Utilizing machine learning for the Data Analysis of AGATA's PSA database.

M. Abushawish, J. Dudouet, O. Stezowski, G. Baulieu

Institut de Physique des deux infinis de Lyon (IP2I)

OASIS workshop

Experimental database: Strasbourg scanning table

- The PSA can be improved by:
 - Improving the simulations.
 - replacing the simulated database with experimental one.
- Experimental databases were produced at LPHC Strasbourg.
 - To produce the databases the crystal had to be scanned.
 - Scanning the crystal means that we measure signals at every voxel of the crystal.
 - Laser positioning system was used to accurately position the crystal and the collimator.
 - A prototype crystal was scanned.

Picture from Michaël Ginsz, PhD thesis, Université de Strasbourg (2015)

Scanning process and Pulse Shape Comparison Scan (PSCS)

- 1 vertical (X,Y) and 1 horizontal(X,Z) scan.
- To get a 3D databases, a χ^2 analysis of both datasets is done.
- This method has been validated^[1,2] but it is time consuming (5 days for the PSCS analysis.)

 B. De Canditiis and G. Duchêne, Eur. Phys. J. A 56 (2020)
B. De Canditiis et al., Eur. Phys. J. A 57 (2021)

Picture from Michaël Ginsz, PhD thesis, Université de Strasbourg (2015)

	ning	
00		

- 2 Long short-term memory (LSTM) layers were used.
 - LSTMs can process sequences of data like the signals and are very robust against time misalignment [X. Fabian et al. NIM-A 986 (2021): 164750.].
- The loss function was calculated only for the two known axes, this allows the network to learn patterns of each dataset without affecting the other.

Trained Neural network

Neural networks: training

• A network was trained for each segment to avoid the implications of distribution bias.

- A Gaussian noise layer was added to the input to reduce the overfitting.
- The number of epochs was optimised to avoid overfitting to be 150 epochs.

Predictions distribution

• The distribution of the predicted positions conforms with the attenuation of the gamma rays.

Model consistency

- The signals predicted at the same position should have the same shape.
- Below is a comparison between signals predicted at the same position using the PSCS method and the neural network.
- Both sets of signals show the same general shape, but the neural network shows more consistent signals.

Model consistency

- The mean standard deviation of the signals predicted at the same position is used to evaluate the model consistency.
- It was calculated for the entire volume of the crystal.
- The neural network shows better homogeneity than the PSCS.

PSA database using the neural network

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

PSA database using the neural network

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

PSA database using the neural network

- The PSA databases were built by taking the mean signal per voxel in the crystal.
- Then the PSA was used to predict the position of the signals using the databases of the neural network (NN) and the PSCS.
- The predicted positions are compared with the scanned positions.

PSA: Full and adaptive scans

• The performance of the adaptive scan is very similar to the full scan except for some regions where it fails.

Error on X and Y, for layer: 3

PSA vs Neural network

• The neural network outperforms the PSA significantly.

Error on X and Y.

PSA vs Neural network

Mojahed Abushawish

Utilizing machine learning for the Data Analysis of AGATA's PSA database

Summary and Conclusions

- Neural network was trained to process the Strasbourg scanning tables.
- Experimental bases were produced using the neural network and the PSCS, and then they were used for the PSA.
- The neural network 12 hours for training and 2 hour to process the two scans compared to 5 days for the PSCS.
- The neural network showed better consistency than the PSCS method.
- The neural network has 25% less error than the PSCS.

Backup: Error from the neural network

Error per pixel for vertical scan

Backup: Train segment by segment

Utilizing machine learning for the Data Analysis of AGATA's PSA database