta = \frac{E_e (E_\gamma - E_e) + \frac{\tilde{\kappa} tr}{1 - \tilde{\kappa} tr} E_\gamma^2 + m_e^2}{\sqrt{[E_e^2 - m_e^2][(E_\gamma - E_e)^2 - m_e^2]}}
$$

$$
\cos \alpha = \frac{||\vec{p}_f|| + ||\vec{p}_f|| \cos \theta}{||\vec{p}_f||}
$$

$$
\vec{p}_f = ||\vec{p}_f||(\vec{p}_\gamma \cos \alpha + \sin \alpha (\cos \varphi \ \vec{p}_\perp + \sin \varphi \ \vec{p}_3))
$$

 φ is randomly choosen using the uniform distribution on the interval $]-\pi,\pi]$

Details on $\tilde{\kappa}_{tr}$

Over the 19 coefficients, the 9 nonbirefringent are parameterized by

$$
\kappa^{\mu\nu\rho\sigma} = \frac{1}{2} (\eta^{\mu} \hat{k}^{\nu\sigma}) - \eta^{\mu\sigma} \tilde{\kappa}^{\nu\rho} + \eta^{\nu\sigma} \tilde{\kappa}^{\mu\rho} - \eta^{\nu\rho} \tilde{\kappa}^{\mu\sigma})
$$

$$
\tilde{\kappa}^{\mu\nu}
$$
 is a symmetric and traceless 4 x 4 matrix

A single coefficient parameterizes isotropic LV. The coefficients of the matrix are then chosen as

$$
\tilde{\kappa}^{\mu\nu} = \frac{3}{2} \tilde{\kappa}_{tr} \text{diag}\left(1,\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)^{\mu\nu}
$$

Measurement – CLs method

The CLs method is used to set upper or lower limit on parameters

For a statistical test q, we define

$$
\begin{aligned} CL_{s+b} &= p_{s+b} = P(q > q_{obs}|s+b) = \int_{q_{obs}}^{\inf} f(q|s+b) dq \\ CL_b &= 1-p_b = 1-P(q < q_{obs}|b) = 1-\int_{-\inf}^{q_{obs}} f(q|b) dq \\ CL_s &= \frac{CL_{s+b}}{CL_b} \end{aligned}
$$

We use CLs < 0.05 by convention

The statistical test is a log likelihood ratio. It is evaluated over the Y variable defined as :

$$
Y \sim \mathcal{P}(X) \text{ with } X \sim \mathcal{N}(\mu_i, \sigma_i)
$$

where μ_i is the bin value and σ_i the systematic uncertainty.

The data systematic uncertainties are already given by the ATLAS mesurement. They include:

- the **background substraction**
- the **unfolding**
- the **pile-up**
- the **trigger efficiency**
- the **luminosity**measurement
- the photon **energy scale** and **resolution**.

