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I-  DARK MATTER

Rich evidence for Dark Matter through its gravitational effects, from galactic to cosmological scales.

- 1933, Zwicky: motion of galaxies in the Coma cluster

- 1970s, Bosma, Rubin: rotation curves of spiral galaxies

- 1970s, Ostriker, Peebles: stability of disks in spiral galaxies

- 1980s, Peebles, Primack, Bond, White, …: Cosmic Microwave Background, Gravitational lensing, mass in X-ray clusters, …

Bullet cluster (Clown et al. 2006): colors=X-ray gas, 
green isocontours=projected density measured by 

gravitational lensing



FuzzyDM

This talk: SFDM, ALPs

Known properties of DM

- 27% of the energy density of the universe

- Cold (non-relativistic)

- Dark: small electromagnetic interactions

- Collisionless / pressureless: small self-interactions or interactions with baryons

Introduction        Self-similar solutions for FDM        Solitons and halos for quartic self-interaction        Soliton and halos for truncated self-interaction        Conclusion

The standard cosmological model, ΛCDM  à DM is described as a cold DM fluid.
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However, we remain ignorant about its basic properties for example the mass.
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What we know about dark matter

• 27% of the energy density of the universe.
• Dark (transparent): no/weakly electromagnetic interactions.
• Collisionless: no/weakly self-interaction or interaction with baryons
• Cold (non-relativistic): moves much slower than c.
• Pressureless: gravitational attractive, clusters.

However there remains a huge uncertainty on its mass and many scenarios exist, 
from elementary particles to macroscopic objects:
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Figure 1. Visualization of possible solutions to the dark matter problem.
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II- Ultra-Light Dark Matter

Renewed interest in recent years (Hui, Ostriker, Tremaine, Witten 2017), especially since WIMPs have not been detected yet 
and ULDM might alleviate some small-scale tensions of LCDM.

These problems may be solved by a proper account of baryonic physics (feedback from Supernovae and AGN), 
but ULDM remains an interesting candidate on its own.



Fuzzy Dark Matter

For Fuzzy Dark Matter:
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m ⇠ 10�22eV

De Broglie wavelength:
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�dB ⇠ 1 kpc

The DM density field behaves like CDM on large scales but structures are suppressed below 
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�dB

In particular, hydrostatic flat cores (« solitons ») can form at the center of DM halos.

However, this model already seems ruled out by Lyman-alpha forest power 
spectra (because of this suppression of small-scale power).



In the FDM model, the wavelike dynamics below         , which leads to the suppression of small-scale power, 
appears as an effective « quantum pressure » in the hydrodynamical regime.
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�dB

Instead of relying on this quantum pressure (large         ), we can also suppress small-scale structures 
through self-interactions.
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�dB

This also generates an effective pressure, which is now due to the self-interactions.

Scalar field Dark Matter with self-interactions



III-  Scalar-field models

For a mostly quadratic potential with small self-interactions:

simulations, which agree with the well-known Navarro-
Frenk-White (NFW) profile [87]. In fact, supermassive
BHs are expected to involve baryonic physics, as cooling
and dissipation allow baryons to fall into gravitational
potential wells. Nonequilibrium physics may also come
into play through the mergers of smaller BHs, whereas the
initial seeds could result from the remnants of massive stars
or the collapse of large gas clouds or of stellar clusters.
See, for instance, Ref. [88] for a recent review of scenarios
for the assembly of supermassive BHs. Similar baryonic
processes should also be present in scalar DM cosmologies;
hence, we expect supermassive BHs to form as well in these
scenarios.
Thus, in this paper, we investigate the smooth accretion

onto the supermassive BH after a solitonic halo profile has
formed on the galactic scale (similar to the NFW halo
profile for CDM scenarios). We find that outside the
Schwarzschild radius and close enough to the black hole
the scalar dynamics are described by a stationary solution
with nonvanishing flux. This corresponds to the infall of
dark matter into the central BH. Far away from the center,
the dynamics reproduce the static soliton behavior, with a
solution whose density is nearly constant in the core before
falling off rapidly towards zero [89]. This selects a unique
solution with constant flux and nearly vanishing velocity
far away from the BH, which is similar to the transonic
solution obtained for the hydrodynamic case. We find
typically that the lifetime of the soliton, despite the falling
of matter into the BH, is larger than the age of the Universe.
Moreover, the constraints on the density profile of dark
matter inferred from the stellar dynamics in the vicinity of
the central BH [90,91] are easily met.
This manuscript is arranged as follows. In Sec. II,

we describe the main equations of a generic model of
scalar DM within a Schwarzschild geometry, in both
isotropic coordinates (Sec. II A 2) and Eddington coordi-
nates (Sec. III D). In Sec. III, we analyze the main features
of the scalar DM solitons for the harmonic case. In Sec. IV,
we extend this analysis to the self-interacting case deter-
mined by a quartic term. In Sec. V, we derive the long
lifetime associated with the scalar-field soliton found in the
previous section. Finally, the main conclusions are sum-
marized in Sec. VI.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

The scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
: ð1Þ

We also write the scalar-field potential as

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ; ð2Þ

where VI is the self-interaction potential. In this work, we
focus on the quartic self-interaction potential

VIðϕÞ ¼
λ4
4
ϕ4: ð3Þ

Such scalar fields can play the role of DM and build scalar
solitons, i.e., static profiles with a finite core, at the center
of galactic halos. These solitons can be the result of the
balance between the self-gravity of the scalar cloud and a
“quantum pressure” (due to the fact that the underlying
equations of motion are the Klein-Gordon equation, or the
Schrödinger equation in the nonrelativistic limit, rather
than the hydrodynamical Euler equation) or to a repulsive
self-interaction, associated with λ4 > 0. In this paper,
following our previous work [89], we focus on the large
scalar-mass limit

m ≫ 10−21 eV; ð4Þ

which ensures that the quantum pressure is negligible from
cosmological to galactic scales. Then, the galactic solitons
are due to the balance between gravity and the repulsive
self-interaction. In the large scalar-mass limit, the analysis
simplifies, and we can derive in the next sections explicit
expressions for the scalar-field profile and its inflow onto
the supermassive BH. Around a Schwarzschild BH, we
shall see below that the large-mass limit becomes defined
by the lower bound (40), which is somewhat larger than (4).

B. Schwarzschild metric

Close to the BH, the contribution from the scalar field is
negligible, and the metric is the standard Schwarzschild
metric [92,93]

ds2 ¼ −
$
1 −

rs
r̃

%
dt2 þ

$
1 −

rs
r̃

%−1
dr̃2 þ r̃2dΩ⃗2; ð5Þ

where r̃ is the Schwarzschild radial coordinate and rs ¼
2GM is the Schwarzschild radius of the BH of mass M.
Throughout this paper, we work in natural units with c ¼ 1.

C. Isotropic coordinates

We focus on spherically symmetric systems, as we
consider a spherical scalar cloud around a supermassive
Schwarzschild BH. To simplify the matching with the
Newtonian gauge at large scales, we work with the
isotropic radial coordinate r and the time t throughout
this paper, except in Secs. III D, IV F, and IVG. Then, the
static spherically symmetric metric can be written in the
isotropic form
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Background:
�̈+ 3H�̇+

dV

d�
= 0

V =
1

2
m2�2

H ⌧ m

̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ

Notice the similarity with the ansatz (9) defining the
complex scalar field ψ . The amplitude of the scalar field
evolves in time and decreases with the scale factor

φ̄ ¼ φ̄0a−3=2; ð24Þ

while the phase evolves according to

S̄ðtÞ ¼ S̄0 −
Z

t

t0
dtmΦI

!
m2φ̄2

0

2a3

"
: ð25Þ

Hence, at the background level, the scalar field oscillates
harmonically at the leading order, with the high frequency
m given by the scalar mass. The Hubble expansion and the
self-interactions give rise to a slow decay of the amplitude
and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞

n¼2

λ2n
ð2nÞ!
ðn!Þ2

!
ρ̄0

2m2Λ2a3

"
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ
ρΛ

þ c2
ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.
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Klein-Gordon . eq.:

e.g., no self-interactions:

the scalar field oscillates with frequency m,
and a slow decay of the amplitude:

� = �0(a/a0)
�3/2 cos(mt)

behaves like dark matter: ⇢ / a�3

V / �n w =
hp�i
h⇢�i

=
n� 2

n+ 2

Brax et al. 2019

where the speed of sound squared becomes negative at low
background densities. We first use a perturbative approach
in Sec. III B, to follow the growth of the scalar-field density
perturbations. In Sec. III C, we study the stable isolated
scalar-field configurations that arise in such a model, i.e.,
the “solitons” that correspond to the final dark matter
clumps. We estimate in Sec. III D the efficiency of the
collisional aggregation of these scalar clouds, shortly after
their formation and before they are diluted by the expansion
of the Universe, and we check in Sec. III E that they do not
collapse to black holes. Then, in Sec. III F, we take into
account theoretical constraints to compute the parameter
space of this scenario. In Sec. III G we compute the scales
spanned by the scalar dark-matter clumps and in Sec. III H
we check that they are far beyond the reach of microlensing
observations.
Next, in Sec. IV, we present a different mechanism for

clump formation, associated with a parametric resonance.
We take as an example a Lagrangian inspired from axion
monodromy, where a dominant mass term is corrected by a
subleading cosine term. The parametric resonance then
arises from the interplay between this oscillating self-
interaction term, the quantum pressure, and the kinetic
terms of the scalar field. We again describe the perturbative
growth of the scalar-field density fluctuations and the stable
solitons that can arise. We also compute the parameter
space of this second scenario and the size of the scalar
clumps. Again, we check that they do not collapse into
black holes and are much below the observational threshold
of microlensing observations.
We present our main conclusions in Sec. V. We finally

complete our discussion with different Appendices on
thermodynamical phase transitions, parametric resonance,
and soliton profiles.

II. CLASSICAL FIELDS AND THEIR
NONRELATIVISTIC LIMIT

A. Classicality

In the following, we shall be interested in models of
scalar dark matter where the dark-matter field can be
described classically. This is a reasonable approximation
for the quantum field ϕ, whose nonrelativistic behavior will
give rise to dark matter, if the occupation number N of the
associated quantum state is very large. Denoting by ρ the
energy density of the field and by n ¼ ρ=m the number
density, where m is the mass of the scalar, the occupation
number can be estimated as [48]

N ≃
ρ
m
λ3dB; λdB ¼ 2π

mv
; ð1Þ

where λdB is the de Broglie wavelength of the scalar
particles associated to ϕ. Here v is their typical velocity.
This gives the condition for classicality

N ∼
ρ

m4v3
≫ 1: ð2Þ

We can envisage two types of situations. In the first one,
the energy density of the scalar field is nearly homo-
geneously distributed in the Universe and behaves like
ρ ≃ ρ0=a3, where ρ0 is the present dark-matter density in
the Universe. Inside large-scale inhomogeneities such as
galaxy halos, the typical velocity of dark-matter particles v0
is small and the classical regime is attained when

m4v30 ≪ ρ0 ∼ 10−48 GeV4; ð3Þ

where we consider low redshifts in the matter era. As we
expect v0 ≃ 10−3, this is the case when

cosmological inhomogeneities only∶ m ≪ 0.1 eV: ð4Þ

In this mass range the field can be treated classically. This
also applies at higher redshifts, as ρ ∝ a−3 and typically
v ∼ a−1 because of the expansion of the Universe.
Another scenario is the one that we consider in this

paper: dark matter is made of scalar-field clumps created in
the radiation era and forming a bound state of dark-matter
fluid. Then, in a fashion similar to primordial black holes,
these clumps play the role of dark matter particles and
behave at late times as in standard CDM cosmologies. In
this case, the density ρ is large inside the clumps, reflecting
the large energy densities at the time of their formation, and
the velocity is negligible as these clumps are equilibrium
configurations. Hence, for such clumpsN will be very large
and we can treat ϕ as a classical field. In fact, the
classicality condition (2) will provide a self-consistency
constraint on the parameter space of the scenarios we study
in this paper.

B. Equations of motion

We focus on scalar-field models characterized by canoni-
cal kinetic terms and an interaction potential VIðϕÞ. Thus,
they are governed by the action

S½ϕ% ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð5Þ

with

VðϕÞ ¼ 1

2
m2ϕ2 þ VIðϕÞ: ð6Þ

In this paper, we restrict our study to the nonrelativistic
regime, when the self-interactions are small as compared
with the quadratic part,

VI ≪
1

2
m2ϕ2: ð7Þ
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where the speed of sound squared becomes negative at low
background densities. We first use a perturbative approach
in Sec. III B, to follow the growth of the scalar-field density
perturbations. In Sec. III C, we study the stable isolated
scalar-field configurations that arise in such a model, i.e.,
the “solitons” that correspond to the final dark matter
clumps. We estimate in Sec. III D the efficiency of the
collisional aggregation of these scalar clouds, shortly after
their formation and before they are diluted by the expansion
of the Universe, and we check in Sec. III E that they do not
collapse to black holes. Then, in Sec. III F, we take into
account theoretical constraints to compute the parameter
space of this scenario. In Sec. III G we compute the scales
spanned by the scalar dark-matter clumps and in Sec. III H
we check that they are far beyond the reach of microlensing
observations.
Next, in Sec. IV, we present a different mechanism for

clump formation, associated with a parametric resonance.
We take as an example a Lagrangian inspired from axion
monodromy, where a dominant mass term is corrected by a
subleading cosine term. The parametric resonance then
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complete our discussion with different Appendices on
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and soliton profiles.

II. CLASSICAL FIELDS AND THEIR
NONRELATIVISTIC LIMIT

A. Classicality

In the following, we shall be interested in models of
scalar dark matter where the dark-matter field can be
described classically. This is a reasonable approximation
for the quantum field ϕ, whose nonrelativistic behavior will
give rise to dark matter, if the occupation number N of the
associated quantum state is very large. Denoting by ρ the
energy density of the field and by n ¼ ρ=m the number
density, where m is the mass of the scalar, the occupation
number can be estimated as [48]

N ≃
ρ
m
λ3dB; λdB ¼ 2π

mv
; ð1Þ

where λdB is the de Broglie wavelength of the scalar
particles associated to ϕ. Here v is their typical velocity.
This gives the condition for classicality

N ∼
ρ

m4v3
≫ 1: ð2Þ

We can envisage two types of situations. In the first one,
the energy density of the scalar field is nearly homo-
geneously distributed in the Universe and behaves like
ρ ≃ ρ0=a3, where ρ0 is the present dark-matter density in
the Universe. Inside large-scale inhomogeneities such as
galaxy halos, the typical velocity of dark-matter particles v0
is small and the classical regime is attained when

m4v30 ≪ ρ0 ∼ 10−48 GeV4; ð3Þ

where we consider low redshifts in the matter era. As we
expect v0 ≃ 10−3, this is the case when

cosmological inhomogeneities only∶ m ≪ 0.1 eV: ð4Þ

In this mass range the field can be treated classically. This
also applies at higher redshifts, as ρ ∝ a−3 and typically
v ∼ a−1 because of the expansion of the Universe.
Another scenario is the one that we consider in this

paper: dark matter is made of scalar-field clumps created in
the radiation era and forming a bound state of dark-matter
fluid. Then, in a fashion similar to primordial black holes,
these clumps play the role of dark matter particles and
behave at late times as in standard CDM cosmologies. In
this case, the density ρ is large inside the clumps, reflecting
the large energy densities at the time of their formation, and
the velocity is negligible as these clumps are equilibrium
configurations. Hence, for such clumpsN will be very large
and we can treat ϕ as a classical field. In fact, the
classicality condition (2) will provide a self-consistency
constraint on the parameter space of the scenarios we study
in this paper.

B. Equations of motion

We focus on scalar-field models characterized by canoni-
cal kinetic terms and an interaction potential VIðϕÞ. Thus,
they are governed by the action

S½ϕ% ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð5Þ

with

VðϕÞ ¼ 1

2
m2ϕ2 þ VIðϕÞ: ð6Þ

In this paper, we restrict our study to the nonrelativistic
regime, when the self-interactions are small as compared
with the quadratic part,

VI ≪
1

2
m2ϕ2: ð7Þ
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̈ϕ̄þ 3H _̄ϕþm2ϕ̄þ dVI

dϕ
¼ 0; ð22Þ

whose solution can be written as a slowly varying defor-
mation of the harmonic oscillator,

ϕ̄ðtÞ ¼ φ̄ðtÞ cosðmt − S̄ðtÞÞ: ð23Þ

Notice the similarity with the ansatz (9) defining the
complex scalar field ψ . The amplitude of the scalar field
evolves in time and decreases with the scale factor

φ̄ ¼ φ̄0a−3=2; ð24Þ

while the phase evolves according to

S̄ðtÞ ¼ S̄0 −
Z

t

t0
dtmΦI

!
m2φ̄2

0

2a3

"
: ð25Þ

Hence, at the background level, the scalar field oscillates
harmonically at the leading order, with the high frequency
m given by the scalar mass. The Hubble expansion and the
self-interactions give rise to a slow decay of the amplitude
and to a phase shift. The power-law decay φ̄ ∝ a−3=2 shows
that the scalar-field energy density ρ̄ϕ ≃m2ϕ̄2=2 decreases
like a−3 and plays the role of a nonrelativistic dark-matter
component.

2. Nonrelativistic limit

Comparing the solution (23) with the nonrelativistic
decomposition (9), we can see that, at the background level,
the complex scalar field ψ̄ is

ψ̄ðtÞ ¼ ψ̄0a−3=2eiS̄; with ψ̄0 ¼
ffiffiffiffi
m
2

r
φ̄0 ¼

ffiffiffiffiffi
ρ̄0
m

r
: ð26Þ

We can check that the solution defined by ρ̄ ¼ ρ̄0=a3 and S̄
given by Eq. (25), which also can be written as

_̄S ¼ −
mΛ4a3

2ρ̄0

X∞

n¼2

λ2n
ð2nÞ!
ðn!Þ2

!
ρ̄0

2m2Λ2a3

"
n
; ð27Þ

is indeed the solution of the equations of motion derived
from the hydrodynamical action, which read

_̄S ¼ −m
dVI

dρ
; ð28Þ

_̄ρþ 3Hρ̄ ¼ 0: ð29Þ

Hence, at the background level, the evolution of the scalar
field given by the hydrodynamical equations reproduces the
full solution to the scalar-field equation (22).

III. TACHYONIC INSTABILITY FOR SMOOTH
SELF-INTERACTIONS

A. Polynomial self-interactions

In the first part of this paper, we consider the scenario
illustrated in Fig. 1, associated with slowly-varying self-
interaction potentials. For template, we take a low-order
polynomial case where we directly define the model at the
nonrelativistic level,

ΦI ¼ −c1
ρ
ρΛ

þ c2
ρ2

ρ2Λ
; VI ¼ −c1

ρ2

2ρΛ
þ c2

ρ3

3ρ2Λ
; ð30Þ

with ci > 0. This corresponds to

VIðϕÞ ¼ −
c1m4

3ρΛ
ϕ4 þ 2c2m6

15ρ2Λ
ϕ6: ð31Þ

FIG. 1. The main stages of the formation of scalar dark-matter clumps for the tachyonic scenario (31). Cosmic time grows from the left
column to the right column, and from the upper panel to the lower panel within each column. See the main text for explanations.
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Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð1Þ

where we include a quartic self-interaction,

VðϕÞ¼m2

2
ϕ2þVIðϕÞ with VIðϕÞ¼

λ4
4
ϕ4; λ4>0: ð2Þ

The coupling constant λ4 is taken positive to ensure that the
self-interaction is repulsive (a negative sign corresponds to
attractive self-interaction). This leads to an effective pres-
sure that can counterbalance gravity and lead to static and
stable dark matter halos on small scales, called solitons in
the following.
On the cosmological background or on galactic scales,

the oscillations of the scalar field due to the quadratic mass
term are required to be dominant, leading to an upper
bound on λ4. This ensures that, at lowest order, the scalar
field behaves as cold dark matter with a vanishing pressure.
Then, the interaction term is a small perturbation that
slightly modifies the harmonic oscillations of the scalar
field and gives rise to an effective pressure, which leads to
deviations from the CDM scenario on small scales. In
particular, this leads to a characteristic scale [33]

ra ¼
ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð3Þ

where MPl is the reduced Planck mass. This sets both the
Jeans length, which is independent of density and redshift
[37,38] and below which density perturbations of the
cosmological background cease to grow and oscillate,
and the size of hydrostatic equilibria (solitons) that can
form after collapse and decoupling from the Hubble
expansion. In the nonrelativistic regime, which applies to
large scales in the late Universe and to astrophysical scales
far from BH horizons, one can decompose the solutions to
the nonlinear Klein-Gordon equation between the fast
oscillations at frequency m and a slowly varying envelope
that evolves on cosmological or astrophysical timescales.
The latter is then governed by the Schrödinger equation.
We refer the reader to [33] for a cosmological study of these
SFDM scenarios. In the following, we focus on subgalactic
scales and discard the expansion of the universe.

B. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð4Þ

In this regime, where typical frequencies _ψ=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

i _ψ ¼ −
∇2ψ
2m

þmðΦN þΦIÞψ ; ð5Þ

whereΦN is the Newtonian gravitational potential andΦI is
the nonrelativistic self-interaction potential. For the quartic
self-interaction it reads [33]

ΦI ¼
mjψ j2

ρa
with ρa ¼

4m4

3λ4
: ð6Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transform [39],

ψ ¼
ffiffiffiffi
ρ
m

r
eis: ð7Þ

Then, the real and imaginary parts of the Schrödinger
equation (5) give

_ρþ∇ ·
$
ρ
∇s
m

%
¼ 0; ð8Þ

_s
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð9Þ

while the nonrelativistic self-interaction potential reads

ΦI ¼
ρ
ρa

¼ 3λ4ρ
4m4

: ð10Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð11Þ

Eqs. (8)–(9) give the usual continuity and Euler equations,

_ρþ∇ · ðρv⃗Þ ¼ 0; ð12Þ

_v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð13Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to a hydrodynamical picture. In the Hamilton-Jacobi
and Euler equations (9) and (13) we have neglected the
quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð14Þ

This is because in this paper we focus on the regime
associated with the condition (27) below, where the self-
interaction dominates over the quantum pressure. Then,
wavelike effects, such as interference patterns, are
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timing problem [115], a discrepancy observed in the For-
nax galaxy where the expected strong dynamical friction,
predicted by the standard CDM model, fails to reproduce
the observations of slowly migrating globular clusters to-
wards the galaxy center, and their relevance to gravi-
tational waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.

In this paper, we explore the e↵ects of dynamical fric-
tion and mass accretion experienced by a Schwarzschild
black hole moving within a self-interacting scalar dark
matter cloud at supersonic velocities. Our primary focus
is on the Thomas-Fermi regime, where self-interactions
are significant and the wavelike e↵ects of the scalar field
are negligible. This regime results in dark matter dynam-
ics within the solitonic solution behaving more like a gas
than FDM, although it retains distinctive characteristics.
This study of the supersonic regime complements our
previous investigation in the subsonic case [116], o↵er-
ing relevance to ongoing research on gravitational waves.
The implications of mass accretion and dynamical fric-
tion on binary systems can be critical, potentially de-
tectable by upcoming gravitational wave detectors such
as DECIGO or LISA [101, 117–120]. Additionally, the
application of such results to the Fornax globular clus-
ter timing problem, where the CDM dynamical friction
appears too strong, is of particular interest.

The outline of the paper is as follows. Section II
introduces scalar field dark matter with quartic self-
interactions, discussing its equations of motion and equi-
librium solitonic solutions. Section III compares the sub-
sonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymp-
totic expansions and the BH accretion rate and derives
the drag force exerted on the BH. Section V discusses
the accretion rate in comparison with the radial case and
with the classical Hoyle-Lyttleton prediction, and high-
lights the two regimes obtained at moderate and high
Mach numbers. Section VI compares the magnitudes
of the accretion drag and dynamical friction, while Sec-
tion VII provides an independent computation of the dy-
namical friction from the gravitational force exerted by
the BH wake. Section VIII presents a numerical compu-
tation of the density and velocity fields for a moderate
Mach number, to illustrate the behaviour of the system
with a bow shock upstream of the BH. Section IX com-
pares our results with the behaviours of other systems
(collisionless, perfect fluid and FDM cases). Finally, we
conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
dark matter scenario described by the action

S� =

Z
d
4
x
p
�g


�1

2
g
µ⌫
@µ�@⌫�� V (�)

�
, (1)

with a quartic self-interaction,

V (�) =
m

2

2
�
2 + VI(�) with VI(�) =

�4

4
�
4
. (2)

Here m is the mass of the scalar field and �4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an e↵ective
pressure that can balance gravity. This allows the for-
mation of stable static equilibria, also called boson stars
or solitons. Thus, in this paper we consider the super-
sonic motion of a BH inside such an extended soliton, or
quasi-static dark matter halo.
The parameters m and �4 determine the characteristic

density and radius

⇢a =
4m4

3�4

, ra =
1p

4⇡G⇢a
. (3)

The dynamics that we study in this paper will only de-
pend on this combination ⇢a and on the mass and veloc-
ity of the BH. Thus, di↵erent dark matter models with
the same ⇢a show the same large-scale dynamics. We
refer to [116] for a presentation of the regions in the pa-
rameter space (m,�4) where our computations apply, for
various BH masses. We briefly recall below the equa-
tions of motion of the scalar field in the relativistic and
nonrelativistic regimes.

B. Relativistic regime

As in [116], we neglect the gravitational backreaction
of the scalar cloud and we consider the steady-state limit,
that is, the growth and the displacement of the BH are
small as compared with the BH mass and the dark mat-
ter halo radius. Then, working with the isotropic radial
coordinate r, the static spherically symmetric metric can
be written as

ds
2 = �f(r) dt2 + h(r) (dr2 + r

2
d~⌦2). (4)

Close to the BH, below a transition radius rsg, the BH
gravity dominates and the isotropic metric functions f(r)
and h(r) read as

rs

4
< r ⌧ rsg : f(r) =

✓
1� rs/(4r)

1 + rs/(4r)

◆2

,

h(r) = (1 + rs/(4r))
4
, (5)

IV-  Quartic self-interaction

Fuzzy Dark Matter (FDM) + self-interactions
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⇢ / a�3 Repulsive self-interaction Effective pressure

One characteristic density / length-scale:

Relativistic regime -

strong self-interaction Jeans length - Radius of solitons

pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
X2; VIðϕÞ ¼

λ4
4
ϕ4; λ4 ¼−k2

m4

2Λ4
: ð7Þ

For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case

λ4 > 0; k2 < 0: ð8Þ
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Also, k-essence models:

pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
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d4x
ffiffiffiffiffiffi−gp
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Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
X2; VIðϕÞ ¼

λ4
4
ϕ4; λ4 ¼−k2

m4

2Λ4
: ð7Þ

For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case

λ4 > 0; k2 < 0: ð8Þ
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pressure that balances the gravitational attraction, allowing
for clouds of dark matter to be stable on large scales. Such
clouds form solitonlike objects that are candidates for
representing dark-matter halos with a finite core. This
behavior is typically obtained for dark-matter scalar fields
with a positive ϕ4 self-interaction. Moreover, as shown in
[33], these solitons are long lived even when the super-
massive black hole (BH) at the center of the halo is taken
into account. Indeed, the lifetime of such objects is longer
than the age of the Universe.
Here we consider models of scalar dark matter where the

scalar mass term is complemented with k-essence kinetic
terms [34]. On large scales and in the nonrelativistic limit,
these models are equivalent to self-interacting models of
scalars with polynomial interactions. We extend this
analysis to the case where there is a supermassive BH at
the center of the galaxies. In this case, the equivalence with
polynomial models is more subtle; in particular, we show
that regular dark-matter profiles with constant scalar fluxes,
which must behave as ingoing waves close to the BH
horizon, cannot always be connected to the solitonic
solution at large radii. This happens for the ð∂ϕÞ4 model,
where the scalar field cannot sustain a large scalar cloud in the
presence of the central BH. We give conditions for the
existence of regular solutions where the scalar profile exists
and is regular from the BH horizon to spatial infinity. On top
of the usual k-essence stability conditions for the absence of
ghosts and gradient instabilities, we find that the growth of
the k-essence function for large argument cannot be too
steep. In this case, this also guarantees that the models are
stable under quantum corrections, even though the model
becomes nonlinear close to the BH horizon.
The paper is arranged as follows. InSec. II,wedescribe the

models of scalar darkmatter with nonlinear kinetic terms and
connect them in the nonrelativistic regime with theories that
have nonlinear scalar potentials. In Sec. III, we present the
nonlinear solutions to the modified Klein-Gordon equation
and the constant flux solutions. In Sec. IV, we make the
connection between the nonlinear solutions and the large-
radius and nonrelativistic limits. We also consider the
behavior close to the horizon. In Sec. V, we give the example
of quartic Lagrangians for which constant flux solutions
connected to stable solitons at large radii do not exist. We
then discuss when global solutions exist in Sec. VI. Then, in
Sec. VII, we give an explicit example of models for which
constant flux solutions up to very large radii exist and the
lifetime of the soliton is larger than the age of theUniverse. In
Sec. VIII, we discuss the quantum stability of these models.
We finally conclude in Sec. IX.

II. DARK-MATTER SCALAR FIELD WITH
DERIVATIVE SELF-INTERACTIONS

A. Scalar-field action with nonstandard kinetic term

In this paper, we investigate scenarios where the dark-
matter scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
Λ4KðXÞ −m2

2
ϕ2

#
; ð1Þ

where the normalized kinetic argument X is given by

X ¼ −
1

2Λ4
gμν∂μϕ∂νϕ; ð2Þ

and we decompose the nonstandard kinetic term KðXÞ as
the sum of the standard term X and a nonstandard nonlinear
contribution KI,

KðXÞ ¼ X þ KIðXÞ: ð3Þ

We assume that KI admits the small-X expansion

X ≪ 1∶ KIðXÞ ¼
X

n≥2

kn
n
Xn: ð4Þ

The scale Λ plays the role of the strong coupling scale. We
shall check that the models make sense quantum mechan-
ically even when X ≫ 1; see Sec. VIII.
As shown in [27], in the nonrelativistic and large-mass

regime, where KI ≪ X, the small nonlinear correction KI is
equivalent to a small nonlinear potential VI, with VI ≪
m2ϕ2=2 and

VIðϕÞ ¼ Λ4
X

n≥4

λn
n
ϕn

Λn ; ð5Þ

with

λ2n ¼ −2kn
$
m2

2Λ2

%n
: ð6Þ

This result is obtained at leading order in the large-mass
limit, when the dynamics are averaged over the fast
oscillations eimt driven by the zeroth-order quadratic
Lagrangian Λ4X −m2ϕ2=2.
In the case of a quartic derivative self-interaction, we

obtain

KIðXÞ ¼
k2
2
X2; VIðϕÞ ¼

λ4
4
ϕ4; λ4 ¼−k2

m4

2Λ4
: ð7Þ

For positive λ4, hence negative k2, this gives rise to an
effective pressure on small scales [27]. This leads to a
nonzero Jeans length for the growth of cosmological struc-
tures, and in virialized halos the scalar field can relax to a
static soliton, where the halo self-gravity is balanced by this
effective pressure due to the (derivative) self-interaction.
Therefore, in this paper we focus on the case

λ4 > 0; k2 < 0: ð8Þ
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Very large occupation numbers:
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Galaxy-scale dynamics:

Formation of DM halos with a flat core



I-  NON-RELATIVISTIC REGIME

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð1Þ

where we include a quartic self-interaction,

VðϕÞ¼m2

2
ϕ2þVIðϕÞ with VIðϕÞ¼

λ4
4
ϕ4; λ4>0: ð2Þ

The coupling constant λ4 is taken positive to ensure that the
self-interaction is repulsive (a negative sign corresponds to
attractive self-interaction). This leads to an effective pres-
sure that can counterbalance gravity and lead to static and
stable dark matter halos on small scales, called solitons in
the following.
On the cosmological background or on galactic scales,

the oscillations of the scalar field due to the quadratic mass
term are required to be dominant, leading to an upper
bound on λ4. This ensures that, at lowest order, the scalar
field behaves as cold dark matter with a vanishing pressure.
Then, the interaction term is a small perturbation that
slightly modifies the harmonic oscillations of the scalar
field and gives rise to an effective pressure, which leads to
deviations from the CDM scenario on small scales. In
particular, this leads to a characteristic scale [33]

ra ¼
ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð3Þ

where MPl is the reduced Planck mass. This sets both the
Jeans length, which is independent of density and redshift
[37,38] and below which density perturbations of the
cosmological background cease to grow and oscillate,
and the size of hydrostatic equilibria (solitons) that can
form after collapse and decoupling from the Hubble
expansion. In the nonrelativistic regime, which applies to
large scales in the late Universe and to astrophysical scales
far from BH horizons, one can decompose the solutions to
the nonlinear Klein-Gordon equation between the fast
oscillations at frequency m and a slowly varying envelope
that evolves on cosmological or astrophysical timescales.
The latter is then governed by the Schrödinger equation.
We refer the reader to [33] for a cosmological study of these
SFDM scenarios. In the following, we focus on subgalactic
scales and discard the expansion of the universe.

B. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð4Þ

In this regime, where typical frequencies _ψ=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

i _ψ ¼ −
∇2ψ
2m

þmðΦN þΦIÞψ ; ð5Þ

whereΦN is the Newtonian gravitational potential andΦI is
the nonrelativistic self-interaction potential. For the quartic
self-interaction it reads [33]

ΦI ¼
mjψ j2

ρa
with ρa ¼

4m4

3λ4
: ð6Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transform [39],

ψ ¼
ffiffiffiffi
ρ
m

r
eis: ð7Þ

Then, the real and imaginary parts of the Schrödinger
equation (5) give

_ρþ∇ ·
$
ρ
∇s
m

%
¼ 0; ð8Þ

_s
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð9Þ

while the nonrelativistic self-interaction potential reads

ΦI ¼
ρ
ρa

¼ 3λ4ρ
4m4

: ð10Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð11Þ

Eqs. (8)–(9) give the usual continuity and Euler equations,

_ρþ∇ · ðρv⃗Þ ¼ 0; ð12Þ

_v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð13Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to a hydrodynamical picture. In the Hamilton-Jacobi
and Euler equations (9) and (13) we have neglected the
quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð14Þ

This is because in this paper we focus on the regime
associated with the condition (27) below, where the self-
interaction dominates over the quantum pressure. Then,
wavelike effects, such as interference patterns, are
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A) From Klein-Gordon eq. to  Schrödinger eq.:

On the scale of the galactic halo we are in the nonrelativistic regime: the frequencies and wave numbers of interest are much smaller than      
and the metric fluctuations are small.
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Decompose the real scalar field      in terms of the complex scalar field�  

factorizes (removes) the fast oscillations of frequency m

 ̇ ⌧ m , r ⌧ m 

 (x, t) evolves slowly, on astrophysical or cosmological scales.

Instead of the Klein-Gordon eq., it obeys a (non-linear) Schrödinger eq.:

Newtonian 
gravitational potential

self-interactions

At linear order in the gravitational potential Φ and for
m ≫ H, where H is the Hubble expansion rate, the
equation of motion of the real scalar field ϕ in a perturbed
Friedmann-Lemaître-Robertson-Walker universe (FLRW)
is

ϕ̈þ 3H _ϕ −
1

a2
∇2ϕþ ð1þ 2ΦÞm2ϕþ dVI

dϕ
¼ 0; ð8Þ

where a is the scale factor of the Universe, normalized to
unity now. As we are interested in the classical behavior of
the field ϕ in the nonrelativistic limit, it is convenient to
decompose

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðψe−imt þ ψ⋆eimtÞ; ð9Þ

when the spatial and time variations of ψ are small
compared to m. This ansatz emphasizes the fact that the
scalar field oscillates with a pulsation m as the quadratic
terms in the scalar field action (5) dominate, following (7).
From this we can deduce the equation of motion of the
nonrelativistic complex scalar field ψ ,

i
"
_ψ þ 3

2
Hψ

#
¼ −

∇2ψ
2ma2

þmΦψ þ ∂VI

∂ψ⋆ ; ð10Þ

which is a nonlinear version of the Schrödinger equation.
Here we introduced the effective nonrelativistic self-inter-
action potential VIðψ ;ψ⋆Þ, which is obtained from VI by
averaging over the leading oscillations e%imt of ϕ. For
polynomial self-interactions, or analytic potentials that can
be defined by their Taylor expansion, with

VIðϕÞ ¼ Λ4
X

p≥3

λp
p

"
ϕ
Λ

#
p
; ð11Þ

one obtains [33]

VIðψ ;ψ⋆Þ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ψψ⋆

2mΛ2

#
p
: ð12Þ

It is convenient to introduce the Madelüng transform [49]

ψ ¼
ffiffiffiffi
ρ
m

r
eiS: ð13Þ

This defines the effective density field ρ, which coincides
with the scalar-field energy density in this nonrelativistic
limit. The phase S defines an effective curl-free velocity
field v⃗,

v⃗ ¼ ∇⃗S
ma

: ð14Þ

Then, the equations of motion take a familiar form, i.e., the
one of hydrodynamics [39]. The real part of the nonlinear
Schrödinger equation gives the continuity equation

_ρþ 3Hρþ 1

a
∇ · ðρv⃗Þ ¼ 0: ð15Þ

We can see that the self-interactions due to VI do not
modify this continuity equation. The imaginary part of the
nonlinear Schrödinger equation becomes the Hamilton-
Jacobi relation

_Sþ ð∇SÞ2

2ma2
¼ −mΦ −m

dVI

dρ
þ 1

2ma2
∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p ; ð16Þ

where the nonrelativistic self-interaction potential VIðρÞ is
directly obtained from VIðψ ;ψ⋆Þ in Eq. (12) with
ψψ⋆ ¼ ρ=m,

VIðρÞ ¼ Λ4
X

p≥2

λ2p
2p

ð2pÞ!
ðp!Þ2

"
ρ

2m2Λ2

#
p
: ð17Þ

Then, taking the gradient of Eq. (16) gives the hydrody-
namical Euler equation,

_v⃗þHv⃗þ 1

a
ðv⃗ ·∇Þv⃗ ¼ −

1

a
∇ðΦþΦI þΦQÞ; ð18Þ

where we used ∇ðv⃗2Þ ¼ 2ðv⃗ ·∇Þv⃗ as ∇ × v⃗ ¼ 0. The self-
interaction potential ΦIðρÞ is defined by

ΦIðρÞ ¼
dVI

dρ
; ð19Þ

and we have introduced the “quantum pressure” term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2a2
ffiffiffi
ρ

p : ð20Þ

The continuity equation and the Euler equation will show
unstable solutions in the examples we consider in this
article, because of attractive self-interactions ΦI at low
densities. This description is valid provided the nonlinear
terms are small compared to the quadratic terms in the
original action, as in (7). This translates into the conditions

VI ≪ ρ; hence ΦI ≪ 1: ð21Þ

C. Cosmological background

1. Real scalar field ϕ

We now restrict our attention to the cosmological
background, where the scalar field ϕ̄ only depends on
time. The corresponding equation of motion is
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Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð1Þ

where we include a quartic self-interaction,

VðϕÞ¼m2

2
ϕ2þVIðϕÞ with VIðϕÞ¼

λ4
4
ϕ4; λ4>0: ð2Þ

The coupling constant λ4 is taken positive to ensure that the
self-interaction is repulsive (a negative sign corresponds to
attractive self-interaction). This leads to an effective pres-
sure that can counterbalance gravity and lead to static and
stable dark matter halos on small scales, called solitons in
the following.
On the cosmological background or on galactic scales,

the oscillations of the scalar field due to the quadratic mass
term are required to be dominant, leading to an upper
bound on λ4. This ensures that, at lowest order, the scalar
field behaves as cold dark matter with a vanishing pressure.
Then, the interaction term is a small perturbation that
slightly modifies the harmonic oscillations of the scalar
field and gives rise to an effective pressure, which leads to
deviations from the CDM scenario on small scales. In
particular, this leads to a characteristic scale [33]

ra ¼
ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð3Þ

where MPl is the reduced Planck mass. This sets both the
Jeans length, which is independent of density and redshift
[37,38] and below which density perturbations of the
cosmological background cease to grow and oscillate,
and the size of hydrostatic equilibria (solitons) that can
form after collapse and decoupling from the Hubble
expansion. In the nonrelativistic regime, which applies to
large scales in the late Universe and to astrophysical scales
far from BH horizons, one can decompose the solutions to
the nonlinear Klein-Gordon equation between the fast
oscillations at frequency m and a slowly varying envelope
that evolves on cosmological or astrophysical timescales.
The latter is then governed by the Schrödinger equation.
We refer the reader to [33] for a cosmological study of these
SFDM scenarios. In the following, we focus on subgalactic
scales and discard the expansion of the universe.

B. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð4Þ

In this regime, where typical frequencies _ψ=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

i _ψ ¼ −
∇2ψ
2m

þmðΦN þΦIÞψ ; ð5Þ

whereΦN is the Newtonian gravitational potential andΦI is
the nonrelativistic self-interaction potential. For the quartic
self-interaction it reads [33]

ΦI ¼
mjψ j2

ρa
with ρa ¼

4m4

3λ4
: ð6Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transform [39],

ψ ¼
ffiffiffiffi
ρ
m

r
eis: ð7Þ

Then, the real and imaginary parts of the Schrödinger
equation (5) give

_ρþ∇ ·
$
ρ
∇s
m

%
¼ 0; ð8Þ

_s
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð9Þ

while the nonrelativistic self-interaction potential reads

ΦI ¼
ρ
ρa

¼ 3λ4ρ
4m4

: ð10Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð11Þ

Eqs. (8)–(9) give the usual continuity and Euler equations,

_ρþ∇ · ðρv⃗Þ ¼ 0; ð12Þ

_v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð13Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to a hydrodynamical picture. In the Hamilton-Jacobi
and Euler equations (9) and (13) we have neglected the
quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð14Þ

This is because in this paper we focus on the regime
associated with the condition (27) below, where the self-
interaction dominates over the quantum pressure. Then,
wavelike effects, such as interference patterns, are
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B) From Schrödinger eq. to Hydrodynamical eqs (Madelung transformation):

In the following, we neglect the « quantum pressure » (which dominates for FDM)
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« quantum pressure »

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
; ð1Þ

where we include a quartic self-interaction,

VðϕÞ¼m2

2
ϕ2þVIðϕÞ with VIðϕÞ¼

λ4
4
ϕ4; λ4>0: ð2Þ

The coupling constant λ4 is taken positive to ensure that the
self-interaction is repulsive (a negative sign corresponds to
attractive self-interaction). This leads to an effective pres-
sure that can counterbalance gravity and lead to static and
stable dark matter halos on small scales, called solitons in
the following.
On the cosmological background or on galactic scales,

the oscillations of the scalar field due to the quadratic mass
term are required to be dominant, leading to an upper
bound on λ4. This ensures that, at lowest order, the scalar
field behaves as cold dark matter with a vanishing pressure.
Then, the interaction term is a small perturbation that
slightly modifies the harmonic oscillations of the scalar
field and gives rise to an effective pressure, which leads to
deviations from the CDM scenario on small scales. In
particular, this leads to a characteristic scale [33]

ra ¼
ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð3Þ

where MPl is the reduced Planck mass. This sets both the
Jeans length, which is independent of density and redshift
[37,38] and below which density perturbations of the
cosmological background cease to grow and oscillate,
and the size of hydrostatic equilibria (solitons) that can
form after collapse and decoupling from the Hubble
expansion. In the nonrelativistic regime, which applies to
large scales in the late Universe and to astrophysical scales
far from BH horizons, one can decompose the solutions to
the nonlinear Klein-Gordon equation between the fast
oscillations at frequency m and a slowly varying envelope
that evolves on cosmological or astrophysical timescales.
The latter is then governed by the Schrödinger equation.
We refer the reader to [33] for a cosmological study of these
SFDM scenarios. In the following, we focus on subgalactic
scales and discard the expansion of the universe.

B. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð4Þ

In this regime, where typical frequencies _ψ=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

i _ψ ¼ −
∇2ψ
2m

þmðΦN þΦIÞψ ; ð5Þ

whereΦN is the Newtonian gravitational potential andΦI is
the nonrelativistic self-interaction potential. For the quartic
self-interaction it reads [33]

ΦI ¼
mjψ j2

ρa
with ρa ¼

4m4

3λ4
: ð6Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transform [39],

ψ ¼
ffiffiffiffi
ρ
m

r
eis: ð7Þ

Then, the real and imaginary parts of the Schrödinger
equation (5) give

_ρþ∇ ·
$
ρ
∇s
m

%
¼ 0; ð8Þ

_s
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð9Þ

while the nonrelativistic self-interaction potential reads

ΦI ¼
ρ
ρa

¼ 3λ4ρ
4m4

: ð10Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð11Þ

Eqs. (8)–(9) give the usual continuity and Euler equations,

_ρþ∇ · ðρv⃗Þ ¼ 0; ð12Þ

_v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð13Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to a hydrodynamical picture. In the Hamilton-Jacobi
and Euler equations (9) and (13) we have neglected the
quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð14Þ

This is because in this paper we focus on the regime
associated with the condition (27) below, where the self-
interaction dominates over the quantum pressure. Then,
wavelike effects, such as interference patterns, are
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The real and imaginary parts of the Schrödinger eq. lead to the continuity and Euler eqs.:
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II-  SOLITON (ground state): HYDROSTATIC EQUILIBRIUM

negligible. However, the dynamics remain different from
that of CDM particles because of the self-interaction.

C. Static equilibrium: Soliton around a BH

In contrast with CDM, the pressure due to the self-
interaction allows for the formation of static equilibrium
configurations with zero velocities [40–42], which are
sometimes called Bose-Einstein condensates or boson
stars. In the more familiar FDM case, such static solutions
where gravity is balanced by the quantum pressure (14),
rather than by the self-interaction (6), are often called
solitons [12,43,44] and correspond to a bound ground state
of the linear Schrödinger equation in the Newtonian
gravitational potential. In our case, the self-interaction
adds an explicit nonlinearity to the Schrödinger equation,
through the self-interaction potential ΦI in Eq. (5), in
addition to the self-gravity included in the Newtonian
potential ΦN. As we have in mind extended scalar clouds,
which may reach galactic size as for the FDM scenario,
rather than compact objects, we call these hydrostatic
equilibrium solitons as in the FDM case, rather than boson
stars. They are again bound ground states of the
Schrödinger equation (5), where the full potential now
reads Φ ¼ ΦN þΦI. As for FDM, this is actually a non-
linear equation of motion, because of the self-gravity inΦN
and of the dependence of the self-interaction potential ΦI
on ρ ¼ mjψ j2. From Eq. (13), the equation of hydrostatic
equilibrium reads

∇ðΦN þΦIÞ ¼ 0; ð15Þ

which we integrate as

ΦN þΦI ¼ α; with α ¼ ΦNðRsolÞ: ð16Þ

Here we have introduced the radius Rsol of the spherically
symmetric soliton, where the density is zero and hence
ΦI ¼ 0, which determines the value of the integration
constant α. The Newtonian gravitational potential is given
by the sum of the contributions from the central BH and
from the scalar-cloud self-gravity,

ΦN ¼ ΦBH þΦsg; ð17Þ

with

ΦBH ¼ −
GMBH

r
¼ −

rs
2r

; ∇2Φsg ¼ 4πGρ; ð18Þ

where rs ¼ 2GMBH is the Schwarzschild radius of the BH
of mass MBH. Taking the divergence of Eq. (15), using
Eqs. (18) and (10) and looking for a spherically symmetric
solution, we obtain

d2ΦI

dr2
þ 2

r
dΦI

dr
þ 1

r2a
ΦI ¼ 0; with ra ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p ; ð19Þ

where ra was also defined in Eq. (3). Introducing the
dimensionless radius x ¼ r=ra, we recover the differential
equation satisfied by spherical Bessel functions of order
zero. Thus, ΦI ¼ aj0ðxÞ þ by0ðxÞ. At small radii, the
gravitational potential is dominated by the BH and from
Eq. (16) we obtain ΦI ≃ rs=ð2rÞ. This determines the
integration constant b, and we can write the solution for
the density ρ in the nonrelativistic regime as

r ≫ rs∶ρðrÞ ¼ ρ0
sinðr=raÞ
ðr=raÞ

þ ρa
rs
2ra

cosðr=raÞ
ðr=raÞ

: ð20Þ

The first termdominates at large radii,where thegravitational
potential is mostly given by the soliton self-gravity, while the
second term dominates at small radii, where the gravitational
potential is mostly due to the BH. This transition radius rsg is
typically much smaller than the size of the soliton Rsol, and
much greater than the Schwarzschild radius,

Rsol ≃ πra; rsg ¼ rs
ρa
ρ0

; rs ≪ rsg ≪ Rsol: ð21Þ

Then, far inside the soliton we have

rs ≪ r ≪ r1=3sg r2=3a ∶ ρ ¼ ρ0 þ ρa
rs
2r

: ð22Þ

In terms of the fields ψ and ϕ this static soliton reads

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; ϕ ¼

ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&; ð23Þ

as the phase s reads s ¼ −αmt.
In the case of FDM, where the soliton can reach kpc size,

numerical simulations [43,45] show that outside this core
the scalar field is out of equilibrium, with large density
fluctuations and a mean falloff that follows the NFW profile
[46] found for CDM. We expect a similar behavior for
SFDM, in cases where there is a unique soliton of kpc size
inside galaxies. However, in this paper we also consider
scenarios with much smaller values of ra, where there
could be many scalar clouds of smaller size in the galaxy. In
any case, using the hierarchy of scales (21), we do not
specify here the dark matter profile beyond the soliton
radius. As we shall find in Sec. V C, the interaction
between the BH and the scalar cloud is governed by radii
r≲ rsg, that is, radii where the BH gravity is subdominant,
and do not significantly contribute to the accretion and the
dynamical friction of the BH. In contrast with the colli-
sionless case, there is no infrared divergence and our results
do not depend on the dynamics near the scalar cloud border
or beyond.
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stars. They are again bound ground states of the
Schrödinger equation (5), where the full potential now
reads Φ ¼ ΦN þΦI. As for FDM, this is actually a non-
linear equation of motion, because of the self-gravity inΦN
and of the dependence of the self-interaction potential ΦI
on ρ ¼ mjψ j2. From Eq. (13), the equation of hydrostatic
equilibrium reads

∇ðΦN þΦIÞ ¼ 0; ð15Þ

which we integrate as

ΦN þΦI ¼ α; with α ¼ ΦNðRsolÞ: ð16Þ

Here we have introduced the radius Rsol of the spherically
symmetric soliton, where the density is zero and hence
ΦI ¼ 0, which determines the value of the integration
constant α. The Newtonian gravitational potential is given
by the sum of the contributions from the central BH and
from the scalar-cloud self-gravity,

ΦN ¼ ΦBH þΦsg; ð17Þ

with

ΦBH ¼ −
GMBH

r
¼ −

rs
2r

; ∇2Φsg ¼ 4πGρ; ð18Þ

where rs ¼ 2GMBH is the Schwarzschild radius of the BH
of mass MBH. Taking the divergence of Eq. (15), using
Eqs. (18) and (10) and looking for a spherically symmetric
solution, we obtain

d2ΦI

dr2
þ 2

r
dΦI

dr
þ 1

r2a
ΦI ¼ 0; with ra ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p ; ð19Þ

where ra was also defined in Eq. (3). Introducing the
dimensionless radius x ¼ r=ra, we recover the differential
equation satisfied by spherical Bessel functions of order
zero. Thus, ΦI ¼ aj0ðxÞ þ by0ðxÞ. At small radii, the
gravitational potential is dominated by the BH and from
Eq. (16) we obtain ΦI ≃ rs=ð2rÞ. This determines the
integration constant b, and we can write the solution for
the density ρ in the nonrelativistic regime as

r ≫ rs∶ρðrÞ ¼ ρ0
sinðr=raÞ
ðr=raÞ

þ ρa
rs
2ra

cosðr=raÞ
ðr=raÞ

: ð20Þ

The first termdominates at large radii,where thegravitational
potential is mostly given by the soliton self-gravity, while the
second term dominates at small radii, where the gravitational
potential is mostly due to the BH. This transition radius rsg is
typically much smaller than the size of the soliton Rsol, and
much greater than the Schwarzschild radius,

Rsol ≃ πra; rsg ¼ rs
ρa
ρ0

; rs ≪ rsg ≪ Rsol: ð21Þ

Then, far inside the soliton we have

rs ≪ r ≪ r1=3sg r2=3a ∶ ρ ¼ ρ0 þ ρa
rs
2r

: ð22Þ

In terms of the fields ψ and ϕ this static soliton reads

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; ϕ ¼

ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&; ð23Þ

as the phase s reads s ¼ −αmt.
In the case of FDM, where the soliton can reach kpc size,

numerical simulations [43,45] show that outside this core
the scalar field is out of equilibrium, with large density
fluctuations and a mean falloff that follows the NFW profile
[46] found for CDM. We expect a similar behavior for
SFDM, in cases where there is a unique soliton of kpc size
inside galaxies. However, in this paper we also consider
scenarios with much smaller values of ra, where there
could be many scalar clouds of smaller size in the galaxy. In
any case, using the hierarchy of scales (21), we do not
specify here the dark matter profile beyond the soliton
radius. As we shall find in Sec. V C, the interaction
between the BH and the scalar cloud is governed by radii
r≲ rsg, that is, radii where the BH gravity is subdominant,
and do not significantly contribute to the accretion and the
dynamical friction of the BH. In contrast with the colli-
sionless case, there is no infrared divergence and our results
do not depend on the dynamics near the scalar cloud border
or beyond.
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α ¼ 3

Z
U

0
duu2y1=ðn−1Þ: ð165Þ

Thus, for each index n, we must find the value α that
satisfies the condition (165), where yðuÞ is the α-
dependent solution of Eq. (163) with the boundary
conditions yð0Þ ¼ 1 and y0ð0Þ ¼ 0. From this fundamental
solution, we obtain the profile for any mass M from
Eq. (164), which gives ΦIð0Þ ¼ α1−nðM=MaÞ2ðn−1Þ=ð3n−4Þ.
This gives in turn the scaling laws (154). In the case
n ¼ 2, the explicit solution (158), y2ðuÞ ¼ sinðuÞ=u, gives
at once U2 ¼ π and α2 ¼ 3π. From a numerical compu-
tation, we obtain for n ¼ 3 the values U3 ≃ 1.7 and
α3 ≃ 2.6, and for n ¼ 4 the values U4 ≃ 1.4 and α4 ≃ 1.9.
We compare in Fig. 2 the profiles of the nonrelativistic

potential ΦI and of the density ρ for the cases n ¼ 2, 3,
and 4, normalized to their value at the center. The radial
coordinate is normalized to the radius Rs of the soliton. We
can see that the shape of the potential ΦI does not vary
much from n ¼ 2 to n ¼ 4 but the density profile looks
increasingly like a top-hat for higher n, with a flatter core
and a vertical slope at the boundary Rs for n > 2.

G. The cosine model

For the cosine model described in Sec. II G 3, the
nonrelativistic potential ΦIðρÞ is given by Eq. (73). In
terms of the dimensionless variables p and y defined by

p ¼ ρ
ρb

; ΦIðρÞ ¼
8ρb
ρa

yðpÞ; ð166Þ

we have

yðpÞ ¼ 1 − 2J1ð
ffiffiffiffi
p

p Þ= ffiffiffiffi
p

p
: ð167Þ

As shown in Fig. 3, the function yðpÞ behaves as p=8
for p ≪ 1, it reaches a maximum of ymax ≃ 1.13 at
pmax ≃ 26.37, and goes to unity at large p with decreasing
oscillations. Defining again the characteristic radius
ra ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p
, and the dimensionless coordinate

x ¼ r=ra, the soliton profile is given by the nonlinear
equation

d2y
dx2

þ 2

x
dy
dx

þ pðyÞ
8

¼ 0: ð168Þ

At low density ρ and potential ΦI, we recover the linear
equation (157) of the quartic case. At pmaxρb the potential
ΦI becomes attractive, which gives rise to an instability.
At greater densities it shows a series of attractive and
repulsive domains but remains of finite amplitude.
Therefore, it cannot support massive and high-density
halos. Thus, a well-defined and smooth soliton profile
only exists for halos with a central density that is below
the critical value ρmax ¼ pmaxρb.

H. Stability

Stable equilibria of isolated systems correspond to
minima of the total energy at fixed mass. Saddle points
are given by the equation δE − αδM ¼ 0 for the first-order
variations, where α is the Lagrange multiplier associated
with the constraint of fixed mass [37]. From Eq. (137) this
yields

Z
dr⃗
"
δρ

v⃗2

2
þ ρv⃗ · δv⃗þ δρðΦþΦIÞ − αδρ

#
¼ 0: ð169Þ

FIG. 2. Profiles of the nonrelativistic self-interaction potential
ΦI (upper panel) and of the density ρ (lower panel) for the power-
law cases n ¼ 2, 3, and 4.
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FIG. 3. Nonrelativistic self-interaction potential ΦIðρÞ for a
cosine scalar field potential VIðϕÞ.
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As compared with CDM, the self-interactions allow the formation of hydrostatic equilibrium solutions, 
with a balance between gravity and the effective pressure:

Finite-size halo, called « soliton » or « boson star »

Density profile

KIðXÞ ¼ 0; VIðϕÞ ¼ Λ4 λ2n
2n

ϕ2n

Λ2n ; ð61Þ

or if the nonlinear kinetic term is a monomial and the self-
interaction potential vanishes,

VIðϕÞ ¼ 0; KIðXÞ ¼ Λ4 kn
n

Xn

Λ4n : ð62Þ

The nonrelativistic self-interaction potential ΦI is also a
power law,

ΦIðρÞ ¼
!
ρ
ρa

"
n−1

; ð63Þ

with

ρa ¼
!
λ2nΛ2

4m2

ð2nÞ!
ðn!Þ2

"−1=ðn−1Þ
2m2Λ2 ð64Þ

for the potential case (61), and

ρa ¼
!
−
kn
4

ð2nÞ!
ðn!Þ2

"−1=ðn−1Þ
4Λ4 ð65Þ

for the kinetic case (62). Here we focus on the cases λ2n > 0
or kn < 0, where the potential ΦI gives a repulsive force.
To ensure that the background scalar field behaves like

pressureless dark matter, at least from the time of radiation-
matter equality until now, we must satisfy the constraint
(20). This implies ΦIðρ̄eqÞ≲ 1, hence

V̄eff
I ≲ ρ̄∶ ρa ≳ ρ̄eq ∼ 1011ρ̄0 ∼ 10−36 GeV4: ð66Þ

In the kinetic case (62), this implies for coefficients kn of
order unity that the cutoff Λ must be above 1 eV,

if kn ∼ 1∶ Λ≳ 1 eV: ð67Þ

3. Cosine potential

For illustrative purposes, let us consider a bounded
potential such as a cosine, with a standard kinetic term. As
explained above, this could also correspond to a bounded
nonlinear correction to the kinetic term. Following the
two-scale scenario discussed below Eq. (20), we write the
full scalar-field potential as the sum of a leading quadratic
term and a subleading nonlinear potential, taken to be a
cosine,

VðϕÞ ¼ m2
0

2
ϕ2 þM4

I ½cosðϕ=ΛÞ − 1&; M4
I

Λ2
≪ m2

0: ð68Þ

We can absorb the quadratic part of the cosine into the
mass term and write VðϕÞ ¼ m2

2 ϕ2 þ VIðϕÞ, with

m2 ¼ m2
0 −

M4
I

Λ2
≃m2

0; ð69Þ

VIðϕÞ ¼ M4
I

#
cosðϕ=ΛÞ − 1þ ϕ2

2Λ2

$
: ð70Þ

For ϕ ≪ Λ we recover a quartic potential, with
λ4 ¼ M4

I =ð6Λ4Þ. Using the resummation described in
Sec. II G 1, the function UI defined in Eq. (54) reads

UIðxÞ ¼
M4

I

Λ4

#
1 −

sin
ffiffiffi
x

p
ffiffiffi
x

p
$
; ð71Þ

and the function U IðxÞ defined in Eq. (56) reads

U IðxÞ ¼
2M4

I

Λ4

#
1 −

J1ð2
ffiffiffi
x

p
Þffiffiffi

x
p

$
: ð72Þ

This yields for the nonrelativistic self-interaction potential
ΦIðρÞ,

ΦIðρÞ ¼
8ρb
ρa

#
1 −

2J1ð
ffiffiffiffiffiffiffiffiffiffi
ρ=ρb

p
Þffiffiffiffiffiffiffiffiffiffi

ρ=ρb
p

$
; ð73Þ

with

ρa ¼
8m4Λ4

M4
I

; ρb ¼
m2Λ2

2
; ρb ≪ ρa: ð74Þ

At low densities we again recover the case of the quartic
potential, while at high densities the self-interaction potential
converges to a finite value,

ρ ≪ ρb∶ ΦIðρÞ ¼
ρ
ρa

þ ' ' ' ð75Þ

ρ ≫ ρb∶ ΦIðρÞ ¼
8ρb
ρa

≪ 1: ð76Þ

The resummation (73) is justified because the series expan-
sions of VI, UI and U I converge over the full positive real
axis. Independently of the details of the scalar-field potential,
the generic consequence of a bounded VIðϕÞ is a bounded
nonrelativistic potential ΦIðρÞ.
Because the potential ΦI now satisfies a small upper

bound, we automatically verify the pressureless condition
(20) for the background at all redshifts. This no longer
constrains ρa to be larger than ρ̄eq, or the first expansion
coefficient λ4 to obey Eq. (27), as long as ρb ≪ ρa and
ρb < ρ̄eq. However, the constraints (27) and (66) still apply,
for the other reason described in Eq. (28) and Sec. IV E
below, associated with the formation of large-scale struc-
tures. Indeed, the Jeans length set by the repulsive self-
interaction, given by Eqs. (128) and (129), must remain
below 20 kpc to ensure that Lyman-α clouds and galaxies
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timing problem [115], a discrepancy observed in the For-
nax galaxy where the expected strong dynamical friction,
predicted by the standard CDM model, fails to reproduce
the observations of slowly migrating globular clusters to-
wards the galaxy center, and their relevance to gravi-
tational waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.

In this paper, we explore the e↵ects of dynamical fric-
tion and mass accretion experienced by a Schwarzschild
black hole moving within a self-interacting scalar dark
matter cloud at supersonic velocities. Our primary focus
is on the Thomas-Fermi regime, where self-interactions
are significant and the wavelike e↵ects of the scalar field
are negligible. This regime results in dark matter dynam-
ics within the solitonic solution behaving more like a gas
than FDM, although it retains distinctive characteristics.
This study of the supersonic regime complements our
previous investigation in the subsonic case [116], o↵er-
ing relevance to ongoing research on gravitational waves.
The implications of mass accretion and dynamical fric-
tion on binary systems can be critical, potentially de-
tectable by upcoming gravitational wave detectors such
as DECIGO or LISA [101, 117–120]. Additionally, the
application of such results to the Fornax globular clus-
ter timing problem, where the CDM dynamical friction
appears too strong, is of particular interest.

The outline of the paper is as follows. Section II
introduces scalar field dark matter with quartic self-
interactions, discussing its equations of motion and equi-
librium solitonic solutions. Section III compares the sub-
sonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymp-
totic expansions and the BH accretion rate and derives
the drag force exerted on the BH. Section V discusses
the accretion rate in comparison with the radial case and
with the classical Hoyle-Lyttleton prediction, and high-
lights the two regimes obtained at moderate and high
Mach numbers. Section VI compares the magnitudes
of the accretion drag and dynamical friction, while Sec-
tion VII provides an independent computation of the dy-
namical friction from the gravitational force exerted by
the BH wake. Section VIII presents a numerical compu-
tation of the density and velocity fields for a moderate
Mach number, to illustrate the behaviour of the system
with a bow shock upstream of the BH. Section IX com-
pares our results with the behaviours of other systems
(collisionless, perfect fluid and FDM cases). Finally, we
conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
dark matter scenario described by the action

S� =

Z
d
4
x
p
�g


�1

2
g
µ⌫
@µ�@⌫�� V (�)

�
, (1)

with a quartic self-interaction,

V (�) =
m

2

2
�
2 + VI(�) with VI(�) =

�4

4
�
4
. (2)

Here m is the mass of the scalar field and �4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an e↵ective
pressure that can balance gravity. This allows the for-
mation of stable static equilibria, also called boson stars
or solitons. Thus, in this paper we consider the super-
sonic motion of a BH inside such an extended soliton, or
quasi-static dark matter halo.
The parameters m and �4 determine the characteristic

density and radius

⇢a =
4m4

3�4

, ra =
1p

4⇡G⇢a
. (3)

The dynamics that we study in this paper will only de-
pend on this combination ⇢a and on the mass and veloc-
ity of the BH. Thus, di↵erent dark matter models with
the same ⇢a show the same large-scale dynamics. We
refer to [116] for a presentation of the regions in the pa-
rameter space (m,�4) where our computations apply, for
various BH masses. We briefly recall below the equa-
tions of motion of the scalar field in the relativistic and
nonrelativistic regimes.

B. Relativistic regime

As in [116], we neglect the gravitational backreaction
of the scalar cloud and we consider the steady-state limit,
that is, the growth and the displacement of the BH are
small as compared with the BH mass and the dark mat-
ter halo radius. Then, working with the isotropic radial
coordinate r, the static spherically symmetric metric can
be written as

ds
2 = �f(r) dt2 + h(r) (dr2 + r

2
d~⌦2). (4)

Close to the BH, below a transition radius rsg, the BH
gravity dominates and the isotropic metric functions f(r)
and h(r) read as

rs

4
< r ⌧ rsg : f(r) =

✓
1� rs/(4r)

1 + rs/(4r)

◆2

,

h(r) = (1 + rs/(4r))
4
, (5)
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Numerical simulations of FDM indeed find that solitons form, from gravitational collapse, within an extended NFW-like 
out-of-equilibrium halo. 

Chen et al. 2020
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Boson star growth with no self-interactions

FIG. 1. Snapshots of the density field from one simulation
with eN = 1005.3, eL = 18. (a) Projected density at the initial
time. (b) Projected density at et = 10, which shows that
minicluster is forming in the box. (c )Projected density at
et = 30. (d) Projected density at et = 200. A single dense
object is visible at the centre of the minicluster.

FIG. 2. Density profiles of the minicluster at di↵erent times
(colored dots) compared with solitonic profiles (solid lines) as
given by Eq. (C10) with the same central densities.

is the core-halo mass relation [38], M⇤ / M1/3
halo, where

Mhalo is mass of the halo, and we assume the mass of
stable halos in box is proportional to the total mass in
the box, eN .

FIG. 3. The mean stacked maximum density evolution (solid

lines) for di↵erent box sizes eL = 25, 20, 18, 15 and total mass
eN = 691, 754, 817, 880, 942, 1005, 1131. The data from simu-
lation with the same box size eL but di↵erent total mass eN
are divided into 500 time bins. The shaded regions show the
1� � intervals. The time and maximum density are normal-
ized by the condensation time, ⌧gravity and the total mass,
eN4/3
691 , where eN691 = eN/691. Note that here ⌧gravity is com-

puted using Eq. (9) for the initial configuration, i.e. R = L,
v = v0, and n = N/L3, to avoid ambiguities in the definitions
of halo radius and density.

B. Condensation of bosons with self-interactions

Here we include self-interaction. Attractive self-
interactions can promote condensation of bosons, while
repulsive self-interactions can impede condensation of
bosons. Simulating the GPP equations, we study the
evolution of bosons with self-interactions.

1. Boss with attractive self-interactions

Levkov et al. [40] predict that su�ciently weak at-
tractive self-interactions, like those of the QCD axion,
have a negligible e↵ect on boson star formation. How-
ever, this prediction has not been directly demonstrated.
For bosons with weak attractive self-interaction, such
as QCD axions with v ⇡ 10�9, and decay constant
fa ⇡ 1011GeV, where fa = �1/

p
�12g, we obtain an

estimate on the self-interaction coupling of eg ⇡ �10�2 .
We run some simulations at this range of eg. One of these
simulations is shown in Fig. 4. We can see the process
of formation of the minicluster and condensation of the
boson star. This process is similar to the pure gravity
case, Fig. 1. The radial density profiles of the miniclus-
ter and analytic profiles of soliton with and without self-
interactions are given in Fig. 5 and fitted by Eq. (C11)
and Eq. (C10), respectively. We discover that the radial
density profile of the minicluster coincides with the den-
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of formation of the minicluster and condensation of the
boson star. This process is similar to the pure gravity
case, Fig. 1. The radial density profiles of the miniclus-
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m � 10�18eV : galactic soliton governed by the balance between the repulsive self-interaction and self-gravity.

m ⇠ 10�21eV : Fuzzy Dark Matter (de Broglie wavelength of galactic size): galactic soliton governed by the balance between 
the quantum pressure and self-gravity.
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III-  SOLITON FORMATION IN THE THOMAS-FERMI REGIME

A) Numerical simulations

Initial conditions: halo (+ central soliton): 

3

In fact, outside of the radius ra where Eq.(13) would give
a zero density we can no longer neglect �Q and the ex-
act solution develops an exponential tail at large radii.
Nevertheless, from Eq.(11) we can see that the approxi-
mation (13) is valid up to r . Rsol for

�Q ⌧ �I :
⇢0sol

⇢a
� 1

r2
a
m2

. (15)

C. Outer halo and semi-classical limit

In this paper, we will study the emergence and the
evolution of these solitons within a larger halo of radius
Rhalo > Rsol. As seen above, the self-interactions can
only support an hydrostatic equilibrium within the ra-
dius Rsol of Eq.(14), independently of the soliton mass.
Therefore, while inside Rsol the self-interactions can bal-
ance gravity and build a flat core when the condition (15)
is satisfied, outside of Rsol the self-interactions are neg-
ligible. There, as for FDM and CDM models, gravity is
balanced by the velocity dispersion or the angular mo-
mentum of the system. Thus, in cosmological numerical
simulations of FDM halos, one finds a flat core governed
by the quantum pressure inside an NFW halo that is sim-
ilar to the halos found in CDM simulations [36]. The halo
is made of granules that are stochastic fluctuations with
a size of the order of the de Broglie wavelength. A similar
configuration would then apply to our case, except that
the flat core is now supported by the self-interactions in-
stead of the quantum pressure.

We will consider the semi-classical limit (i.e., large
scalar mass m), where the de Broglie wavelength is much
smaller than both the core and halo radii. Then, the
granules also correspond to temporary wave packets that
play the role of particules [22] with a velocity dispersion
or an angular momentum that balances gravity and sup-
ports a virialized halo. This means that �Q ⌧ �N . For
a system of size L? and density ⇢?, this gives

�Q ⌧ �N : ✏⌧ 1 with ✏ =
1p

GN⇢?mL2
?

. (16)

For a virialized system governed by gravity, the gravita-
tional dynamical time t? and the virial velocity are

t? =
1p
GN⇢?

and v? =
L?

t?
. (17)

Therefore, the de Broglie wavelength �dB reads

�dB =
2⇡

mv?
=

2⇡t?
mL?

=
2⇡p

GN⇢?mL?

= ✏2⇡L?. (18)

Thus, the limit ✏ ! 0 corresponds to the semiclassical
limit, where the de Broglie wavelength is much smaller
than the size of the system In this paper, we focus on
the semiclassical regime ✏ = 0.01 ⌧ 1. Then, the halo
is composed of incoherent stochastic fluctuations of size
�dB, with a velocity dispersion set by the virial veloc-
ity, whereas a coherent static soliton can appear at the
center.

D. Dimensionless variables

Going back to the Schrödinger equation, it is conve-
nient to work with dimensionless quantities denoted with
a tilde,

 =  ? ̃, t = t?t̃, ~x = L?~̃x, � =
L
2
?

t2⇤
�̃, (19)

where t? and L? are the characteristic time and length
scales of the system (in our case the halo that may con-
tain a smaller soliton at the center). This gives the di-
mensionless Schrödinger equation

i✏
@ ̃

@ t̃
= �✏

2

2
r̃2
 ̃ + (�̃N + �̃I) ̃, (20)

with

✏ =
t?

mL2
?

. (21)

We have already introduced in Eq.(16) the parameter ✏,
which plays the role of ~ and measures the relevance of
wave e↵ects, such as interferences or the quantum pres-
sure. The Poisson equation takes the dimensionless form

r̃2�̃N = 4⇡⇢̃, with t? =
1p
GN⇢?

, ⇢ = ⇢?⇢̃, (22)

As in Eq.(17), t? is the gravitational dynamical time as-
sociated with the characteristic density ⇢? of the system.
We also define the characteristic mass M?,

M̃ =

Z
d~̃x ⇢̃, with M = M?M̃, M? = ⇢?L

3
?

(23)

and the characteristic wavefunction amplitude  ?,

⇢̃ =  ̃ ̃
⇤
, with  ? =

p
⇢?/m. (24)

Then, the self-interaction potential reads

�̃I = �⇢̃, with � =
4⇡r2

a

L2
?

=
1

GN⇢aL
2
?

=
6⇡�4M2

Pl

m4L2
?

.

(25)
In the following, we remove the tildes for simplicity, as
we always work with the dimensionless variables. We will
choose L? as the radius of our initial spherical halo, so
that in dimensionless coordinates we have Rhalo = 1.

E. Initial conditions and central soliton

In this paper, we study the evolution of solitons in-
side self-gravitating halos. As initial conditions of our
numerical simulations, we write the wavefunction as

 initial =  sol +  halo. (26)

The first term  sol corresponds to a solitonic core, where
gravity is balanced by the self-interactions, whereas the

4

second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass

Rsol =

p
�⇡

2
, Msol =

4

⇡
⇢0solR

3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
4⇡✏2

�2
, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey

� ✏
2

2
r2
 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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dr
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dr

◆
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✏
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�
Rn` = En`Rn`

(34)
and form an orthonormal basis

Z
dr r

2 Rn1`Rn2` = �n1,n2 . (35)

The energy levels En` depend on the radial and orbital
quantum numbers n and ` and are independent of the
azimuthal number m. As initial condition for the halo,
we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X

n`m

an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density

h⇢haloi =
X

n`m

a(En`)
2| ̂n`m|2 =

X

n`

2`+ 1

4⇡
a(En`)

2 R2
n`
,

(39)
where we used

P
m
|Y m

`
|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).

4

second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass

Rsol =

p
�⇡

2
, Msol =

4

⇡
⇢0solR

3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
4⇡✏2

�2
, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey

� ✏
2

2
r2
 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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Rn` = En`Rn`

(34)
and form an orthonormal basis

Z
dr r

2 Rn1`Rn2` = �n1,n2 . (35)

The energy levels En` depend on the radial and orbital
quantum numbers n and ` and are independent of the
azimuthal number m. As initial condition for the halo,
we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X

n`m

an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density

h⇢haloi =
X

n`m

a(En`)
2| ̂n`m|2 =

X

n`

2`+ 1

4⇡
a(En`)

2 R2
n`
,

(39)
where we used

P
m
|Y m

`
|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).

Stochastic halo: sum over eigenmodes of the target gravitational potential with random coefficients

4

second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass

Rsol =

p
�⇡

2
, Msol =

4

⇡
⇢0solR

3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
4⇡✏2

�2
, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey

� ✏
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2
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 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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(34)
and form an orthonormal basis

Z
dr r

2 Rn1`Rn2` = �n1,n2 . (35)

The energy levels En` depend on the radial and orbital
quantum numbers n and ` and are independent of the
azimuthal number m. As initial condition for the halo,
we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X

n`m

an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density

h⇢haloi =
X

n`m

a(En`)
2| ̂n`m|2 =

X

n`

2`+ 1

4⇡
a(En`)

2 R2
n`
,

(39)
where we used

P
m
|Y m

`
|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).

4

second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass

Rsol =

p
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2
, Msol =

4

⇡
⇢0solR

3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
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, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey
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 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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and form an orthonormal basis
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dr r

2 Rn1`Rn2` = �n1,n2 . (35)

The energy levels En` depend on the radial and orbital
quantum numbers n and ` and are independent of the
azimuthal number m. As initial condition for the halo,
we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X

n`m

an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density

h⇢haloi =
X

n`m

a(En`)
2| ̂n`m|2 =
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2`+ 1
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a(En`)
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,

(39)
where we used
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`
|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).

4

second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass
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, Msol =
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⇡
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3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
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, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey
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 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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and form an orthonormal basis
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dr r

2 Rn1`Rn2` = �n1,n2 . (35)

The energy levels En` depend on the radial and orbital
quantum numbers n and ` and are independent of the
azimuthal number m. As initial condition for the halo,
we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X

n`m

an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density

h⇢haloi =
X

n`m

a(En`)
2| ̂n`m|2 =

X

n`

2`+ 1

4⇡
a(En`)

2 R2
n`
,
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where we used

P
m
|Y m

`
|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).
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second term  halo corresponds to the halo that makes
up most of the volume and mass of the object, where
quantum pressure and self-interactions are negligible and
the scalar field behaves like cold dark matter.

As seen in Sec. II B, in the Thomas-Fermi limit the
spherically symmetric soliton is given by the hydrostatic
equilibrium

�N (r) + �I(r) = Esol, (27)

where we used the dimensionless variables and Esol is a
constant with

 sol(~x, t) = e
�iEsolt/✏ ̂sol(r). (28)

For a quartic self-interaction �4�4, which gives �I = �⇢,
this yields a linear Helmholtz equation in ⇢, with the
solution

⇢sol(r) = ⇢0sol
sin(⇡r/Rsol)

⇡r/Rsol
,  ̂sol(r) =

p
⇢sol(r), (29)

over r  Rsol, and ⇢sol = 0 for r > Rsol, as in Eq.(13).
This is a compact object of dimensionless radius and
mass

Rsol =

p
�⇡

2
, Msol =

4

⇡
⇢0solR

3
sol. (30)

In practice, we define our system by Rsol, and the
self-interaction coupling � follows from Eq.(30) as � =
4R2

sol/⇡. As the size of the halo is Rhalo = 1, we consider
cases with Rsol . 1, whence � . 1.

In our numerical computations, we focus on the semi-
classical regime ✏ = 0.01 ⌧ 1. The central soliton
is governed by the balance between gravity and self-
interactions if the condition (15) is satisfied. This reads

⇢0sol �
4⇡✏2

�2
, ⇢0sol �

⇡
3
✏
2

4R4
sol

. (31)

We will consider the cases Rsol = 0.5 and 0.1. In the
former case the soliton is always dominated by the self-
interactions as ⇢ & 1, whereas in the latter case the self-
interactions dominate over the quantum pressure for ⇢ &
10.

F. Decomposition of the halo in eigenfunctions

1. Eigenmodes

For a given time-independent potential �N + �I = �̄,
Eq.(20) takes the form of the usual linear Schrödinger
equation, which can be solved in terms of the energy
eigenmodes e�iEt/✏

 ̂E(~x) that obey

� ✏
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2
r2
 ̂E + �̄ ̂E = E ̂E . (32)

For a spherically symmetric potential �̄, we can expand
these eigenmodes in spherical harmonics,

 ̂n`m(~x) = Rn`(r)Y
m

`
(✓,'), (33)

where the radial parts obey the usual radial time-
independent Schrödinger equation
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we take a semiclassical equilibrium solution defined by
a target spherical density profile ⇢̄(r), and hence the as-
sociated target gravitational potential �̄N (r), where we
neglect the self-interactions and the central soliton,

�̄(r) = �̄N (r), r2�̄N = 4⇡⇢̄. (36)

More precisely, in a fashion similar to [37, 38], we take
for the initial halo wavefunction

 halo(~x, t) =
X
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an`m ̂n`m(~x)e�iEn`t/✏, (37)

where we choose the coe�cients an`m of the eigenmodes
as

an`m = a(En`)e
i⇥n`m , (38)

where the amplitude |an`m| = a(En`) � 0 is a determin-
istic function a(E) of the energy while the phases ⇥n`m

are uncorrelated random variables with a uniform distri-
bution over 0  ⇥ < 2⇡.

This gives a stochastic halo density ⇢halo = | halo|2,
which fluctuates between di↵erent realizations of the
phases ⇥n`m. Defining the average h. . . i over these ran-
dom realizations, that is, over the uncorrelated phases
⇥n`m, we obtain the averaged density
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where we used
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m
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|2 = (2` + 1)/(4⇡). Then, the

function a(En`) that determines the occupation numbers
is chosen so that h⇢haloi = ⇢̄, i.e. we recover the tar-
get density profile ⇢̄(r) as the averaged profile over the
random realizations. In the classical case of discrete par-
ticles, this corresponds to the construction of the phase
space distribution function f(~x,~v) from the density pro-
file, and the choice (38) corresponds to an isotropic dis-
tribution f(E).
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2. WKB approximation

As we consider the semiclassical regime ✏⌧ 1, we can
expect the Wentzel-Kramers-Brillouin (WKB) approxi-
mation [38–40] to be valid. This gives for the radial part
Rn`(r) the form

r1<r<r2 : Rn`(r) '
Nn`

r

p
kn`(r)

sin


1

✏

Z
r

r1

dr
0
kn`(r

0)+
⇡

4

�

(40)
where Nn` is the normalization factor, kn`(r) is defined
by

kn`(r) =

s

2

✓
En` � �̄N (r)� ✏2

2

`(`+ 1)

r2

◆
, (41)

and r1 < r2 are the two turning points of the classical
trajectory, where kn`(r) = 0. The lower bound r1 is due
to the centrifugal barrier and the upper bound r2 to the
confining gravitational potential �̄N . For radial trajec-
tories, associated with ` = 0, we have r1 = 0. Outside
of the interval [r1, r2] the wavefunction shows a fast de-
crease as this corresponds to the forbidden region in the
classical limit and we consider the semiclassical regime
✏⌧ 1. The normalization condition (35) gives

Nn` =

✓Z
r2

r1

dr

2kn`(r)

◆�1/2

, (42)

where we neglected the contributions from the classically
forbidden regions and took the average over the fast os-
cillations of the wavefunction. Finally, the quantization
condition of the energy levels is given in this WKB ap-
proximation by

1

✏

Z
r2

r1

dr kn`(r) =

✓
n+

1

2

◆
⇡, (43)

where n = 0, 1, 2, . . . is a non-negative integer. We can
see that in the semiclassical regime, ✏⌧ 1, the quantum
numbers become large as

n ⇠ 1/✏, ` ⇠ 1/✏, (44)

and the di↵erence between energy levels decreases as
�E ⇠ ✏. In particular, at fixed ` we obtain from Eq.(43)

@n

@E
=

1

⇡✏

Z
r2

r1

dr

kn`(r)
. (45)

In this continuum limit, we can replace the sums in
Eq.(39) by integrals and we obtain

h⇢halo(r)i =
1

2⇡2✏3

Z
dE a(E)2

q
2[E � �̄N (r)], (46)

where we used the WKB approximation (40). Comparing
this expression with the classical result that expresses the

density in terms of the particle phase-space distribution
[41],

⇢classical(r) = 4⇡

Z 0

�̄N (r)
dE f(E)

q
2[E � �̄N (r)], (47)

where we normalized the potential so that bound orbits
correspond to E < 0, we obtain

a(E)2 = (2⇡✏)3f(E). (48)

The classical phase-space distribution can be obtained
from the density by Eddington’s formula [41],

f(E) =
1

2
p
2⇡2

d

dE

Z 0

E

d�Np
�N � E

d⇢classical

d�N

. (49)

In practice, choosing a target halo density profile ⇢̄(r),
we obtain the classical phase-space distribution f(E)
from Eddington’s formula (49), the eigenmode coe�-
cients an`m from Eqs.(38) and (48), and the initial halo
wavefunction from Eq.(37). However, to avoid the singu-
larity of the WKB approximation at the turning points,
we do not use the WKB expression (40) for the eigen-
modes. Instead, we explicitly solve the linear eigenmode
problem associated with the radial Schrödinger equation
(34). Therefore, the WKB approximation is only used for
the determination of the initial coe�cients an`m. This is
su�cient for our purpose, which is to build random initial
conditions with a target radial density profile.

G. Numerical methods

The system in dimensionless units is fully described by
the Schrödinger equation (20), supplemented by the Pois-
son equation (22) and the self-interaction potential (25).
We have developed a numerical code to compute the 3D
dynamics, using a symmetrized split-step Fourier tech-
nique as in [42, 43]. Thus, the wavefunction is advanced
by a timestep �t as

 (~x, t+�t) = exp


� i�t

2✏
�(~x, t+�t)

�
⇥

F�1 exp


� i✏�t

2
k
2

�
F exp


� i�t

2✏
�(~x, t)

�
 (~x, t)(50)

where � = �N + �I , F and F�1 are the Fourier trans-
form and its inverse, and k is the wavenumber in Fourier
space. This operator splitting scheme is based on the fact
that in the Schrödinger equation (20) the operator � 
is diagonal in configuration space whereas the operator
r2
 is diagonal in Fourier space. We have employed the

FFTW3 libraries [44] to compute the discrete Fourier
transform (DFT). These libraries adapt the DFT algo-
rithm to details of the underlying hardware to maximize
performance. In addition, we have taken advantage of the
OpenMP tools to parallelize the multi-threaded routines
[45, 46].
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and r1 < r2 are the two turning points of the classical
trajectory, where kn`(r) = 0. The lower bound r1 is due
to the centrifugal barrier and the upper bound r2 to the
confining gravitational potential �̄N . For radial trajec-
tories, associated with ` = 0, we have r1 = 0. Outside
of the interval [r1, r2] the wavefunction shows a fast de-
crease as this corresponds to the forbidden region in the
classical limit and we consider the semiclassical regime
✏⌧ 1. The normalization condition (35) gives
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where we neglected the contributions from the classically
forbidden regions and took the average over the fast os-
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where n = 0, 1, 2, . . . is a non-negative integer. We can
see that in the semiclassical regime, ✏⌧ 1, the quantum
numbers become large as
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and the di↵erence between energy levels decreases as
�E ⇠ ✏. In particular, at fixed ` we obtain from Eq.(43)

@n

@E
=

1

⇡✏

Z
r2

r1

dr

kn`(r)
. (45)

In this continuum limit, we can replace the sums in
Eq.(39) by integrals and we obtain

h⇢halo(r)i =
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where we used the WKB approximation (40). Comparing
this expression with the classical result that expresses the
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[41],
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where we normalized the potential so that bound orbits
correspond to E < 0, we obtain

a(E)2 = (2⇡✏)3f(E). (48)

The classical phase-space distribution can be obtained
from the density by Eddington’s formula [41],
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In practice, choosing a target halo density profile ⇢̄(r),
we obtain the classical phase-space distribution f(E)
from Eddington’s formula (49), the eigenmode coe�-
cients an`m from Eqs.(38) and (48), and the initial halo
wavefunction from Eq.(37). However, to avoid the singu-
larity of the WKB approximation at the turning points,
we do not use the WKB expression (40) for the eigen-
modes. Instead, we explicitly solve the linear eigenmode
problem associated with the radial Schrödinger equation
(34). Therefore, the WKB approximation is only used for
the determination of the initial coe�cients an`m. This is
su�cient for our purpose, which is to build random initial
conditions with a target radial density profile.

G. Numerical methods

The system in dimensionless units is fully described by
the Schrödinger equation (20), supplemented by the Pois-
son equation (22) and the self-interaction potential (25).
We have developed a numerical code to compute the 3D
dynamics, using a symmetrized split-step Fourier tech-
nique as in [42, 43]. Thus, the wavefunction is advanced
by a timestep �t as
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where � = �N + �I , F and F�1 are the Fourier trans-
form and its inverse, and k is the wavenumber in Fourier
space. This operator splitting scheme is based on the fact
that in the Schrödinger equation (20) the operator � 
is diagonal in configuration space whereas the operator
r2
 is diagonal in Fourier space. We have employed the

FFTW3 libraries [44] to compute the discrete Fourier
transform (DFT). These libraries adapt the DFT algo-
rithm to details of the underlying hardware to maximize
performance. In addition, we have taken advantage of the
OpenMP tools to parallelize the multi-threaded routines
[45, 46].

(Eddington formula)

(Self-interactions dominate over the quantum pressure in the soliton)



1) Soliton radius of the same order as the halo size

Initial 1D density plot Initial 2D density plot Final 1D density plot Final 2D density plot

1D potential plot Evolution of total and soliton mass Evolution of energy components

- At t ~ 8, the soliton is formed with Rsol ~ 0.5 and it contains ~ 50% of the total mass.

- The system reaches a quasi-stationary state.

- Afterwards, the soliton slowly grows.

flat=soliton (hydrostatic eq.)

Initial stochastic halo 
with a fixed mean 

density profile



2) Soliton radius much smaller than the halo size

1D density plots

2D density plots

1D potential plots Evolution of mass Evolution of energies
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II) Flat halo with ra much smaller than  system
Density slice 2D (x,y) at z=rmax, (1()*)

-%&', EK, EN, EI Potential at t=250Potential at t=180
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Transition from a FDM phase to a self-interacting phase.

• By t ∼ 100, the halo relaxes to a quasi-stationary state.
• At t ~180, FDM peak.
• At t ~ 200, self-interacting soliton forms, Rsol = 0.1 .

Soliton
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II) Flat halo with ra much smaller than  system
Density slice 2D (x,y) at z=rmax, (1()*)

-%&', EK, EN, EI Potential at t=250Potential at t=180

x/y/z x/y/z x/y/z

x/y/z x/y/z

x

y

1

t

1 1

Density at t=0 Density at t=180 Density at t=250 

*
=
* #

+
* $

*
=
* #

+
* $

Transition from a FDM phase to a self-interacting phase.

• By t ∼ 100, the halo relaxes to a quasi-stationary state.
• At t ~180, FDM peak.
• At t ~ 200, self-interacting soliton forms, Rsol = 0.1 .

Soliton
flat=soliton

Central soliton

Stochastic halo (negligible 
self-interactions) dominated 
by kinetic terms and gravity


(CDM - NFW)



3) Dependence of the soliton mass on the formation history

Growth with time of the soliton mass
Growth rate as a function of the soliton mass, 

for several initial conditions
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�sol =
Ṁ0

M0

- The soliton always forms and grows, with a growth rate that decreases with time.

- Its mass can reach 50% of the total mass of the system.

- There is no sign of a scaling regime, where the growth rate would be independent of initial conditions.

Probably no well-defined halo-mass/soliton mass relation

numerical simulation

analytical model 
(kinetic theory)



B) Kinetic theory

To understand the growth of the soliton, we develop a kinetic theory:

Instead of following the wave function, we try to follow the evolution of the occupation numbers of the various eigenmodes 
of the Schrödinger eq. in a reference potential

Non-linear Schrödinger eq. (Gross-Pitaevskii):

<latexit sha1_base64="fySkqGGjIIykmoJjJoMk/glbFEg="></latexit>
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If      is fixed,     can be decomposed over the eigenmodes with the simple time dependence 
<latexit sha1_base64="l0UpZrGZx5slRSAspZ3B39EzYW4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0nEqseiF48V7Ae0oWy2m2bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo+NUEdomMY9VL8CaciZp2zDDaS9RFIuA024wucv97hNVmsXy0UwT6gs8lixkBJtcGrQiNqzW3Lo7B1olXkFqUKA1rH4NRjFJBZWGcKx133MT42dYGUY4nVUGqaYJJhM8pn1LJRZU+9n81hk6s8oIhbGyJQ2aq78nMiy0norAdgpsIr3s5eJ/Xj814Y2fMZmkhkqyWBSmHJkY5Y+jEVOUGD61BBPF7K2IRFhhYmw8FRuCt/zyKulc1L2reuPhsta8LeIowwmcwjl4cA1NuIcWtIFABM/wCm+OcF6cd+dj0Vpyiplj+APn8wfl+Y4p</latexit>

�
<latexit sha1_base64="luRxvyWZ7gPOo6F/EfvdLBNL00I=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9kVv45FLx4rWFtol5JNs21okg1JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvUpwZ6/vfXmlldW19o7xZ2dre2d2r7h88miTVhLZIwhPdibChnEnassxy2lGaYhFx2o7Gt7nffqLasEQ+2ImiocBDyWJGsM2lnjKsX635dX8GtEyCgtSgQLNf/eoNEpIKKi3h2Jhu4CsbZlhbRjidVnqpoQqTMR7SrqMSC2rCbHbrFJ04ZYDiRLuSFs3U3xMZFsZMROQ6BbYjs+jl4n9eN7XxdZgxqVJLJZkvilOObILyx9GAaUosnziCiWbuVkRGWGNiXTwVF0Kw+PIyeTyrB5f1i/vzWuOmiKMMR3AMpxDAFTTgDprQAgIjeIZXePOE9+K9ex/z1pJXzBzCH3ifPyd/jlQ=</latexit>

 
<latexit sha1_base64="8B4jD5X+Mtx3LG85gmJeFFBPQqs=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEN9ZEfC2LIrisYB/QxjCZ3rRDJ5MwMxFKKPgrblwo4tbvcOffOG2z0OqBC4dz7uXee4KEM6Ud58sqzM0vLC4Vl0srq2vrG/bmVkPFqaRQpzGPZSsgCjgTUNdMc2glEkgUcGgGg6ux33wAqVgs7vQwAS8iPcFCRok2km/vwH12yPC1L7A+6kCiGI/FyLfLTsWZAP8lbk7KKEfNtz873ZimEQhNOVGq7TqJ9jIiNaMcRqVOqiAhdEB60DZUkAiUl03OH+F9o3RxGEtTQuOJ+nMiI5FSwygwnRHRfTXrjcX/vHaqwwsvYyJJNQg6XRSmHOsYj7PAXSaBaj40hFDJzK2Y9okkVJvESiYEd/blv6RxXHHPKqe3J+XqZR5HEe2iPXSAXHSOqugG1VAdUZShJ/SCXq1H69l6s96nrQUrn9lGv2B9fANfnJUj</latexit>

e�iEnt/✏

and there is no secular growth or evolution of the system.

However the fluctuations (or interference terms) induce a time-dependent potential and drive the evolution of the system.

Chan et al. (2022) considered the case of FDM over a flat background, expanding over plane waves. 
Here we consider a non-flat background (self-gravity of the halo), with possibly a soliton in the initial conditions.

We follow the evolution of the occupation numbers of the eigenmodes 
in the reference potential  We cannot use Fourier analysis



- We write the potential as:
<latexit sha1_base64="MyOmIGkP5mkcOjhrLu38zxGWFMU=">AAACIHicbVDLSgNBEJz1GeMr6tHLYBAUJeyKGi9C0IvHCCYRsiHMzvaaIbMPZnqDYcmnePFXvHhQRG/6NU4eB40WDBRV1fR0eYkUGm3705qZnZtfWMwt5ZdXVtfWCxubdR2nikONxzJWtx7TIEUENRQo4TZRwEJPQsPrXg79Rg+UFnF0g/0EWiG7i0QgOEMjtQtlt9oRe5nbA07vB4e4T8+p6zE1ktU+PaCuDxLZdKxdKNolewT6lzgTUiQTVNuFD9ePeRpChFwyrZuOnWArYwoFlzDIu6mGhPEuu4OmoRELQbey0YEDumsUnwaxMi9COlJ/TmQs1LofeiYZMuzoaW8o/uc1UwzOWpmIkhQh4uNFQSopxnTYFvWFAo6ybwjjSpi/Ut5hinE0neZNCc70yX9J/ajknJZOro+LlYtJHTmyTXbIHnFImVTIFamSGuHkgTyRF/JqPVrP1pv1Po7OWJOZLfIL1tc3MeGhKg==</latexit>

�(~x, t) = �̄(r) + ��(~x, t)

- We expand over the eigenmodes: 
<latexit sha1_base64="Ft9Tg2NT+l7aVCGTGT3LHjx/ndA="></latexit>

 (~x, t) =
X

j

q
Mj(t)e

�i✓j(t)/✏ ̂j(~x)

<latexit sha1_base64="lEhrs75hAxzg6KFtGarc//cbH9A="></latexit>

i✏Ṁj + 2Mj ✓̇j = 2MjEj +
X

j0

2
p
MjMj0e

i(✓j�✓j0 )/✏

Z
d~x  ̂j�� ̂j0

<latexit sha1_base64="E9kLGGoRS7AP64T/hk4epwwEO9s="></latexit>

�̄ = (4⇡r�2 + �)
X

j

Mj ̂
2
j

<latexit sha1_base64="4oHAPSNUIkxFvKsLk2zuDEnK0nU="></latexit>

�� = (4⇡r�2 + �)
X

j 6=j0

p
MjMj0e

i(✓j�✓j0 )/✏ ̂j ̂j0

average spherically 
symmetric part

fluctuating 
part

mass contained in the eigenmode j

- We substitute into the Schrödinger eq.:

- We define the reference potential as the sum of the diagonal terms: 

and the remainder is given by the off-diagonal terms: 

Initial mass       is fixed, initial phase      is random      
<latexit sha1_base64="Y499FwIc2we0hMmhfWZA/kAe7V8=">AAAB6nicbVDJSgNBEK2JW4xb1KOXxiB4CjPidgx68SJENAskQ+jp9CRtenqG7hohDPkELx4U8eoXefNv7CwHTXxQ8Hiviqp6QSKFQdf9dnJLyyura/n1wsbm1vZOcXevbuJUM15jsYx1M6CGS6F4DQVK3kw0p1EgeSMYXI/9xhPXRsTqAYcJ9yPaUyIUjKKV7m87j51iyS27E5BF4s1ICWaodopf7W7M0ogrZJIa0/LcBP2MahRM8lGhnRqeUDagPd6yVNGIGz+bnDoiR1bpkjDWthSSifp7IqORMcMosJ0Rxb6Z98bif14rxfDSz4RKUuSKTReFqSQYk/HfpCs0ZyiHllCmhb2VsD7VlKFNp2BD8OZfXiT1k7J3Xj67Oy1VrmZx5OEADuEYPLiACtxAFWrAoAfP8ApvjnRenHfnY9qac2Yz+/AHzucPI9KNuA==</latexit>

Mj

<latexit sha1_base64="SEVPmSPCs8BAzqRcEmKrgjCZcHU=">AAAB73icbVDLSgNBEJz1GeMr6tHLYBA8hV3xdQx68RjBPCBZwuykNxkzO7vO9AphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsObid98Am1ErO5xlIAfsb4SoeAMrdTq4ACQdR+6pbJbcaegi8TLSZnkqHVLX51ezNMIFHLJjGl7boJ+xjQKLmFc7KQGEsaHrA9tSxWLwPjZ9N4xPbZKj4axtqWQTtXfExmLjBlFge2MGA7MvDcR//PaKYZXfiZUkiIoPlsUppJiTCfP057QwFGOLGFcC3sr5QOmGUcbUdGG4M2/vEgapxXvonJ+d1auXudxFMghOSInxCOXpEpuSY3UCSeSPJNX8uY8Oi/Ou/Mxa11y8pkD8gfO5w8nGpAP</latexit>

✓j

initially deterministic

initially random

- We perform a perturbative expansion (over powers of       ):
<latexit sha1_base64="yeL12hOi7sPQhUYUshy/fPQhaPg=">AAAB8XicbVBNS8NAEN3Ur1q/qh69BIvgqSTi17HoxWMF+4FNKJvNpF262YTdiVBC/4UXD4p49d9489+4bXPQ1gcDj/dmmJkXpIJrdJxvq7Syura+Ud6sbG3v7O5V9w/aOskUgxZLRKK6AdUguIQWchTQTRXQOBDQCUa3U7/zBErzRD7gOAU/pgPJI84oGunRC0Eg9ZpD3q/WnLozg71M3ILUSIFmv/rlhQnLYpDIBNW65zop+jlVyJmAScXLNKSUjegAeoZKGoP289nFE/vEKKEdJcqURHum/p7Iaaz1OA5MZ0xxqBe9qfif18swuvZzLtMMQbL5oigTNib29H075AoYirEhlClubrXZkCrK0IRUMSG4iy8vk/ZZ3b2sX9yf1xo3RRxlckSOySlxyRVpkDvSJC3CiCTP5JW8Wdp6sd6tj3lrySpmDskfWJ8/deWQyw==</latexit>

��
<latexit sha1_base64="aAYfEFuzBqsrc1RzfYnv/eWyCQM=">AAACGHicbZDLSgMxFIYz9VbrbdSlm2ARKkKdKd42QtGNG6GCvUA7Dpk008ZmMkOSEcrQx3Djq7hxoYjb7nwb0+ksavVAwsd/zk9yfi9iVCrL+jZyC4tLyyv51cLa+sbmlrm905BhLDCp45CFouUhSRjlpK6oYqQVCYICj5GmN7ie9JtPREga8ns1jIgToB6nPsVIack1j2/dR3gJ9f2QlKzDETzK2J7hSsqdbqikaxatspUW/At2BkWQVc01x9qH44BwhRmSsm1bkXISJBTFjIwKnViSCOEB6pG2Ro4CIp0kXWwED7TShX4o9OEKpuqsI0GBlMPA05MBUn0535uI//XasfIvnITyKFaE4+lDfsygCuEkJdilgmDFhhoQFlT/FeI+EggrnWVBh2DPr/wXGpWyfVY+vTspVq+yOPJgD+yDErDBOaiCG1ADdYDBM3gF7+DDeDHejE/jazqaMzLPLvhVxvgHUvicPw==</latexit>

Mj = M (0)
j +M (1)

j +M (2)
j + . . .

and we average over the random initial phases
<latexit sha1_base64="hYcc4qsvoN0f89NXg+6z5CaK25A=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiDES5gRt2PQi8cIZoFkEno6PUlrz0J3jRKG/IcXD4p49V+8+Td2kjlo4oOCx3tVVNXzYik02va3lVtaXlldy68XNja3tneKu3sNHSWK8TqLZKRaHtVcipDXUaDkrVhxGniSN72H64nffORKiyi8w1HM3YAOQuELRtFI3Q4OOdLefTct28fjXrFkV+wpyCJxMlKCDLVe8avTj1gS8BCZpFq3HTtGN6UKBZN8XOgkmseUPdABbxsa0oBrN51ePSZHRukTP1KmQiRT9fdESgOtR4FnOgOKQz3vTcT/vHaC/qWbijBOkIdstshPJMGITCIgfaE4QzkyhDIlzK2EDamiDE1QBROCM//yImmcVJzzytntaal6lcWRhwM4hDI4cAFVuIEa1IGBgmd4hTfryXqx3q2PWWvOymb24Q+szx/nEpIi</latexit>

✓(0)j

real-values eigenmode j

<latexit sha1_base64="FA5i0nyBrx+y2NoN+8PRngAm690="></latexit>

V13;24 =

Z
d~x  ̂1 ̂3(4⇡r�2 + �) ̂2 ̂44-leg vertices:



- Zeroth order:
<latexit sha1_base64="h4WSKafI5N/e1t2cBMoe6X2Oozc="></latexit>

M (0)
j (t) = M̄j , ✓(0)j (t) = ✓̄j + !̄jt

<latexit sha1_base64="AuSe2F1FKHc3Xc7MPfGGZPq9saI="></latexit>

!̄j = Ej +
j0 6=jX

j0

Mj0Vjj0;j0j renormalised frequency

- First order:
<latexit sha1_base64="bzvnkG9olpjUcAdX1bf7ARKhhNY=">AAACC3icbVC7SgNBFJ2Nrxhfq5Y2Q4IQm7ArvhohaGMjRDAPyK5hdnKTjJmdXWZmhbCkt/FXbCwUsfUH7PwbJ49CEw9cOJxz78y9J4g5U9pxvq3MwuLS8kp2Nbe2vrG5ZW/v1FSUSApVGvFINgKigDMBVc00h0YsgYQBh3rQvxz59QeQikXiVg9i8EPSFazDKNFGatl5jxPR5YC9dqTxdev+Li26B0PsyYl8jp2WXXBKzhh4nrhTUkBTVFr2l3mMJiEITTlRquk6sfZTIjWjHIY5L1EQE9onXWgaKkgIyk/HtwzxvlHauBNJU0Ljsfp7IiWhUoMwMJ0h0T01643E/7xmojtnfspEnGgQdPJRJ+FYR3gUDG4zCVTzgSGESmZ2xbRHJKHaxJczIbizJ8+T2mHJPSkd3xwVyhfTOLJoD+VREbnoFJXRFaqgKqLoET2jV/RmPVkv1rv1MWnNWNOZXfQH1ucPSlCZSw==</latexit>

hṀ (1)
j i = 0

- Second order:

<latexit sha1_base64="jEQoLXmjovCGrmod5yXIAZvXZOo=">AAAE3nicdVRLj9MwEM62BZbw6sKRi0XFqqtCt3HMQ4qQVnDhgrRItLtS0y2O66bWOg/FDlIV5cCFAwhx5Xdx43/wA7DbZNumXUuRJjPffDPzTRwv5kzIXu/vXq3euHHz1v5t887de/cfNA8eDkSUJoT2ScSj5NzDgnIW0r5kktPzOKE48Dg98y7f6fjZF5oIFoWf5DymowD7IZsygqVyjQ9q/w4Pgctx6HMK3EkkwYexdZG14VEO3GTpfgPcaYJJBvPMpbFgPApVUKTBOIM2UqaHE51WGtAsDLv0IGUw3+eqkqeYaEGoSFjY1hg3CqiPx5kF84tMc8rjstQRUGV3QHLTnWEJBspjO1C3welUDgvqzVjn6hU50M6XhLrlHHQqCdB2LJSbVxkQOdZaBtSyMH8mu8B1zYV2qmoXPK/Q2JaD4KquDR1krVjsvIpHlmOv4RF07DU8KquOzM712mldqsqBHQhFVsoBtRzmbuWQgzal2poRVYYqmyyk6YBre9U73Noy2IFY9aoWo7ZuloxrC122thpJNQU2FlZ8e8ny2wPPzHGz1ev2FgdsG1ZhtIzinI6bf9TdIGlAQ0k4FmJo9WI5ynAiGeFUdZUKGmNyiX06VGaIAypG2eJ65uCp8kzANErUE0qw8K5nZDgQYh54ChlgORPVmHbuig1TOX09ylgYp5KGZFlomnIgI6DvOpiwhBLJ58rAJGGqV0BmWIkg1R9Bi2BVR942BrBrvey++IhaJ28LOfaNx8YTo21YxivjxHhvnBp9g9SH9a/17/Ufjc+Nb42fjV9LaG2vyHlkbJzG7/+mLYpi</latexit>

hṀ (2)
1 i = 2
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<latexit sha1_base64="Rdw0tK4JX8GyGFZscsZOVQooqrk="></latexit>

hṀ (2)
1 i = 2

✏

X

234

M̄1M̄2M̄3M̄4
sin(!̄34
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!̄34
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�
This is somewhat similar to four-wave systems (e.g., weak wave turbulence) over an homogeneous background, 

where we would have:

<latexit sha1_base64="HuKQCiBuPzqEJLsAWFKcR1+Sy5E=">AAACIXicbZDLSsNAFIYnXmu9RV26GSyCIJakrdqNUHTjsoK9QBvDZDpth85MwsxEKCGv4sZXceNCke7ElzFpI2jrDwMf/zmHM+f3AkaVtqxPY2l5ZXVtPbeR39za3tk19/abyg8lJg3sM1+2PaQIo4I0NNWMtANJEPcYaXmjm7TeeiRSUV/c63FAHI4GgvYpRjqxXLPa9TkZIDeyS/FDVK7E8Apmln2aQeksg/IPVGDeNQtW0ZoKLoKdQQFkqrvmpNvzcciJ0JghpTq2FWgnQlJTzEic74aKBAiP0IB0EhSIE+VE0wtjeJw4Pdj3ZfKEhlP390SEuFJj7iWdHOmhmq+l5n+1Tqj7VSeiIgg1EXi2qB8yqH2YxgV7VBKs2TgBhCVN/grxEEmEdRJqGoI9f/IiNEtF+6J4flcp1K6zOHLgEByBE2CDS1ADt6AOGgCDJ/AC3sC78Wy8Gh/GZNa6ZGQzB+CPjK9vYkmhxw==</latexit>

!34
12 = !1 + !2 � !3 � !4

For the soliton, ground state j=0, some of the Dirac factors (resonances) vanish and the equation simplifies:  
<latexit sha1_base64="L287JhCgF2AwLkojkL2kmMVJLE0="></latexit>

Ṁ0 =
⇡

✏

X

123

M0M1M2M3 �D(!23
01) (V02;13 + V03;12)

2

✓
1

M0
+

1

M1
� 1

M2
� 1

M3

◆
.

<latexit sha1_base64="003sTXzVZ1WtU6mpIhuS1sYnozM=">AAACD3icbZDLSgMxFIYzXmu9jbp0EyyKqzIj3lCQohuXFewFOsOQSU/btJnMmGSEUvoGbnwVNy4UcevWnW9jehG09YTAx/+fQ3L+MOFMacf5smZm5+YXFjNL2eWV1bV1e2OzrOJUUijRmMeyGhIFnAkoaaY5VBMJJAo5VMLO1cCv3INULBa3upuAH5GmYA1GiTZSYO+1sSfgDjv4DHvng4O9OIImCdr44gcdHNg5J+8MC0+DO4YcGlcxsD+9ekzTCISmnChVc51E+z0iNaMc+lkvVZAQ2iFNqBkUJALl94b79PGuUeq4EUtzhcZD9fdEj0RKdaPQdEZEt9SkNxD/82qpbpz6PSaSVIOgo4caKcc6xoNwcJ1JoJp3DRAqmfkrpi0iCdUmwqwJwZ1ceRrKB3n3OH90c5grXI7jyKBttIP2kYtOUAFdoyIqIYoe0BN6Qa/Wo/VsvVnvo9YZazyzhf6U9fENbyuZyg==</latexit>

j 6= 0 : !j > !0

<latexit sha1_base64="Ys9Yywh67oj+vFM37cpV4nQq+co="></latexit>

M0 ! 0 : Ṁ0 =
2⇡

✏

X

123

M1M2M3 �D(!23
01) (V02;13 + V03;12)

2 > 0Small solitons grow:



We make a simple approximation for the occupation numbers of the excited modes:

<latexit sha1_base64="UiIMWyDL0+v7ZucY5IoPyA4Bxpk="></latexit>

Ej<EcollX

j

(2`+ 1)Mn`(0) = Msol �Msol(0)

we assume that the increase of mass of the soliton comes from the lowest energy modes, 
which are depleted up to some energy threshold while the occupation numbers of higher 
energy levels are not modified 

angular  momentum 
quantum number
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no

rm
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ed

 fr
eq

ue
nc
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soliton
excited halo states

Formation of a frequency gap, which prevents resonances 
and decreases the soliton growth rate.

Growth rate as a function of the soliton mass, 
for several initial conditions

<latexit sha1_base64="hS/obj2KPdHGPGn8Pjq56GRZhns=">AAACEHicbVC7TsMwFHV4lvIKMLJYVAimKkG8FqQKBliQikQfUhNFjuu0Vm0nsh2kKsonsPArLAwgxMrIxt/gtB2g5Ui2js6599r3hAmjSjvOtzU3v7C4tFxaKa+urW9s2lvbTRWnEpMGjlks2yFShFFBGppqRtqJJIiHjLTCwVXhtx6IVDQW93qYEJ+jnqARxUgbKbAPvGvEOQoyT3KoYpbDC+hFEuHM68Ya3gZOnhVXYFecqjMCnCXuhFTABPXA/jIDcMqJ0JghpTquk2g/Q1JTzEhe9lJFEoQHqEc6hgrEifKz0UI53DdKF0axNEdoOFJ/d2SIKzXkoankSPfVtFeI/3mdVEfnfkZFkmoi8PihKGVQx7BIB3apJFizoSEIS2r+CnEfmTi0ybBsQnCnV54lzaOqe1o9uTuu1C4ncZTALtgDh8AFZ6AGbkAdNAAGj+AZvII368l6sd6tj3HpnDXp2QF/YH3+AKXGnFo=</latexit>

�sol =
Ṁ0

M0

numerical simulation

analytical model 
(kinetic theory)

With this approximation, we recover 

- the positivity of the growth rate

- its initial order of magnitude 

- qualitatively its fast falloff with time. 

However, we underestimate the growth rate at late times: 

the low energy modes are probably partly replenished and 

we should improve the treatment of their occupation numbers.



BH dynamics inside DM solitons
-

Accretion and Dynamical friction

(Schwarzschild BH)



I-  RADIAL INFALL ONTO A BH

Classical Bondi problem: steady-state spherical accretion of gas onto a central BH

<latexit sha1_base64="/i4ICyMXiIn+SsKnJ/sjXruHZIM=">AAAB73icbVDLSgNBEOyNrxhfUY9eFoPgKewGXxch6MVjBPOAZAm9k0kyZGZ2nZkVwpKf8OJBEa/+jjf/xkmyB00saCiquunuCmPOtPG8bye3srq2vpHfLGxt7+zuFfcPGjpKFKF1EvFItULUlDNJ64YZTluxoihCTpvh6HbqN5+o0iySD2Yc00DgQLI+I2is1OoMUAi8rnSLJa/szeAuEz8jJchQ6xa/Or2IJIJKQzhq3fa92AQpKsMIp5NCJ9E0RjLCAW1bKlFQHaSzeyfuiVV6bj9StqRxZ+rviRSF1mMR2k6BZqgXvan4n9dOTP8qSJmME0MlmS/qJ9w1kTt93u0xRYnhY0uQKGZvdckQFRJjIyrYEPzFl5dJo1L2L8rn92el6k0WRx6O4BhOwYdLqMId1KAOBDg8wyu8OY/Oi/PufMxbc042cwh/4Hz+AIFPj6I=</latexit>
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in the Newtonian regime, and we perform a relativistic analysis:

simulations, which agree with the well-known Navarro-
Frenk-White (NFW) profile [87]. In fact, supermassive
BHs are expected to involve baryonic physics, as cooling
and dissipation allow baryons to fall into gravitational
potential wells. Nonequilibrium physics may also come
into play through the mergers of smaller BHs, whereas the
initial seeds could result from the remnants of massive stars
or the collapse of large gas clouds or of stellar clusters.
See, for instance, Ref. [88] for a recent review of scenarios
for the assembly of supermassive BHs. Similar baryonic
processes should also be present in scalar DM cosmologies;
hence, we expect supermassive BHs to form as well in these
scenarios.
Thus, in this paper, we investigate the smooth accretion

onto the supermassive BH after a solitonic halo profile has
formed on the galactic scale (similar to the NFW halo
profile for CDM scenarios). We find that outside the
Schwarzschild radius and close enough to the black hole
the scalar dynamics are described by a stationary solution
with nonvanishing flux. This corresponds to the infall of
dark matter into the central BH. Far away from the center,
the dynamics reproduce the static soliton behavior, with a
solution whose density is nearly constant in the core before
falling off rapidly towards zero [89]. This selects a unique
solution with constant flux and nearly vanishing velocity
far away from the BH, which is similar to the transonic
solution obtained for the hydrodynamic case. We find
typically that the lifetime of the soliton, despite the falling
of matter into the BH, is larger than the age of the Universe.
Moreover, the constraints on the density profile of dark
matter inferred from the stellar dynamics in the vicinity of
the central BH [90,91] are easily met.
This manuscript is arranged as follows. In Sec. II,

we describe the main equations of a generic model of
scalar DM within a Schwarzschild geometry, in both
isotropic coordinates (Sec. II A 2) and Eddington coordi-
nates (Sec. III D). In Sec. III, we analyze the main features
of the scalar DM solitons for the harmonic case. In Sec. IV,
we extend this analysis to the self-interacting case deter-
mined by a quartic term. In Sec. V, we derive the long
lifetime associated with the scalar-field soliton found in the
previous section. Finally, the main conclusions are sum-
marized in Sec. VI.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

The scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi−gp

"
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

#
: ð1Þ

We also write the scalar-field potential as

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ; ð2Þ

where VI is the self-interaction potential. In this work, we
focus on the quartic self-interaction potential

VIðϕÞ ¼
λ4
4
ϕ4: ð3Þ

Such scalar fields can play the role of DM and build scalar
solitons, i.e., static profiles with a finite core, at the center
of galactic halos. These solitons can be the result of the
balance between the self-gravity of the scalar cloud and a
“quantum pressure” (due to the fact that the underlying
equations of motion are the Klein-Gordon equation, or the
Schrödinger equation in the nonrelativistic limit, rather
than the hydrodynamical Euler equation) or to a repulsive
self-interaction, associated with λ4 > 0. In this paper,
following our previous work [89], we focus on the large
scalar-mass limit

m ≫ 10−21 eV; ð4Þ

which ensures that the quantum pressure is negligible from
cosmological to galactic scales. Then, the galactic solitons
are due to the balance between gravity and the repulsive
self-interaction. In the large scalar-mass limit, the analysis
simplifies, and we can derive in the next sections explicit
expressions for the scalar-field profile and its inflow onto
the supermassive BH. Around a Schwarzschild BH, we
shall see below that the large-mass limit becomes defined
by the lower bound (40), which is somewhat larger than (4).

B. Schwarzschild metric

Close to the BH, the contribution from the scalar field is
negligible, and the metric is the standard Schwarzschild
metric [92,93]

ds2 ¼ −
$
1 −

rs
r̃

%
dt2 þ

$
1 −

rs
r̃

%−1
dr̃2 þ r̃2dΩ⃗2; ð5Þ

where r̃ is the Schwarzschild radial coordinate and rs ¼
2GM is the Schwarzschild radius of the BH of mass M.
Throughout this paper, we work in natural units with c ¼ 1.

C. Isotropic coordinates

We focus on spherically symmetric systems, as we
consider a spherical scalar cloud around a supermassive
Schwarzschild BH. To simplify the matching with the
Newtonian gauge at large scales, we work with the
isotropic radial coordinate r and the time t throughout
this paper, except in Secs. III D, IV F, and IVG. Then, the
static spherically symmetric metric can be written in the
isotropic form
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Again,

quartic repulsive 
self-interaction

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h
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∂r
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−VðϕÞ
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: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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- metric deviations from Minkowski are large close to the BH horizon

* Schwarzschild metric close to the BH:

static spherical symmetry: (isotropic coordinates)

* small metric fluctuations and self-gravity far from the BH, in the galactic-scale soliton:

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
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p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
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r2 sinθ
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III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

!
1 − rs=ð4rÞ
1þ rs=ð4rÞ

"
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

!
1þ rs

4r

"
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

$
1

2f

!∂ϕ
∂t

"
2

−
1

2h

!∂ϕ
∂r

"
2

−
1

2hr2

!∂ϕ
∂θ

"
2

−
1

2hr2sin2θ

!∂ϕ
∂φ

"
2

−VðϕÞ
%
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,
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- field oscillations are large and the cosine is significantly deformed by the self-interactions: anharmonic oscillations 

nonlinear approach to the K.G. eq.

A) Spherically symmetric relativistic and nonlinear system



3. Density profile

From Eqs. (20) and (46), the energy density associated
with the Eddington coordinates is given, at leading order in
the large-m limit, by

ρ̃ϕ ¼ ρ

!
sin2ðmt − sÞ

"
2 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$

þ cos2ðmt − sÞ
%
: ð49Þ

In terms of the flux F, we obtain using Eq. (38)

hρ̃ϕi ¼ −
F
r2s

r2s
2r2h

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
"
3 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$
;

ð50Þ

where we took the average over the fast oscillations of
period 2π=m. As expected, this scalar-field energy density
remains finite at the Schwarzschild radius, with

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ¼ −

3F
2r2s

: ð51Þ

At larger radii that are still dominated by the BH gravi-
tational potential, this gives

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−3=2 and vr ∝ r−1=2: ð52Þ

The scaling vr ∝ r−1=2 corresponds to the free fall from rest
at infinity, which also gives v2r ∼Φ ∼ GM=r. The require-
ment of constant flux through spherical shells then implies
ρϕ ∝ r−3=2. The density ρϕ grows linearly with jFj, as there
are no self-interactions (and we neglect self-gravity near
the BH).
The unit velocity obtained in the ingoing wave (48), or of

the order of unity in Eq. (51) if we define an effective
velocity by F ¼ hρ̃ϕir2ṽeffr , shows that as expected the
scalar-field dynamics are strongly relativistic at the
Schwarzschild radius. In particular, the phase s is not
small, and the exponent eis of the wave function ψ cannot
be expanded over, as it must precisely combine with the
factor e−imt to give the regular solution (48). Also, whereas
ρ given by Eq. (41) remains finite at the Schwarzschild
radius, s given by Eq. (42) diverges. This means that,
whereas density gradients remain small, as compared with
the scalar mass, as long as the bound (39) is fulfilled, the
radial derivatives of the phase s and of the wave functions ψ
and ϕ are not small and even diverge at the Schwarzschild
radius. Again, this means that one cannot use a perturbative
approach in the scalar field, even in the large scalar-mass
limit. One must keep the nonlinearities of the scalar-
field phase.

IV. QUARTIC INTERACTION

We now consider the scalar-field inflow profile around
the supermassive BH in the case of quartic self-inter-
actions (3).

A. Large-mass approximation

For spherical modes and the quartic self-interaction (3),
the nonlinear Klein-Gordon equation (13) reads

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
1

r2
∂
∂r

" ffiffiffiffiffiffi
fh

p
r2
∂ϕ
∂r

$
þ fm2ϕþ fλ4ϕ3 ¼ 0:

ð53Þ

If we discard the radial derivatives, we recognize the
standard Duffing equation, which describes a nonlinear
oscillator with a cubic nonlinearity [95]. Its solution can be
written as ϕ0cnðωt − β; kÞ, where cnðu; kÞ is the Jacobi
elliptic function [96,97] of argument u and modulus k. The
angular frequency ω and the modulus k are functions of the
amplitude ϕ0, as for anharmonic oscillators the frequency
depends on the amplitude of the oscillations. The harmonic
case λ4 ¼ 0 corresponds to k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. For
general k, the Jacobi elliptic function cnðu; kÞ is a periodic
function of u with period 4K, where KðkÞ is the complete
elliptic integral of the first kind, defined by [96,97]

0 ≤ k < 1∶ KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ; ð54Þ

and Kð0Þ ¼ π=2.
Taking into account the radial dependence, we can look

for a solution of the form

ϕ ¼ ϕ0ðrÞcn½ωðrÞt −KðrÞβðrÞ; kðrÞ&; ð55Þ

where we noted KðrÞ≡K½kðrÞ&. This is understood as the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much below m, while both ω and β are of the order of m.
The amplitude ϕ0, the angular frequency ω, the phase β,
and the modulus k are slow functions of the radius. Thus,
Eq. (55) is a generalization of the free-scalar solution (20)
to the case of nonzero quartic self-interaction, in the same
large-mass approximation.
We could absorb the factor KðrÞ in Eq. (55) in βðrÞ and

write the solution as ϕ0cnðωt − β; kÞ. However, it is
convenient to introduce the factor K in the definition of
β to simplify the Fourier expansion (57) below, which also
simplifies the radial derivative (59) below. Removing the
factor K in Eq. (55) would make new factors K and K0

appear in Eqs. (57) and (59) below.
The factors ϕ0, ω, β, and k are then determined by the

equation of motion (53). This will relate them to the
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3. Density profile

From Eqs. (20) and (46), the energy density associated
with the Eddington coordinates is given, at leading order in
the large-m limit, by

ρ̃ϕ ¼ ρ

!
sin2ðmt − sÞ

"
2 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$

þ cos2ðmt − sÞ
%
: ð49Þ

In terms of the flux F, we obtain using Eq. (38)

hρ̃ϕi ¼ −
F
r2s

r2s
2r2h

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
"
3 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
$
;

ð50Þ

where we took the average over the fast oscillations of
period 2π=m. As expected, this scalar-field energy density
remains finite at the Schwarzschild radius, with

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ¼ −

3F
2r2s

: ð51Þ

At larger radii that are still dominated by the BH gravi-
tational potential, this gives

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−3=2 and vr ∝ r−1=2: ð52Þ

The scaling vr ∝ r−1=2 corresponds to the free fall from rest
at infinity, which also gives v2r ∼Φ ∼ GM=r. The require-
ment of constant flux through spherical shells then implies
ρϕ ∝ r−3=2. The density ρϕ grows linearly with jFj, as there
are no self-interactions (and we neglect self-gravity near
the BH).
The unit velocity obtained in the ingoing wave (48), or of

the order of unity in Eq. (51) if we define an effective
velocity by F ¼ hρ̃ϕir2ṽeffr , shows that as expected the
scalar-field dynamics are strongly relativistic at the
Schwarzschild radius. In particular, the phase s is not
small, and the exponent eis of the wave function ψ cannot
be expanded over, as it must precisely combine with the
factor e−imt to give the regular solution (48). Also, whereas
ρ given by Eq. (41) remains finite at the Schwarzschild
radius, s given by Eq. (42) diverges. This means that,
whereas density gradients remain small, as compared with
the scalar mass, as long as the bound (39) is fulfilled, the
radial derivatives of the phase s and of the wave functions ψ
and ϕ are not small and even diverge at the Schwarzschild
radius. Again, this means that one cannot use a perturbative
approach in the scalar field, even in the large scalar-mass
limit. One must keep the nonlinearities of the scalar-
field phase.

IV. QUARTIC INTERACTION

We now consider the scalar-field inflow profile around
the supermassive BH in the case of quartic self-inter-
actions (3).

A. Large-mass approximation

For spherical modes and the quartic self-interaction (3),
the nonlinear Klein-Gordon equation (13) reads

∂2ϕ
∂t2 −

ffiffiffiffiffi
f
h3

r
1

r2
∂
∂r

" ffiffiffiffiffiffi
fh

p
r2
∂ϕ
∂r

$
þ fm2ϕþ fλ4ϕ3 ¼ 0:

ð53Þ

If we discard the radial derivatives, we recognize the
standard Duffing equation, which describes a nonlinear
oscillator with a cubic nonlinearity [95]. Its solution can be
written as ϕ0cnðωt − β; kÞ, where cnðu; kÞ is the Jacobi
elliptic function [96,97] of argument u and modulus k. The
angular frequency ω and the modulus k are functions of the
amplitude ϕ0, as for anharmonic oscillators the frequency
depends on the amplitude of the oscillations. The harmonic
case λ4 ¼ 0 corresponds to k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. For
general k, the Jacobi elliptic function cnðu; kÞ is a periodic
function of u with period 4K, where KðkÞ is the complete
elliptic integral of the first kind, defined by [96,97]

0 ≤ k < 1∶ KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ; ð54Þ

and Kð0Þ ¼ π=2.
Taking into account the radial dependence, we can look

for a solution of the form

ϕ ¼ ϕ0ðrÞcn½ωðrÞt −KðrÞβðrÞ; kðrÞ&; ð55Þ

where we noted KðrÞ≡K½kðrÞ&. This is understood as the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much below m, while both ω and β are of the order of m.
The amplitude ϕ0, the angular frequency ω, the phase β,
and the modulus k are slow functions of the radius. Thus,
Eq. (55) is a generalization of the free-scalar solution (20)
to the case of nonzero quartic self-interaction, in the same
large-mass approximation.
We could absorb the factor KðrÞ in Eq. (55) in βðrÞ and

write the solution as ϕ0cnðωt − β; kÞ. However, it is
convenient to introduce the factor K in the definition of
β to simplify the Fourier expansion (57) below, which also
simplifies the radial derivative (59) below. Removing the
factor K in Eq. (55) would make new factors K and K0

appear in Eqs. (57) and (59) below.
The factors ϕ0, ω, β, and k are then determined by the

equation of motion (53). This will relate them to the
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scalar-field physical parameters m and λ4, and to the mass
of the BH, through Eqs. (62) and (63) below.
First, to ensure that spatial gradients do not increase with

time, we note that the field at each radius must oscillate in
phase. Otherwise, the phase difference between the fields at
two arbitrarily close radii would eventually become large,
giving rise to a secular growth of radial gradients. Denoting
the common period of the oscillations by T ¼ 2π=ω0,
where ω0 is the common angular frequency, we can see
from Eq. (55) that we must have at each radius
ωðrÞT ¼ 4KðrÞ, because the period of the Jacobi function
of modulus k is 4K. Therefore, the function ωðrÞ is set by
the modulus kðrÞ according to

ωðrÞ ¼ 2KðrÞ
π

ω0: ð56Þ

This synchronous oscillation can also be seen from the
Fourier series expansion of the Jacobi elliptic function
[96,97]. Substituting into Eq. (55), we obtain

ϕ¼ϕ0

2π
kK

X∞

n¼0

qnþ1=2

1þq2nþ1
cos½ð2nþ1Þðω0t−πβ=2Þ&; ð57Þ

with q ¼ e−πK
0=K, where K0 ¼ Kðk0Þ with k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
.

This expression explicitly shows the global oscillation of
the field, with the common fundamental angular fre-
quency ω0.
From Eq. (55), the time derivative is

∂ϕ
∂t ¼ ϕ0ω

∂cn
∂u : ð58Þ

At leading order in the large-m limit, the radial derivative
reads from Eq. (57) as

∂ϕ
∂r ¼ −ϕ0Kβ0

∂cn
∂u þ ' ' ' ; ð59Þ

where the dots stand for subleading terms, as we assume
that the phase β is formally of the order of m. Here,
β0 ¼ dβ=dr. Substituting into the nonlinear Klein-Gordon
equation (53) gives

ϕ0

"
ω2 −

f
h
ðKβ0Þ2

# ∂2cn
∂u2 þ fm2ϕ0cnþ fλ4ϕ3

0cn
3 ¼ 0;

ð60Þ

where we kept only the term of the order of m2 among the
radial derivative contributions. Thus, at this order, we can
see that the radial derivatives do not change the structure of
Eq. (60). This is why it again admits the Jacobi elliptic
function as a solution. Thus, using the property

∂2cn
∂u2 ¼ ð2k2 − 1Þcn − 2k2cn3; ð61Þ

the Klein-Gordon equation (60) is satisfied as soon as the
coefficients of the factors cn and cn3 vanish. This gives the
two conditions

π2f
4h

β02 ¼ ω2
0 −

fm2π2

ð1 − 2k2Þ4K2
; ð62Þ

λ4ϕ2
0

m2
¼ 2k2

1 − 2k2
: ð63Þ

We recover in Eq. (63) that the free scalar case λ4 ¼ 0
corresponds to k ¼ 0. Equation (62) is the generalization of
the Euler equation (27), πβ0=ð2mÞ plays the role of the
radial velocity vr ¼ m−1ds=dr, and πβ=2 plays the role of
the phase s. More precisely, Eq. (62) can be rewritten as a
relativistic dispersion relation for a particle of mass m, i.e.,

E2 ¼ p2
r þm2, where we identify pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2k2

h K
q

β0 and

E ¼
ffiffiffiffiffiffiffiffiffi
1−2k2

f

q
2K
π ω0 in the local Minkowski frame. In the

large-radius limit, as we shall see in Sec. IV B 1 b corre-
sponding to k ≪ 1, this reduces to the dispersion relation of
the nonrelativistic particles as identified thanks to the Euler
equation, and we have pr ≃ πβ0=2. In the general case, we
can identify the velocity field as vr ≡ pr

E . In the relativistic
regime close to the BH, this velocity goes to unity.
However, the connection between the dispersion relation
and a velocity field is mostly formal, as beyond the
nonrelativistic regime there is no direct link between the
profile of the solution ϕ given by Eq. (55) and a particle
interpretation.

B. Boundary conditions

1. Large-radius boundary condition

At large radii, r ≫ rsg, the gravitational field is small and
set by the self-gravity of the scalar cloud. Therefore, we
match the solution (55) to the soliton profile obtained for
the self-gravitational nonrelativistic scalar cloud [89].

Scalar-field soliton.—In this regime, we can decompose the
scalar field ϕ as in Eq. (15) and use the Madelung
transformation (20) for the complex field ψ . Taking into
account the quartic self-interaction, which is subdominant
with respect to the quadratic potential m2ϕ2=2, the
continuity equations (26) and (28) take again the usual
form (30)

_ρþ ∇⃗ · ðρ∇⃗sÞ
m

¼ 0; _ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð64Þ

whereas the Euler equations (27) and (29) become
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π
2
β0 ¼ −ω0

ffiffiffi
h
f

s

: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

"∂ϕ
∂t

#
2

þ 1

2h

"∂ϕ
∂r

#
2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ
þ ϕ2

0

ðKβ0Þ2

h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4& ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

"∂cn
∂u

#
2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r

$ ffiffiffiffiffiffiffiffi
fh3

q
r2Tr

0

%
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0
&"∂cn

∂u
#

2
'
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h
"
2K
π

#
2
&"∂cn

∂u
#

2
'

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
π2f

ð1þ αÞ24K2ð1 − 2k2Þ

s

; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ
2 is

&"∂cn
∂u

#
2
'

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

"
E
K

þ k2 − 1

#
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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Nonlinear Klein-Gordon eq. of motion:

nonlinear cubic term due to the self-interactions 

In the large-mass limit, use a nonlinear local approximation:

is a generalization of the cosine to the nonlinear (cubic) oscillator:cn(u, k)

k = 0 : cn(u, k = 0) = cos(u)(Jacobi elliptic function) 

are slow functions of r

rr ⌧ m! ⇠ � ⇠ m

�0(r), !(r), �(r), K(r), k(r)

Substituting into the Klein-Gordon eq. determines all parameters                                in terms of  {�0, !, �, K} k(r) (at leading order)

k(r) is determined by a self-consistency constraint: the mean flux (averaged over the fast oscillations) must be constant over radius: steady state

B) Nonlinear oscillator
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1/m ⌧ rs Compton wavelength shorter than the Schwarzschild radius

is a constant.



can expect F ∼ ρr2vr, with r ¼ rs=4, vr ∼ 1 at the
Schwarzschild radius, and ρ ∼m4 from dimensional
analysis.

D. Critical solution

1. Function Fðk; xÞ
For each radius x, Eq. (88) gives the flux F as a function

of k. We show in Fig. 1 the normalized flux F=Fs as a
function of the modulus k for several values of the radial
coordinate x. The modulus k is constrained to range
between 0 and the value kþðxÞ < 1=

ffiffiffi
2

p
where the square

root vanishes. The flux vanishes at both boundaries, k ¼ 0
and k ¼ kþ, and shows a single maximum jFmaxðxÞj at a
position kmaxðxÞ somewhat below kþðxÞ. The upper bound
kþ and the peak at kmax shift to lower values as x grows.
The maximum jFmaxðxÞj grows at both small and large x
and shows a minimum at x⋆ ≃ 2.43 with

Fc ≡ Fmaxðx⋆Þ ¼ F⋆Fs with F⋆ ≃ 0.66: ð95Þ

We show FmaxðxÞ=Fs in Fig. 2. In Figs. 1 and 2, we use for
the metric functions hðxÞ and fðxÞ the Schwarzschild
functions (7). At the transition radius rsg, the gravitational
potential receives equal contributions from the central BH
and the scalar cloud, and at a larger radius inside the soliton
core it remains almost constant, equal to the soliton core
value Φsð0Þ. Therefore, beyond rsg the factors h and f are
almost constant, and the flux function Fðx; kÞ keeps a
constant shape in k, with a simple multiplicative factor x2.
Thus, beyond rsg the peak value jFmaxðxÞj keeps increasing
as x2.
This behavior of Fðk; xÞ selects a unique value for the

flux, in a fashion similar to the unique transonic solution
found in the case of hydrodynamical infall onto a BH

[98,99]. First, we can see that jFj must be smaller than or
equal to the critical value jFcj; otherwise, there would exist
no solution kðxÞ to the flux constraint equation (88) around
x⋆. If jFj < jFcj, there exist two distinct solutions k1ðxÞ <
k2ðxÞ at each radius, on either side of the peak kmaxðxÞ, and
a continuous function kðxÞmust remain on the same side of
the peak throughout. It is only for the critical value F ¼ Fc
that the function kðxÞ can switch from the branch k1ðxÞ to
k2ðxÞ, at the radius x⋆where both solutions coincidewith the
peak. The two solutions k1ðxÞ < k2ðxÞ are shown in Fig. 3
forF ¼ Fc=3 (the upper and lower dashed curves that do not
meet) and for F ¼ Fc [the inner dotted curves that meet at
x⋆ ≃ 2.43, which coincide with the critical solution kcðxÞ,
shown by the solid line, on either side of x⋆].
As we shall see below, the boundary conditions require

that k ¼ k2ðxÞ at large radii and k ¼ k1ðxÞ close to the
Schwarzschild radius. Therefore, the function kðxÞ must
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FIG. 1. Normalized flux Fðk; xÞ=Fs as a function of the
modulus k, for various values of the radial coordinate x, from
Eq. (88). The horizontal dotted line is the minimum value F⋆ ≃
0.66 of the peak, reached for x ¼ x⋆ ≃ 2.43.
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FIG. 2. Peak value FmaxðxÞ=Fs as a function of the radial
coordinate x. The horizontal dotted line is the minimum value
F⋆ ≃ 0.66.
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Subsonic 
branch

Supersonic 
branch

C) Critical flux: unique transsonic solution

The behaviour is qualitatively similar to the classical Bondi problem:

- For a given flux                there are 2 solutions: a fully subsonic and a fully supersonic solution.
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F < F?

- At the critical flux       these 2 branches join at a critical radius       , which allows 2 unique transsonic solutions.
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F?

- The boundary conditions select the unique transsonic solution that is subsonic at large radii and supersonic at small radii. 

matching to the hydrostatic soliton free fall at the BH horizon
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Characteristic density:

_s
m
þ ð∇⃗sÞ2

2m2
¼ −ðΦþΦIÞ;

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗ðΦþΦIÞ; ð65Þ

where ΦI is given by [89]

ΦIðρÞ ¼
ρ
ρa

; ρa ≡ 4m4

3λ4
: ð66Þ

This pressure associated with the self-interaction ΦI allows
the scalar cloud to reach an hydrostatic equilibrium, where
this repulsive self-interaction balances the self-gravity. This
gives the soliton profile [89]

ρðrÞ ¼ ρsð0Þ
sinðr=raÞ
r=ra

; ΦIðrÞ ¼ ΦIsð0Þ
sinðr=raÞ
r=ra

;

ð67Þ

with v⃗ ¼ 0 and

ra ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGρa
p : ð68Þ

The soliton has a flat inner core and a finite radius
Rs ¼ πra. Inside the soliton, the hydrostatic equilibrium
condition (65) gives ∇⃗ðΦþΦIÞ ¼ 0, and we have

r ≤ Rs∶ ΦþΦI ¼ α; ð69Þ

where α is a constant, given by the value of the Newtonian
potential at the boundary of the soliton,

α ¼ ΦðRsÞ; ð70Þ

as ΦIðRsÞ ¼ 0. In terms of the scalar fields ψ and ϕ, this
gives

ψ ¼
ffiffiffiffi
ρ
m

r
e−iαmt; hence; s ¼ −αmt; ð71Þ

and

ϕ ¼
ffiffiffiffiffi
2ρ

p

m
cos½ð1þ αÞmt&: ð72Þ

Large-radius solution.—At large radii but within the
soliton radius, rsg ≪ r ≪ Rs, we are in the weak-gravity
regime and we approach the soliton core solution, with
Φ ≃Φsð0Þ ≲ 10−5 and ρ ≃ ρsð0Þ. We also have ΦI ¼ α−
Φ ≃ −Φsð0Þ, and the self-interaction potential VI ∼ ρΦI ≪
ρ is much smaller than the quadratic part; hence,
λ4ϕ4 ≪ m2ϕ2. Therefore, we can see from Eq. (63) that
we have at leading order

k2 ¼ λ4ϕ2
0

2m2
þ ' ' ' ≪ 1; ð73Þ

where the dots stand for higher-order terms. From the
expansion (57) and the series expansions [97]

KðkÞ ¼ π
2

"
1þ k2

4
þ ' ' '

#
; ð74Þ

qðkÞ ¼ k2

16

"
1þ k2

8
þ ' ' '

#
; ð75Þ

we obtain at leading order

k ≪ 1∶ ϕ ¼ ϕ0 cosðω0t − πβ=2Þ þ ' ' ' : ð76Þ

The comparison with Eq. (72) gives

rsg ≪ r ≪ Rs∶ ϕ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρsð0Þ

p

m
; β ≃ 0; ð77Þ

and

ω0 ¼ ð1þ αÞm: ð78Þ

Indeed, as the soliton solution (72) corresponds to hydro-
static equilibrium with v⃗ ¼ 0, the velocity β must become
negligible at large radii in order tomatchwith the soliton.We
can now check that this is consistent with Eqs. (62) and (63).
Equation (62) with β ¼ 0 gives, at leading order inΦ and k2,

ω0 ¼ m
"
1þΦþ 3

4
k2
#
: ð79Þ

On theother hand, Eq. (63) gaveEq. (73).UsingEq. (77), this
yields

k2 ¼ λ4ρ
m4

¼ 4

3
ΦI: ð80Þ

Then, Eq. (79) reads ω0 ¼ mð1þΦþΦIÞ ¼ mð1þ αÞ,
where we used the hydrostatic result (69), and we recover
Eq. (78). This shows that this large-radius asymptote is self-
consistent, provided β is negligible. This gives the large-
radius asymptotic values of ϕ0ðrÞ and kðrÞ, from Eqs. (77)
and (80), in the constant-density core of the soliton. The
uniform oscillation frequency ω0 is then set by this large-
radius boundary condition in Eq. (78). Note that typically
α≲ 10−5 from Eq. (70). Thus, the angular oscillation
frequency ω0 remains very close to m.

2. Small-radius boundary condition

Close to the Schwarzschild radius, we can expect the
self-interaction pressure to be negligible and to recover the
free-scalar infall (36) (but we shall see below that the self-
interaction plays a role for the scalar profile down to the
Schwarzschild radius, as it dictates the constant flux of
the steady state). Indeed, as long as k remains below 1=

ffiffiffi
2

p
,
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Critical flux: Fs =
r2sm

4

�4

greater repulsive self-interactions decrease the scalar-field energy density and flux.
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Fc = F?Fs with
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F? ⇠ 0.7
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- intermediate radii (weak gravity dominated by the BH mass): rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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- large radii (weak gravity dominated by the scalar-field soliton self-gravity):

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,
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radial scalar-field energy-density profile

FDM (free-fall):
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⇢ / r�3/2Impact of the repulsive self-interactions

relativistic, much smaller than Bondi
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ṀBondi =
2⇡⇢0G2M2

BH

c3s
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ṀSFDM =
12⇡F?⇢0G2M2

BH

c2sc
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r? ⇠ 2.4rs in the relativistic regime



II-  BH MOVING INSIDE A SFDM CLOUD

In the static SFDM cloud (soliton) frame
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~v0

In the BH frame (subsonic case)

Uniform DM fluid velocity at infinity

Bending of streamlines 
by the BH gravity

Radial accretion close 
to the BH horizon

Stagnation point 
behind the BH

A) Soliton and BH frames

An overdense wake behind the BH, due to the BH gravity.

Slows down the BH.

Dynamical friction Chandrasekhar 1943



B) Large-distance domain

4

so that the de Broglie wavelength �dB = 2⇡/mv is much
smaller than the scales of interest. This implies that wave
e↵ects, such as interference patterns, are negligible. How-
ever, the dynamics remain di↵erent from that of CDM
particles because of the self-interaction, which is relevant
up to galactic scales and balances gravity, allowing for
the formation of stable equilibrium configurations often
called solitons. See [116] for a derivation of the regions
in the parameter space (m,�4,MBH) where our approxi-
mations are valid.

D. Nonrelativistic dark matter halo

On large scales, where the BH gravity is negligible
as compared with the dark matter self-gravity, the Eu-
ler equation (21) admits hydrostatic equilibria, given by
r(�N + �I) = 0. This can be integrated as

�N + �I = ↵, with ↵ = �N(Rsol). (24)

Here we introduced the radius Rsol of the spherically
symmetric halo, also called soliton, where the density
vanishes. In the Thomas-Fermi limit (24) where the
quantum pressure (23) is negligible, the solution reads
[52, 94, 95]

r � rsg : ⇢(r) = ⇢0
sin(r/ra)

(r/ra)
and Rsol = ⇡ra, (25)

and the transition radius rsg is given by

rsg = rs
⇢a

⇢0
� rs. (26)

The bulk density ⇢0 is set by the mass of this dark matter
halo, Msol = (4/⇡)⇢0R3

sol
. This is the second dark matter

parameter, in addition to ⇢a, that enters the dynamics
that we study in this paper. It depends on the formation
history of the dark matter halo. In this regime, the e↵ec-
tive pressure associated with the self-interaction � also
defines a sound speed cs given by

c
2

s(⇢) =
⇢

⇢a
⌧ 1, (27)

which corresponds to a polytropic gas of adiabatic index
� = 2. From Eq.(26) we can see that the sound speed in
the bulk is also related to the transition radius as

rsg =
rs

c
2

s0

, c
2

s0 =
⇢0

⇢a
. (28)

E. Radial accretion

Close to the horizon, the dark matter cannot remain
static and falls into the BH. The case of radial accretion
around a motionless BH was studied in [95]. Equations
(10) and (11) give the phase � and the amplitude �0

as a function of the modulus k(r). The latter is next

obtained from the continuity equation averaged over the
scalar oscillations, that is, from the condition of constant
flux over all radii in the steady state. Then, as for the
Bondi problem of the radial accretion of a perfect gas
on a BH, the dark matter profile is determined by the
unique transsonic solution that matches the quasi-static
equilibrium soliton at large radius and the free fall at the
BH horizon. This gives the accretion rate [95].

ṀBH,radial = 3⇡F?⇢ar
2

s = 3⇡F?⇢0r
2

s/c
2

s0, (29)

where F? ' 0.66. The result (29) means that the dark
matter density near the horizon is of the order of the
characteristic density ⇢a while the radial velocity is of
the order of the speed of light.
This result is much lower than the Bondi accretion

ṀBondi ⇠ ⇢0r
2

s/c
3

s0 [125]. This is because the sti↵ poly-
tropic index � = 2 makes the repulsive self-interaction
strong enough to slow down the infall significantly. More-
over, in contrast with the Bondi case with 1 < � <

5/3, the sonic radius rc where the Mach number |vr|/cs
reaches unity is located within the relativistic regime,
where the hydrodynamical picture is no longer valid and
one needs to use the Klein-Gordon equation of motion
(7), or its large-mass limit (10)-(11).

F. Isentropic potential flow

Introducing as in [116] the dimensionless variables

r̂ =
r

rs
, ⇢̂ = 2

⇢

⇢a
, �̂ =

⇡

2mrs
�, ~v = r̂�̂, (30)

the continuity equation (20) and the Bernoulli equation
associated with the Euler equation (21) coincide with
those of an isentropic potential flow with a polytropic
index � = 2,

r̂ · (⇢̂~v) = 0,
v
2

2
+ V +H = 0, (31)

where the external potential V (r̂) and the enthalpy H(⇢̂)
are given by

V (r̂) = � ⇢̂0

2
� v

2

0

2
� 1

2r̂
, H(r̂) =

⇢̂

2
. (32)

Here and throughout this paper we work in the BH frame,
where the BH is at rest and the dark matter cloud moves
at the uniform velocity ~v0 far from the BH. From the
Bernouilli equation (31) the density can be expressed in
terms of the velocity by

⇢̂ = ⇢̂0 +
1

r̂
+ v

2

0
� v

2
, (33)

and substituting into the continuity equation (31) gives

r̂ ·
✓

⇢̂0 +
1

r̂
+ v

2

0
� (r̂�̂)2

◆
r̂�̂

�
= 0. (34)

This equation holds in the nonrelativistic regime, beyond
a radius rm ⇠ 40rs.

Far from the BH: hydrodynamical equations of an isentropic gas of effective adiabatic index 
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� = 2

Continuity eq. + Euler eq. Potential flow
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~v = r�

Bernoulli eq.:

BH gravity effective pressure

Isentropic potential flow eq.:

This is different from the radial accretion of collisionless
particles with an isotropic and monoenergetic distribution
at the characteristic velocity cs [61]

collisionless ∶ _Mfree ¼
16πρ0G2M2

BH

cs
ð129Þ

and the classical radial Bondi accretion rate [53] for an
isothermal gas, _MBondi ∼ ρ0r2s=c3s , which also corresponds
to the subsonic limit of the so-called “Bondi-Hoyle-
Lyttleton accretion rate” [62,63]

Bondi-Hoyle∶ _MBondi−Hoyle ¼
2πρ0G2M2

BH

ðc2s þ v20Þ3=2
ð130Þ

The hydrodynamical accretion rate (130) is much greater
than the collisionless accretion rate (129), by a factor
ðc=csÞ2 ∼ 106, where c ¼ 1 is the speed of light. This is
because the collisions restrict tangential motion and funnel
particles in the radial direction [61]. The scalar-field
accretion rate is in-between these two cases. As could
be expected, for the same hydrodynamical reason it is
higher than the free rate, as the flow is more efficiently
converted into a radial pattern at small radii, but now by a
factor c=cs ≫ 1. However, it is much smaller than the
accretion rate of the perfect gas rate, by a factor cs=c ≪ 1.
Thus, the scalar-field self-interactions are much more
efficient to resist the BH gravity and slow down the infall.
This is because the scalar field has a different equation of
state and deviates from a perfect gas in the relativistic
regime, which sets the critical flux Fc and the normaliza-
tion of the global profile [36]. This agrees with the fact that
for a perfect gas with adiabatic index γad > 5=3, there is no
Newtonian steady transonic solution but one exists in
general relativity [60,61]. This again shows the critical
role of relativistic effects at small radii for steep equations
of state.
The expression (126) can be understood in simple terms.

It simply means that close to the BH horizon rs, where the
infall velocity is close to the speed of light, the scalar
density is of the order of ρa, as can be checked by an
explicit computation of the scalar profile, see [36] and
Eq. (53). From Eq. (6), this is the density where the self-
interaction potential ΦI is of order unity and the self-
interaction term VI ¼ λ4ϕ4=4 is of the order of the mass
term m2ϕ2=2. This characteristic density provides an upper
bound on ρ, and hence on the accretion rate, as the infall
velocity cannot be greater than the speed of light.

VII. DYNAMICAL FRICTION

A. Relationship with large-radius expansions

As the BH moves through the scalar-field cloud it is
slowed down by a drag force, often called dynamical
friction. By symmetry, this force F⃗ ¼ Fze⃗z is directed

along the z-axis. As sketched in Fig. 7, let us consider an
open subsystem formed by the BH and the scalar field
inside a surface Sin that encloses the BH, far enough from
the horizon for Newtonian dynamics to hold but close
enough for its mass M to be dominated by the BH mass
MBH. The surface Sin ¼ ∂V in bounds a volume V in. Outside
this volume the scalar cloud extends up to the soliton radius
Rsol, at a much greater distance. This defines the outer
volume Vout. Going back to physical coordinates, the
change of momentum of this subsystem, of volume Vin,
reads

dpz

dt
¼ GMBH

Z

Vout

dr⃗ρðr⃗Þ r⃗ · e⃗z
r3

−
Z

∂V in

d⃗S · Pe⃗z

−
Z

∂V in

d⃗S · ρv⃗vz: ð131Þ

The first term, integrated over the volume Vout of the scalar
cloud, is the usual dynamical friction term due to the
gravitational wake [64], that is, the gravitational pull from
the scalar-field overdensity generated behind theBH through
the deflection of the streamlines under the BH gravity. The
second term, which is absent in collisionless media such as
the stellar cloud considered by Chandraskhar’s classical
study [17], is the pressure exerted by the outer cloud on
the subsystem. The third term is the contribution of the
momentum flux through the surface Sin. This last term is
clearly related to the local influx of matter and therefore the
infall ofmass into theBH, i.e., accretion, but it vanishes if the
flow is radial close to the BH.
In the limit of an infinite constant-density scalar cloud,

the first gravitational term suffers from the same divergence
as the Newtonian gravitational force in an infinite homo-
geneous universe, associated with the so-called “Jeans
swindle.” As usual, this can be cured by integrating first
over angles or by regularizing Newtonian gravity with a
damping factor e−κjr⃗−r⃗

0j, taking the limit κ → 0 at the end of
the computations [65]. This implies that a constant-density
background does not contribute and only the asymmetry of

FIG. 7. Inner and outer surfaces used in Eq. (131).
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Conservation of mass and momentum allow us to obtain the 
mass and momentum flux through any arbitrarily distant surface:

Steady state, in the BH frame

Allows us to obtain analytical results from large-distance expansions
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v0 > cs0 : hypersonic BH velocity, hyperbolic eq., Cauchy problem, shock  

C) Subsonic and supersonic regimes



III-  SUBSONIC REGIME

corresponds to the monopole in Eq. (85). Thus, the two
boundary conditions have different parity, which implies the
flow is neither exactly odd or even. The phase is odd at large
distance and becomes even close to the BH, with a complex
pattern in the intermediate region. This also means that
the asymmetry of the flow is related to the accretion by the
BH, which determines the inner boundary condition. The
dynamical friction of the BH, due to this asymmetry, is
therefore directly related to the accretion rate. We will
recover this relationship in Sec. VII, where we obtain the
explicit expression of the dynamical friction.
In the right-column panels, we can see the flow becom-

ing radial as we zoom in closer to the BH. This agrees with
the results of Fig. 3, which show that the monopole
dominates at small radii. The velocity magnitude grows
at smaller radii as the flow is accelerated by the BH gravity

during its infall. As explained in Sec. III C, below a critical
radius rc the flow switches to the high-velocity branch, the
pressure due to the self-interactions is no longer able to
resist gravity and the dark matter reaches the BH horizon as
in free fall.
The lower row in Fig. 5 shows maps of the odd

component of the density field, more precisely the ratio
r̂ρ̂odd=ρ̂0. We single out the odd component to emphasize
the asymmetry in the flow and the appearance of a wake
behind the BH. Indeed, the dynamical friction of the BH
is due to the asymmetry of the flow (by symmetry, a
symmetric flow would not generate any drag force) but it
would be difficult to distinguish it in a map of the total
density, as the even component dominates on all scales as
was found in Fig. 4. Indeed, the total density appears
almost spherically symmetric on all scales in the subsonic

FIG. 5. Flow (top panels), iso-velocities contours (middle panels) and odd-component of the density field r̂ρ̂odd=ρ̂0 (bottom panels) for
the scalar-field at different scales (106, 2.5 × 104 and 104 rs). The velocity and the density are computed from the multipoles of β̂. The
BH is located at the center of the figures, at ẑ ¼ x̂ ¼ 0, where ẑ ¼ z=rs and x̂ ¼ x=rs.
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Exact analytical results using a large-distance expansion:

1 remaining integration constant B

associated with the transition to the supersonic regime only
appears very close to cs, for v0 ≳ 0.9cs.
This behavior agrees with that of the linear flow (85),

which behaved at large radii as

r≫ rγ∶ βL0 ∝ 1=r; βL1 ¼ v0r−
v0
2γ

þ v0
2γ2r

þ…; ð104Þ

where the subleading term −v0=ð2γÞ in the dipole generates
the positive angular velocity correction v0 sinðθÞ=ð2γrÞ.
The difference with the linear flow (85) is that the cubic
nonlinearity in (67) generates nonzero contributions to all
higher-order multipoles.

3. Phase, velocity and density expansions

As described in the previous section, at large radii the
phase β̂ can be expanded as

β̂ ¼ v0r cos θ þ δβ̂odd þ δβ̂even; ð105Þ

where we decompose over odd and even components n
u ¼ cos θ, with, for r̂ ≫ r̂γ,

δβ̂odd ¼ δ̂βð0ÞoddðθÞ þ
1

r̂
δ̂βð1ÞoddðθÞ þOð1=r̂2Þ;

δβ̂even ¼
1

r̂
δ̂βð1ÞevenðθÞ þOð1=r̂2Þ; ð106Þ

and δ̂βð0Þodd is given by Eq. (99) whereas δ̂βð1Þeven=r̂ is given
by Eq. (101). As described in Appendix B, these large-
distance tails, generated by nonlinear mode couplings, can
be expanded in Legendre multipoles,

δβ̂ð0ÞoddðθÞ ¼
X∞

l¼0

a2lþ1P2lþ1ðcos θÞ;

δβ̂ð1ÞevenðθÞ ¼
X∞

l¼0

b2lP2lðcos θÞ; ð107Þ

where the coefficients an and bn obey the recursions (B2)
and (B10). The coefficients an and bn remain of the same
order as a1 and b0 if v0 ∼ cs, or decay at high n as ðv0=csÞn
if v0 ≪ cs. Thus, for small velocities v0 ≪ cs, we recover
the linear flow as higher orders become negligible and the
coefficients a1 and b0 take their linear-flow values.
The velocity field is given by v⃗ ¼ ∇̂ β̂, which yields

vr ¼ v0 cos θ −
1

r̂2
ðδβ̂ð1Þodd þ δβ̂ð1ÞevenÞ þ…;

vθ ¼ −v0 sin θ þ
1

r̂
dδβ̂ð0Þodd

dθ
þ 1

r̂2

!
dδβ̂ð1Þodd

dθ
þ dδβ̂ð1Þeven

dθ

"

þ… ð108Þ

Thus, the deviations from the uniform flow v⃗0 decay as
1=r̂2 for the radial velocity and as 1=r̂ for the angular

velocity. Moreover, the angular velocity and the velocity
squared are even up to order 1=r̂. From Eq. (71), we obtain
for the density

ρ̂even ¼ ρ̂0 þ
1

r̂
þ 2v0 sin θ

r̂
dδβ̂ð0Þodd

dθ
þ…;

ρ̂odd ¼
2v0
r̂2

#
cos θδβ̂ð1Þeven þ sin θ

dδβ̂ð1Þeven

dθ

$
þ… ð109Þ

where ρ̂0 ¼ 3k20=2 ¼ γ − v20. Thus, the density field is even
up to order 1=r̂.
Using the explicit expression (99) and Eq. (97) and going

back to physical coordinates, we obtain

ρeven ¼ ρ0 þ
GMBHρ0

cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2s − v20Þr2 þ v20z

2
p þ…;

ρodd ¼
4Bρ0G2M2

BHv0csz
½ðc2s − v20Þr2 þ v20z

2&3=2
þ… ð110Þ

The even component agrees with the results of [24,58] for
the linear density perturbation in an isothermal gas by a
moving star, without mass accretion. The new odd com-
ponent, proportional to the coefficient B, is related to the
accretion by the BH, as described in Sec. VI and Eq. (127)
below. It is also the source of the dynamical friction, as
shown in Sec. VII.
Expanding ρ̂even in powers of v0, we have

ρ̂even ¼ ρ̂0 þ
1

r̂
þ v20
2c2s r̂

sin2 θ þ… ð111Þ

Thus, at large radii, r̂ ≫ r̂γ, and for v0 ≪ cs, the density
correction due to the motion of the BH remains much
smaller than the static contribution associated with the BH,
ρ̂0 ≫ 1=r̂ ≫ v20=ðc2s r̂Þ. Therefore, it is legitimate to neglect
this correction to the self-gravity of the dark matter
perturbation, as we assume throughout this paper [note
that the 1=r̂ term includes the self-gravity in the response of
the scalar cloud to the BH in the static case, see Eq. (20)].
At smaller radii, the BH gravity dominates over the scalar-
field background self-gravity, and hence over the scalar
perturbation too.

C. Numerical scheme

In the subsonic regime that we study in this paper, the
flow remains close to the linear solution (85). In particular,
there is no shock at large radii. Then, an iterative approach
starting from this linear approximation converges and
provides an efficient numerical scheme. In practice, we
write Eq. (67) as

∇̂ · ðk2þ∇̂ β̂Þ ¼ S; S ¼ 2

3
∇̂ · ½ð∇̂ β̂Þ2∇̂ β̂&; ð112Þ
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associated with the transition to the supersonic regime only
appears very close to cs, for v0 ≳ 0.9cs.
This behavior agrees with that of the linear flow (85),

which behaved at large radii as

r≫ rγ∶ βL0 ∝ 1=r; βL1 ¼ v0r−
v0
2γ

þ v0
2γ2r

þ…; ð104Þ

where the subleading term −v0=ð2γÞ in the dipole generates
the positive angular velocity correction v0 sinðθÞ=ð2γrÞ.
The difference with the linear flow (85) is that the cubic
nonlinearity in (67) generates nonzero contributions to all
higher-order multipoles.

3. Phase, velocity and density expansions

As described in the previous section, at large radii the
phase β̂ can be expanded as

β̂ ¼ v0r cos θ þ δβ̂odd þ δβ̂even; ð105Þ

where we decompose over odd and even components n
u ¼ cos θ, with, for r̂ ≫ r̂γ,

δβ̂odd ¼ δ̂βð0ÞoddðθÞ þ
1

r̂
δ̂βð1ÞoddðθÞ þOð1=r̂2Þ;

δβ̂even ¼
1

r̂
δ̂βð1ÞevenðθÞ þOð1=r̂2Þ; ð106Þ

and δ̂βð0Þodd is given by Eq. (99) whereas δ̂βð1Þeven=r̂ is given
by Eq. (101). As described in Appendix B, these large-
distance tails, generated by nonlinear mode couplings, can
be expanded in Legendre multipoles,

δβ̂ð0ÞoddðθÞ ¼
X∞

l¼0

a2lþ1P2lþ1ðcos θÞ;

δβ̂ð1ÞevenðθÞ ¼
X∞

l¼0

b2lP2lðcos θÞ; ð107Þ

where the coefficients an and bn obey the recursions (B2)
and (B10). The coefficients an and bn remain of the same
order as a1 and b0 if v0 ∼ cs, or decay at high n as ðv0=csÞn
if v0 ≪ cs. Thus, for small velocities v0 ≪ cs, we recover
the linear flow as higher orders become negligible and the
coefficients a1 and b0 take their linear-flow values.
The velocity field is given by v⃗ ¼ ∇̂ β̂, which yields

vr ¼ v0 cos θ −
1

r̂2
ðδβ̂ð1Þodd þ δβ̂ð1ÞevenÞ þ…;

vθ ¼ −v0 sin θ þ
1

r̂
dδβ̂ð0Þodd

dθ
þ 1

r̂2

!
dδβ̂ð1Þodd

dθ
þ dδβ̂ð1Þeven

dθ

"

þ… ð108Þ

Thus, the deviations from the uniform flow v⃗0 decay as
1=r̂2 for the radial velocity and as 1=r̂ for the angular

velocity. Moreover, the angular velocity and the velocity
squared are even up to order 1=r̂. From Eq. (71), we obtain
for the density

ρ̂even ¼ ρ̂0 þ
1

r̂
þ 2v0 sin θ

r̂
dδβ̂ð0Þodd

dθ
þ…;

ρ̂odd ¼
2v0
r̂2

#
cos θδβ̂ð1Þeven þ sin θ

dδβ̂ð1Þeven

dθ

$
þ… ð109Þ

where ρ̂0 ¼ 3k20=2 ¼ γ − v20. Thus, the density field is even
up to order 1=r̂.
Using the explicit expression (99) and Eq. (97) and going

back to physical coordinates, we obtain

ρeven ¼ ρ0 þ
GMBHρ0

cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2s − v20Þr2 þ v20z

2
p þ…;

ρodd ¼
4Bρ0G2M2

BHv0csz
½ðc2s − v20Þr2 þ v20z

2&3=2
þ… ð110Þ

The even component agrees with the results of [24,58] for
the linear density perturbation in an isothermal gas by a
moving star, without mass accretion. The new odd com-
ponent, proportional to the coefficient B, is related to the
accretion by the BH, as described in Sec. VI and Eq. (127)
below. It is also the source of the dynamical friction, as
shown in Sec. VII.
Expanding ρ̂even in powers of v0, we have

ρ̂even ¼ ρ̂0 þ
1

r̂
þ v20
2c2s r̂

sin2 θ þ… ð111Þ

Thus, at large radii, r̂ ≫ r̂γ, and for v0 ≪ cs, the density
correction due to the motion of the BH remains much
smaller than the static contribution associated with the BH,
ρ̂0 ≫ 1=r̂ ≫ v20=ðc2s r̂Þ. Therefore, it is legitimate to neglect
this correction to the self-gravity of the dark matter
perturbation, as we assume throughout this paper [note
that the 1=r̂ term includes the self-gravity in the response of
the scalar cloud to the BH in the static case, see Eq. (20)].
At smaller radii, the BH gravity dominates over the scalar-
field background self-gravity, and hence over the scalar
perturbation too.

C. Numerical scheme

In the subsonic regime that we study in this paper, the
flow remains close to the linear solution (85). In particular,
there is no shock at large radii. Then, an iterative approach
starting from this linear approximation converges and
provides an efficient numerical scheme. In practice, we
write Eq. (67) as

∇̂ · ðk2þ∇̂ β̂Þ ¼ S; S ¼ 2

3
∇̂ · ½ð∇̂ β̂Þ2∇̂ β̂&; ð112Þ
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III. LARGE-DISTANCE EXPANSIONS

A. Subsonic and supersonic regimes

Although it is not possible to obtain the general solu-
tion of the nonlinear equation of motion (34), we can de-
rive perturbative expansions in the large-distance limit.
This allows us to understand the main properties of the
flow and also to obtain analytical results for the BH dy-
namical friction. Indeed, by conservation of mass and
momentum in the steady state, the accretion rate and
the drag force are related to the influx of matter and
momentum through any surface enclosing the BH, which
can be taken to be a sphere of large radius.

1. Subsonic regime

In the subsonic regime, studied in [116], we obtained
at large distance an expansion of the form

�̂ = �̂�1 + �̂0 + �̂1 + . . . , with �̂n ⇠ r̂
�n

, (35)

where the dots stand for higher order terms over 1/r̂ and

�̂�1 = v0r̂u, (36)

is the leading-order term associated with the uniform flow
~v0. In the subsonic case, we then have

subsonic: �̂0 = f0(u), �̂1 =
f1(u)

r̂
, (37)

where we introduced the angular variable u, defined as

u = cos ✓, (38)

and the functions fn are smooth over �1 < u < 1. The
first-order correction f0 is generated by the 1/r̂ term in
the equation (34), associated with the BH gravity, cou-
pled to the zeroth-order uniform flow v0û. The latter
being odd, this gives an odd correction in u. The second-
order correction f1 contains both odd and even terms. In
particular, the even term is directly related to the mass
and momentum influx at large distance, and thus to the
BH mass accretion and dynamical friction. The first-
order correction f0 is obtained by expanding Eq.(34) over
1/r̂ and collecting the leading-order terms of order 1/r̂2.
This gives the linear di↵erential equation
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◆
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�̂0

@ẑ2
=

v0u

⇢̂0r̂
2
, (39)

where we work in the cartesian coordinates, {x̂, ŷ, ẑ},
with ~v0 = v0 ~ez. As pointed out in [116], in the sub-
sonic regime, v0 < cs0, Eq.(39) is elliptic, whereas in the
supersonic regime that we study in this paper, v0 > cs0,
Eq.(39) is hyperbolic. In the subsonic regime, this gives
a flow that is regular over all space and determined by
the boundary conditions at infinity (the uniform velocity
~v0) and at the center (the matching radius rm somewhat
above the Schwarzschild radius).

2. Supersonic regime

As for hydrodynamical flows around moving bodies,
such as airplanes, in the subsonic regime acoustic waves
travel faster than the body and are able to propagate to
all points in space (after waiting for a long/infinite time
as in the steady state). This means that the fluid at any
point adapts to the presence of the moving body, the flow
is smooth and determined by the boundary conditions at
infinity and at the surface of the body (in our case the
Schwarzschild radius).

At supersonic velocities, acoustic waves cannot catch
up with the airplane speed and are deported downstream,
within the Mach cone. Then, the flow upstream remains
unperturbed and the matching to the boundary condi-
tions on the surface of the airplane is made possible
thanks to a shock, which originates at the front tip of
the plane or somewhat before. The shock discontinuity
provides the means for the flow to jump to a new pattern
downstream, which can match the boundary conditions
on the plane.

A similar behavior appears in our case, when the BH
moves at supersonic speed inside the dark matter cloud.
An additional complication is that it is not possible to
apply simple perturbative treatments as in Eq.(35) on
both sides of the shock, with junction conditions on the
shock. Indeed, we shall see that boundary layers, gov-
erned by nonlinear e↵ects, appear on both sides of the
shock. Therefore, in the supersonic regime, we must split
the large-distance expansions over four domains: 1) the
upstream region far before the shock, 2) the boundary
layer just before the shock, 3) the boundary layer just
after the shock, 4) the downstream region far behind the
shock.

The far upstream and downstream regimes can again
be analysed through large-distance expansions such as
(35). As in the subsonic regime, this gives a standard
perturbative approach, where each order �̂n obeys a lin-
ear di↵erential equation with a right-hand side that in-
volves the lower-order terms �̂m with m < n. However,
the functions �̂n now take di↵erent forms in the upstream
and downstream regions and they may contain logarith-
mic contributions in ln(r̂). The boundary layers require
new expansions, which take into account nonlinearities.
The full solution is obtained by matching together these
four regions. This involves two asymptotic matchings,
between each boundary layer and either the upstream or
the downstream bulk flow, and one junction condition
along the shock between the two boundary layers. We
must also match with the uniform velocity ~v0 at infinity
and simultaneously determine the location of the shock.
The matching to the radial inflow at the Schwarzschild
radius appears in a natural fashion as a constant of inte-
gration. We detail this procedure in the next sections.

Conservation of mass: B in terms of 
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ṁBH

Conservation of momentum:

the perturbed scalar density field contributes, associated
with the wake behind the BH.
Considering the surface Sin as the inner boundary of the

outer volume Vout, which changes the sign of dS
!!

, and
introducing the external surface Sout of the scalar cloud
itself, we can write the pressure term as

−
Z

∂V in

dS
!!

· Pe⃗z ¼
Z

∂Vout

dS
!!

· Pe⃗z −
Z

Sout
dS
!!

· Pe⃗z

¼
Z

Vout

dr⃗
∂P
∂z

−
Z

Sout
dS
!!

· Pe⃗z; ð132Þ

as ∂Vout ¼ Sin ∪ Sout and we used the divergence theorem
in the second line. If the scalar cloud is isolated in vacuum,
the pressure term vanishes at the cloud boundary. However,
this is not the case if we choose a surface Sout that is inside
the scalar cloud, but large enough for the drag force to have
converged. Then, noticing that the first term in Eq. (131) is
also the opposite of the gravitational attraction by the BH of
the outer scalar cloud, we obtain

dpz

dt
¼

Z

Vout

dr⃗
"
ρ
∂ΦBH

∂z
þ ∂P

∂z

#
−
Z

Sout
dS
!!

· Pe⃗z

−
Z

∂V in

dS
!!

· ρv⃗vz: ð133Þ

Far inside the soliton boundary, the steady-state Euler
equation associated with the continuity and Bernoulli
equations (68) reads

∇ · ðρv⃗vzÞ ¼ ρv⃗ ·∇vz ¼ −ρ
∂ΦBH

∂z
−
∂P
∂z

: ð134Þ

Substituting into Eq. (133) we obtain the drag force on the
BH

Fz ¼
dpz

dt
¼ −

Z

Sout
dS
!!

· ρv⃗vz −
Z

Sout
dS
!!

· Pe⃗z: ð135Þ

This expression no longer depends on the inner surface Sin,
nor on the bulk of the volume Vout. Therefore, we can
shrink the inner surface Sin toward the BH. The first term
expresses the conservation of momentum as for collision-
less systems: in the steady state, the momentum that enters
the external boundary Sout is equal to the gain of momen-
tum of the BH (like in Eq. (115) the accretion of mass by
the BH is equal to the mass inflow through any enclosing
surface S). The second term takes into account the impact
of the pressure, when the surface Sout is taken within the
soliton cloud. The clear interpretation of Eq. (135) means
that it could have been used at once as the definition of the
net drag force, in a steady state, as in [24] for the case of the
isothermal gas. The interest of the derivation above is to
clarify its link with the expression (131), which contains the

more familiar gravitational wake term, associated with the
usual meaning of dynamical friction in the case of free
particles.

B. Relationship with the accretion rate

As for the BH accretion rate, we can check that the
dynamical friction converges to a finite value that does not
depend on the shape of the surface Sout, in the large-
distance limit. Choosing for the surface Sout a distant sphere
centered on the BH, as in the upper panel of Fig. 6, we
obtain in dimensionless variables the monopole contribu-
tion F̂z ¼ −4πr̂2ðρ̂vrvz þ cos θP̂Þl¼0. At large radius r,
using the large-distance expansions derived from (107), we
find that the factors r̂ cancel out as expected and we obtain

F̂z ¼ v0
_̂MBH, where

_̂MBH is the BH accretion rate obtained
in (117). Choosing instead for the surface Sout the elongated
cylinder that follows the streamlines, as for the computation
(118) and as in the lower panel of Fig. 6, we find at once
that the first term in Eq. (135) gives F̂z ¼ πρ̂0v20ðb̂

2
−−

b̂2þÞ ¼ v0
_̂MBH. An explicit computation from the expan-

sions derived from (107) shows that the pressure integral of
the second term vanishes as 1=b. Therefore, we find that
both computations give the same result,

Fz ¼ _MBHv0: ð136Þ

Thus, the drag force is simply given by the product of the
accretion rate and the relative velocity. Using Eq. (128) we
obtain

Fz ∼ ρ0r2sv0=c2s ∼ G2M2
BHρ0v0=c

2
s : ð137Þ

We checked that our numerical computation of the scalar-
field profile agrees with the prediction (136). As explained in
Sec. III C,wematch the scalar-field cloud to the radial flow at
the matching radius rm, somewhat beyond the critical radius
rc associated with the transition from the low-velocity to the
high-velocity branch. Choosing for the inner surface Sin the
sphere of radius rm, the second and third terms of Eq. (131)
vanish by symmetry. The first gravitational term reads
ð4π=3ÞGMBH

R∞
rm
drρl¼1. It is given by the dipole of the

scalar-cloud density field (thus the unperturbed background
does not contribute), which decays as 1=r2 at large distance,
as seen in Eq. (110) and Fig. 4, and our numerical
computation agrees with Eq. (136).

C. Comparison with previous works and other systems

1. Accretion, gravitational wake and drag force

There can be some confusion in the literature about the
net drag force. In the collisionless case, following
Chandraskhar’s classical work [17], it is usually called
dynamical friction and it is due to the long-range gravi-
tational interaction between the perturber (here the BH) and
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Only accretion drag force, no dynamical friction !
(d’Alembert paradox)
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Fz =
dpz
dt

= GMBH

Z

Vout

d~r⇢(~r)
~r · ~ez
r3

�
Z

@Vin

~dS · P~ez �
Z

@Vin

~dS · ⇢~vvz.

This is different from the radial accretion of collisionless
particles with an isotropic and monoenergetic distribution
at the characteristic velocity cs [61]

collisionless ∶ _Mfree ¼
16πρ0G2M2

BH

cs
ð129Þ

and the classical radial Bondi accretion rate [53] for an
isothermal gas, _MBondi ∼ ρ0r2s=c3s , which also corresponds
to the subsonic limit of the so-called “Bondi-Hoyle-
Lyttleton accretion rate” [62,63]

Bondi-Hoyle∶ _MBondi−Hoyle ¼
2πρ0G2M2

BH

ðc2s þ v20Þ3=2
ð130Þ

The hydrodynamical accretion rate (130) is much greater
than the collisionless accretion rate (129), by a factor
ðc=csÞ2 ∼ 106, where c ¼ 1 is the speed of light. This is
because the collisions restrict tangential motion and funnel
particles in the radial direction [61]. The scalar-field
accretion rate is in-between these two cases. As could
be expected, for the same hydrodynamical reason it is
higher than the free rate, as the flow is more efficiently
converted into a radial pattern at small radii, but now by a
factor c=cs ≫ 1. However, it is much smaller than the
accretion rate of the perfect gas rate, by a factor cs=c ≪ 1.
Thus, the scalar-field self-interactions are much more
efficient to resist the BH gravity and slow down the infall.
This is because the scalar field has a different equation of
state and deviates from a perfect gas in the relativistic
regime, which sets the critical flux Fc and the normaliza-
tion of the global profile [36]. This agrees with the fact that
for a perfect gas with adiabatic index γad > 5=3, there is no
Newtonian steady transonic solution but one exists in
general relativity [60,61]. This again shows the critical
role of relativistic effects at small radii for steep equations
of state.
The expression (126) can be understood in simple terms.

It simply means that close to the BH horizon rs, where the
infall velocity is close to the speed of light, the scalar
density is of the order of ρa, as can be checked by an
explicit computation of the scalar profile, see [36] and
Eq. (53). From Eq. (6), this is the density where the self-
interaction potential ΦI is of order unity and the self-
interaction term VI ¼ λ4ϕ4=4 is of the order of the mass
term m2ϕ2=2. This characteristic density provides an upper
bound on ρ, and hence on the accretion rate, as the infall
velocity cannot be greater than the speed of light.

VII. DYNAMICAL FRICTION

A. Relationship with large-radius expansions

As the BH moves through the scalar-field cloud it is
slowed down by a drag force, often called dynamical
friction. By symmetry, this force F⃗ ¼ Fze⃗z is directed

along the z-axis. As sketched in Fig. 7, let us consider an
open subsystem formed by the BH and the scalar field
inside a surface Sin that encloses the BH, far enough from
the horizon for Newtonian dynamics to hold but close
enough for its mass M to be dominated by the BH mass
MBH. The surface Sin ¼ ∂V in bounds a volume V in. Outside
this volume the scalar cloud extends up to the soliton radius
Rsol, at a much greater distance. This defines the outer
volume Vout. Going back to physical coordinates, the
change of momentum of this subsystem, of volume Vin,
reads

dpz

dt
¼ GMBH

Z

Vout

dr⃗ρðr⃗Þ r⃗ · e⃗z
r3

−
Z

∂V in

d⃗S · Pe⃗z

−
Z

∂V in

d⃗S · ρv⃗vz: ð131Þ

The first term, integrated over the volume Vout of the scalar
cloud, is the usual dynamical friction term due to the
gravitational wake [64], that is, the gravitational pull from
the scalar-field overdensity generated behind theBH through
the deflection of the streamlines under the BH gravity. The
second term, which is absent in collisionless media such as
the stellar cloud considered by Chandraskhar’s classical
study [17], is the pressure exerted by the outer cloud on
the subsystem. The third term is the contribution of the
momentum flux through the surface Sin. This last term is
clearly related to the local influx of matter and therefore the
infall ofmass into theBH, i.e., accretion, but it vanishes if the
flow is radial close to the BH.
In the limit of an infinite constant-density scalar cloud,

the first gravitational term suffers from the same divergence
as the Newtonian gravitational force in an infinite homo-
geneous universe, associated with the so-called “Jeans
swindle.” As usual, this can be cured by integrating first
over angles or by regularizing Newtonian gravity with a
damping factor e−κjr⃗−r⃗

0j, taking the limit κ → 0 at the end of
the computations [65]. This implies that a constant-density
background does not contribute and only the asymmetry of

FIG. 7. Inner and outer surfaces used in Eq. (131).
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Zooming onto the BH

Overdense wake (but dyn. fric.=0)



IV-  SUPERSONIC REGIME
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FIG. 1: Numerical computation of the scalar dark matter flow around a BH, as viewed in the BH frame with the dark matter
coming from the left at the uniform velocity ~v0 parallel to the horizontal axis. We take M0 = v0/cs0 = 1.2 and cs0 = 0.05.
The coordinates are in units of the transition radius rsg. The upper and bottom-left panels show maps of the Mach number
M = v/cs as we zoom closer to the BH. The lower-right panel shows a map of the velocity field.

horizon, not shown in the plots, the flow becomes super-
sonic again and relativistic. Thus, there are actually two
sonic lines.

As explained in Sec. V, at higher velocity we expect a
strong asymmetry down to the horizon, with a shock that
is no longer detached and a fully supersonic flow on the
front side of the BH. However, this high-Mach regime
is beyond the reach of our numerical code. We leave
a detailed study of the accretion flow near the BH at
these high Mach numbers to a future work. This has no
impact on the result (83), which follows from the large-
distance expansion, but it would be interesting to check
the details of the transition (86)-(87). This regime is
discussed in more details in the appendix C, adpating the
standard Bondi-Hoyle-Lyttleton analysis [132, 133, 142]
to our case.

IX. COMPARISON WITH OTHER SYSTEMS

A. Mass accretion

The Bondi and Hoyle-Lyttleton accretion rates for a
perfect gas are often computed with the expression

ṀBHL =
4⇡⇢0G2

M
2

BH

(c2s0 + v
2

0
)3/2

, (99)

which interpolates between the subsonic and supersonic
regimes [125, 132, 133]. As explained in Sec. V, at low

velocities we have a smaller accretion rate, because of the
more e�cient self-interactions, whereas at high velocities
we recover the Hoyle-Littleton prediction,

v0 ⌧ c
2/3
s0 : ṀBH ⌧ ṀBHL, v0 � c

2/3
s0 : ṀBH ' ṀBHL.

(100)

B. Dynamical friction

For a collisionless system, when the BH moves at a
speed that is much greater than the velocity dispersion
of the cloud particles the classical dynamical friction ob-
tained by Chandrasekhar [114] (and confirmed by numer-
ical simulations [143, 144]) reads

collisionless: Ffree '
4⇡⇢0G2

M
2

BH

v
2

0

ln

✓
bmax

bmin

◆
, (101)

where bmax and bmin are large-scale and small-scale cut-
o↵s. One usually takes bmax = R given by the size of the
cloud and bmin = 2GMBH/v

2

0
the critical impact parame-

ter, associated with bound orbits if their angular velocity
is assumed to vanish when they meet the z�axis behind
the BH [133]. More generally, bmin corresponds to orbits
with a deflection angle of order unity.
For the perfect gas, one obtains in the supersonic

regime [129, 145] (also recovered numerically, e.g. [146–
148])

Perfect gas: Fgas =
4⇡⇢0G2

M
2

BH
I

v
2

0

, (102)
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where the first term is directly related to the accretion of
matter, and therefore of momentum, by the BH, whereas
the second term is the classical dynamical friction, asso-
ciated with the long-range gravitational attraction from
the wake behind the BH when pressure forces are present.

V. TWO REGIMES FOR THE BH ACCRETION
RATE

As explained above, we must derive ṀBH by other
methods than the large-distance expansion, so as to han-
dle the boundary condition at the horizon. This requires
a fully relativistic treatment. We do not perform such
a numerical computation of the axisymmetric relativistic
flow down to the horizon in this paper, but we present a
simple approximation that should capture the main be-
haviours.

A. Self-regulated accretion at moderate Mach
numbers

As recalled in Sec. II E, in the radial case the accre-
tion rate is given by the expression (29). We showed in
[116] that this accretion rate remains valid in the subsonic
regime, up to v0 . cs0. Indeed, below the transition ra-
dius rsg � rs, the flow quickly becomes approximately
radial and one recovers the radial solution. This accretion
rate is much smaller than the spherical Bondi accretion
rate [125], ṀBondi ⇠ ⇢0r

2

s/c
3

s0, because of the steep e↵ec-
tive adiabatic index � = 2. In the supersonic regime, one
usually expects to recover the Hoyle-Lyttleton accretion
rate [132, 133]

ṀHL =
4⇡⇢0G2

M
2

BH

v
3

0

=
⇡⇢0r

2

s

v
3

0

. (85)

However, for moderate Mach numbers this accretion rate
is of the order of the Bondi prediction and still much
higher than the radial accretion rate (29). The latter is
the highest possible flux (for radial symmetry) allowed by
the e↵ective pressure associated with the self-interactions
[95]. Lower accretion rates are associated with solutions
that are fully subsonic (which is not physical because of
the boundary condition at the BH horizon) or fully su-
personic. Therefore, in the regime ṀHL > ṀBH,radial a
bow shock appears that slows down and deflects the dark
matter and allows the matching to the boundary condi-
tions at the BH horizon with their much smaller accretion
rate. This creates a subsonic region behind the shock and
around the BH, where the flow becomes approximately
radial close to the BH horizon and matches the accretion
rate (29). We shall present in Sec. VIII below numerical
computations that confirm this behaviour. In a sense, be-
cause the maximum possible accretion rate (29) is much
smaller than the incoming flow (85), the BH (dressed by
the surrounding scalar cloud with large self-interactions)

acts like an obstacle, such as a solid sphere moving in a
fluid or a space shuttle in the atmosphere.

B. Bondi-Hoyle-Lyttleton accretion at high Mach
numbers

At high velocities, v3
0
> c

2

s0/(3F?), the Hoyle-Lyttleton
accretion rate (85) becomes smaller than the value (29),
associated with the highest possible flux. This means
that matter can directly fall into the BH along a fully
supersonic solution. Thus, the BH is no longer an ob-
stacle but a sink where matter can freely fall. However,
on the z-axis behind the BH, there is still a wake and a
conical shock as streamlines coming from all directions
converge towards the symmetry axis but cannot cross.
There is also a stagnation point on the z-axis behind the
BH, where the velocity vanishes, because the radial ve-
locity must be negative and of the order of the speed of
light close to the horizon and positive and close to v0 at
large radii. This turning point separates the streamlines
that fall into the BH and those that escape to infinity.
Clearly this region is subsonic, therefore we always have
a subsonic region behind the BH. Thus, we can expect
that for high velocities the shock becomes attached to
the BH, with an upstream supersonic regime that ex-
tends down to the horizon on the front side of the BH
and a narrow shock cone on the back side that contains
a subsonic region. This agrees with the accretion column
of the Hoyle-Lyttleton analysis [132, 133]. We discuss in
more details this regime in the appendix C. We find that
pressure forces do not modify the main properties of the

Hoyle-Lyttleton accretion and for v0 > c
2/3
s0 we have a

narrow accretion column on the rear side of the BH.
Therefore, we have the moderate and high-velocity be-

haviours

v0 <
c
2/3
s0

(3F?)1/3
: ṀBH =

12⇡F?⇢0G2
M

2

BH

c
2

s0

, (86)

v0 >
c
2/3
s0

(3F?)1/3
: ṀBH =

4⇡⇢0G2
M

2

BH

v
3

0

, (87)

which we will use in the following.

VI. COMPARISON OF ACCRETION DRAG
AND DYNAMICAL FRICTION

A. Accretion drag

From Eqs.(83) and (86)-(87), the accretion drag on the
BH shows the low and high-velocity behaviours

v0 <
c
2/3
s0

(3F?)1/3
: Facc =

12⇡F?⇢0G2
M

2

BH
v0

c
2

s0

, (88)

v0 >
c
2/3
s0

(3F?)1/3
: Facc =

4⇡⇢0G2
M

2

BH

v
2

0

. (89)

Shock front upstream of the BH, radial accretion close to the BH

3 maps of the Mach number (3 zoom-in onto the BH) and 1 map of the velocity field

Max. radial accretion rate 

A) Moderate Mach number

AMRVAC simulations
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where the first term is directly related to the accretion of
matter, and therefore of momentum, by the BH, whereas
the second term is the classical dynamical friction, asso-
ciated with the long-range gravitational attraction from
the wake behind the BH when pressure forces are present.

V. TWO REGIMES FOR THE BH ACCRETION
RATE

As explained above, we must derive ṀBH by other
methods than the large-distance expansion, so as to han-
dle the boundary condition at the horizon. This requires
a fully relativistic treatment. We do not perform such
a numerical computation of the axisymmetric relativistic
flow down to the horizon in this paper, but we present a
simple approximation that should capture the main be-
haviours.

A. Self-regulated accretion at moderate Mach
numbers

As recalled in Sec. II E, in the radial case the accre-
tion rate is given by the expression (29). We showed in
[116] that this accretion rate remains valid in the subsonic
regime, up to v0 . cs0. Indeed, below the transition ra-
dius rsg � rs, the flow quickly becomes approximately
radial and one recovers the radial solution. This accretion
rate is much smaller than the spherical Bondi accretion
rate [125], ṀBondi ⇠ ⇢0r

2

s/c
3

s0, because of the steep e↵ec-
tive adiabatic index � = 2. In the supersonic regime, one
usually expects to recover the Hoyle-Lyttleton accretion
rate [132, 133]

ṀHL =
4⇡⇢0G2

M
2

BH

v
3

0

=
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2

s

v
3

0

. (85)

However, for moderate Mach numbers this accretion rate
is of the order of the Bondi prediction and still much
higher than the radial accretion rate (29). The latter is
the highest possible flux (for radial symmetry) allowed by
the e↵ective pressure associated with the self-interactions
[95]. Lower accretion rates are associated with solutions
that are fully subsonic (which is not physical because of
the boundary condition at the BH horizon) or fully su-
personic. Therefore, in the regime ṀHL > ṀBH,radial a
bow shock appears that slows down and deflects the dark
matter and allows the matching to the boundary condi-
tions at the BH horizon with their much smaller accretion
rate. This creates a subsonic region behind the shock and
around the BH, where the flow becomes approximately
radial close to the BH horizon and matches the accretion
rate (29). We shall present in Sec. VIII below numerical
computations that confirm this behaviour. In a sense, be-
cause the maximum possible accretion rate (29) is much
smaller than the incoming flow (85), the BH (dressed by
the surrounding scalar cloud with large self-interactions)

acts like an obstacle, such as a solid sphere moving in a
fluid or a space shuttle in the atmosphere.

B. Bondi-Hoyle-Lyttleton accretion at high Mach
numbers

At high velocities, v3
0
> c

2

s0/(3F?), the Hoyle-Lyttleton
accretion rate (85) becomes smaller than the value (29),
associated with the highest possible flux. This means
that matter can directly fall into the BH along a fully
supersonic solution. Thus, the BH is no longer an ob-
stacle but a sink where matter can freely fall. However,
on the z-axis behind the BH, there is still a wake and a
conical shock as streamlines coming from all directions
converge towards the symmetry axis but cannot cross.
There is also a stagnation point on the z-axis behind the
BH, where the velocity vanishes, because the radial ve-
locity must be negative and of the order of the speed of
light close to the horizon and positive and close to v0 at
large radii. This turning point separates the streamlines
that fall into the BH and those that escape to infinity.
Clearly this region is subsonic, therefore we always have
a subsonic region behind the BH. Thus, we can expect
that for high velocities the shock becomes attached to
the BH, with an upstream supersonic regime that ex-
tends down to the horizon on the front side of the BH
and a narrow shock cone on the back side that contains
a subsonic region. This agrees with the accretion column
of the Hoyle-Lyttleton analysis [132, 133]. We discuss in
more details this regime in the appendix C. We find that
pressure forces do not modify the main properties of the

Hoyle-Lyttleton accretion and for v0 > c
2/3
s0 we have a

narrow accretion column on the rear side of the BH.
Therefore, we have the moderate and high-velocity be-

haviours
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2

BH

v
3

0

, (87)

which we will use in the following.

VI. COMPARISON OF ACCRETION DRAG
AND DYNAMICAL FRICTION

A. Accretion drag

From Eqs.(83) and (86)-(87), the accretion drag on the
BH shows the low and high-velocity behaviours
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, (88)
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v
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. (89)

Hoyle-Lyttleton accretion mode HL accretion rate Edgar (2004)

Most of the accretion occurs through a narrow accretion column at the rear.

B) High Mach number
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D. Shock front and boundary layers

1. Large-distance expansions

We have seen above that the large-distance expansions
of the upstream and downstream bulk flows diverge at
u ! uc. Then, close to uc the first or second-order ve-
locity corrections become greater than the zeroth-order
velocity v0 and the large-distance expansion (35) breaks
down. Therefore, on both sides of the shock a boundary
layer appears, where nonlinearities play a key role and
we need to go beyond the expansion (35).

As described in App. B, a careful analysis shows that
the boundary layers have a width �u ⇠ r̂

�2/3. This im-
plies that we need to introduce expansions over powers of
r̂
�1/3 and not only of r̂�1. Moreover, there are again log-
arithmic contributions. To start with, we need to specify
the location ✓s(r̂) of the shock front, which we write as
the large-distance expansion

✓s(r̂) = ✓c+
✓1

r̂2/3
+
✓2 +  2 ln r̂

r̂
+
✓3 +  3 ln r̂

r̂4/3
+ . . . (66)

This defines in turn the expansion of us(r̂) = cos[✓s(r̂)].
The zeroth-order terms ✓c and uc, defined in Eqs.(45)-
(46), were derived in Eq.(61) from the matching of the
first-order upstream and downstream bulk flows �̂0.

Because the width of the boundary layer is of order
r̂
�2/3, we introduce the boundary-layer coordinate

U = r̂
2/3[u� us(r̂)]. (67)

We can see from Eq.(57) that the upstream bulk flow di-
verges as v✓ ⇠ r̂

�2(uc�u)�3/2, whereas from Eq.(62) the
downstream bulk flow diverges as v✓ ⇠ r̂

�1(u� uc)�1/2.
Thus, the singularity close to the shock appears at a lower
order in 1/r̂ on the downstream side. This asymmetry
means that whereas for the upstream boundary layer (i.e.
just before the shock) we have the expansion

U < 0 : �̂ = v0r̂u� 1

2v0
ln[r̂(1� u)] +

F2(U)

r̂2/3

+
F3(U)

r̂
+ . . . (68)

for the downstream boundary layer (i.e. just after the
shock) we have

U > 0 : �̂ = v0r̂u� 1

2v0
ln[r̂(1� uc)] +

F1(U)

r̂1/3

+
F2(U)

r̂2/3
+

F3(U) + F3(U) ln r̂

r̂
+ . . . (69)

In both cases we keep the regular part over u of the bulk
flow, up to the order where the expansion over 1/r̂ breaks
down. In the upstream case (68), this corresponds to the
first two terms of order r̂ and r̂

0, whereas in the more
singular downstream case (69) this corresponds to the
first term only, of order r̂ (and to the constant associ-
ated with the second term). This implies that whereas

the boundary-layer expansion in U starts at order r̂�2/3

in the upstream case, it starts earlier at order r̂
�1/3 in

the downstream case. One can check that there are no
logarithmic terms ln r̂ in the upstream boundary layer,
as there was no logarithmic term either in the upstream
second-order bulk flow (53). However, logarithmic terms
appear through nonlinear e↵ects in both the shock curve
(66) and the downstream boundary layer (69).
As compared with standard one-dimensional

boundary-layer theory [131], r̂
�1/3 plays the role of

the small parameter and U is the boundary-layer coor-
dinate that is stretched to account for its infinitesimal
width �u ⇠ r̂

�2/3.
In Secs. V and VI we will compute the accretion rate

onto the BH and its dynamical friction. This involves
surface integrals on a sphere of radius R, where we take
the limit R ! 1 to use the large-distance expansions
described above. These integrals give rise to a geometri-
cal area prefactor r̂2. This implies that we must compute
velocity and density fields up to order 1/r̂2, to obtain the
constant term that determines the accretion rate and the
dynamical friction. This corresponds to the term of order
1/r̂ in the velocity potential �̂. This is why we need to go
to order 1/r̂ in the bulk flows (35) and in the boundary
layers (68)-(69).

2. Order ✓1 and F1

We simultaneously compute the boundary-layer expan-
sions and the shock front order by order in r̂

�1/3. At ze-
roth order, there are no boundary layers and we extend
the upstream and downstream bulk flows �̂0 up to the
shock front. As found in Eq.(61), the matching condi-
tion on the shock front also determines the zeroth-order
term ✓c in the shock expansion (66).
The next order is associated with the term ✓1/r̂

2/3 in
the shock expansion (66) and with the terms F1/r̂

1/3

in the boundary-layer expansions (68)-(69). We can see
that the term F1 is absent in the upstream boundary
layer. As noticed above, this is because the singularity of
the upstream bulk flow appears at a higher order in 1/r̂
than for the dowsntream bulk flow. Therefore, at this
order, we truncate the shock expansion (66) at the term
✓1/r̂

2/3, the upstream bulk flow obtained in Sec. III B ex-
tends down to the shock ✓s, and there is only one bound-
ary layer behind the shock, given by the expansion (69)
truncated at the term F1/r̂

1/3.
The upstream bulk flow, given by Eqs.(47) and (56),

provides the boundary conditions on the shock, at the
angular location ✓s, that is, at U = 0. Then, using the
downstream boundary-layer expression (69), the continu-
ity of the velocity potential �̂ and of the normal momen-
tum p̂n = ⇢̂vn give

F1(0) = 0, F
0
1
(0) = �4v0✓1

9cz
. (70)

Next, substituting the expansion (69) in the equation of
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C) Analytical results using large-distance expansions and asymptotic matching
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This is different from the radial accretion of collisionless
particles with an isotropic and monoenergetic distribution
at the characteristic velocity cs [61]

collisionless ∶ _Mfree ¼
16πρ0G2M2

BH

cs
ð129Þ

and the classical radial Bondi accretion rate [53] for an
isothermal gas, _MBondi ∼ ρ0r2s=c3s , which also corresponds
to the subsonic limit of the so-called “Bondi-Hoyle-
Lyttleton accretion rate” [62,63]

Bondi-Hoyle∶ _MBondi−Hoyle ¼
2πρ0G2M2

BH

ðc2s þ v20Þ3=2
ð130Þ

The hydrodynamical accretion rate (130) is much greater
than the collisionless accretion rate (129), by a factor
ðc=csÞ2 ∼ 106, where c ¼ 1 is the speed of light. This is
because the collisions restrict tangential motion and funnel
particles in the radial direction [61]. The scalar-field
accretion rate is in-between these two cases. As could
be expected, for the same hydrodynamical reason it is
higher than the free rate, as the flow is more efficiently
converted into a radial pattern at small radii, but now by a
factor c=cs ≫ 1. However, it is much smaller than the
accretion rate of the perfect gas rate, by a factor cs=c ≪ 1.
Thus, the scalar-field self-interactions are much more
efficient to resist the BH gravity and slow down the infall.
This is because the scalar field has a different equation of
state and deviates from a perfect gas in the relativistic
regime, which sets the critical flux Fc and the normaliza-
tion of the global profile [36]. This agrees with the fact that
for a perfect gas with adiabatic index γad > 5=3, there is no
Newtonian steady transonic solution but one exists in
general relativity [60,61]. This again shows the critical
role of relativistic effects at small radii for steep equations
of state.
The expression (126) can be understood in simple terms.

It simply means that close to the BH horizon rs, where the
infall velocity is close to the speed of light, the scalar
density is of the order of ρa, as can be checked by an
explicit computation of the scalar profile, see [36] and
Eq. (53). From Eq. (6), this is the density where the self-
interaction potential ΦI is of order unity and the self-
interaction term VI ¼ λ4ϕ4=4 is of the order of the mass
term m2ϕ2=2. This characteristic density provides an upper
bound on ρ, and hence on the accretion rate, as the infall
velocity cannot be greater than the speed of light.

VII. DYNAMICAL FRICTION

A. Relationship with large-radius expansions

As the BH moves through the scalar-field cloud it is
slowed down by a drag force, often called dynamical
friction. By symmetry, this force F⃗ ¼ Fze⃗z is directed

along the z-axis. As sketched in Fig. 7, let us consider an
open subsystem formed by the BH and the scalar field
inside a surface Sin that encloses the BH, far enough from
the horizon for Newtonian dynamics to hold but close
enough for its mass M to be dominated by the BH mass
MBH. The surface Sin ¼ ∂V in bounds a volume V in. Outside
this volume the scalar cloud extends up to the soliton radius
Rsol, at a much greater distance. This defines the outer
volume Vout. Going back to physical coordinates, the
change of momentum of this subsystem, of volume Vin,
reads

dpz

dt
¼ GMBH

Z

Vout

dr⃗ρðr⃗Þ r⃗ · e⃗z
r3

−
Z

∂V in

d⃗S · Pe⃗z

−
Z

∂V in

d⃗S · ρv⃗vz: ð131Þ

The first term, integrated over the volume Vout of the scalar
cloud, is the usual dynamical friction term due to the
gravitational wake [64], that is, the gravitational pull from
the scalar-field overdensity generated behind theBH through
the deflection of the streamlines under the BH gravity. The
second term, which is absent in collisionless media such as
the stellar cloud considered by Chandraskhar’s classical
study [17], is the pressure exerted by the outer cloud on
the subsystem. The third term is the contribution of the
momentum flux through the surface Sin. This last term is
clearly related to the local influx of matter and therefore the
infall ofmass into theBH, i.e., accretion, but it vanishes if the
flow is radial close to the BH.
In the limit of an infinite constant-density scalar cloud,

the first gravitational term suffers from the same divergence
as the Newtonian gravitational force in an infinite homo-
geneous universe, associated with the so-called “Jeans
swindle.” As usual, this can be cured by integrating first
over angles or by regularizing Newtonian gravity with a
damping factor e−κjr⃗−r⃗

0j, taking the limit κ → 0 at the end of
the computations [65]. This implies that a constant-density
background does not contribute and only the asymmetry of

FIG. 7. Inner and outer surfaces used in Eq. (131).
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Again, use conservation of mass and momentum:
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gives the large-distance scalings

�⇢ ⇠
✓

r

rsg

◆�2/3

⇢0,

�v✓ ⇠
✓

r

rsg

◆�2/3

M�1

0
v0 =

✓
r

rsg

◆�2/3

cs. (77)

IV. DRAG FORCE ON THE BH

A. Relation between the accretion rate and the
large-distance expansion

As explained above, at the order that we need in this
paper, we now have the global solution of the flow at large
distance, except for an unknown parameter ✓2, defined
from the expansion (66) of the shock, or equivalently an
integration constant in the downstream solution. This
remaining freedom is due to the fact that so far we have
not used the inner boundary condition close to the BH.
In fact, this parameter will simply be determined by the
accretion rate onto the BH, which is thus su�cient to
describe the boundary condition at the Schwarszchild ra-
dius.

In the steady state, the accretion rate onto the BH is
given by the flux of matter through any closed surface
that surrounds the BH. Choosing a sphere of radius r̂,
the accretion rate writes

˙̂
MBH = �2⇡r̂2

Z
1

�1

du ⇢̂vr. (78)

Thus, we can relate ˙̂
MBH to the large-distance expan-

sion by computing the radial momentum ⇢̂vr up to order
1/r̂2. To handle the fact that we have obtained separate
expressions for the scalar field profile over four domains,
the upstream and downstream bulk flows and the bound-
ary layers, with two asymptotic matchings in-between,
we define the angular function

˙̂
MBH(u) = �2⇡r̂2

Z u

�1

du ⇢̂vr, (79)

so that the total accretion rate is ˙̂
MBH(u = 1). Then,

up to integration constants, we obtain ˙̂
MBH(u) in each

domain from the appropriate expression of the scalar field
flow. Next, as for the flow, the integration constants are
determined by the two asymptotic matchings at the rear
of the two boundary layers and by continuity at the shock

location. This determines the global function ˙̂
MBH(u)

and the total accretion rate ˙̂
MBH(1). We obtain

˙̂
MBH = �4⇡czv0✓2p

1 + c2z

� ⇡(20 + 12c2z +
p
3⇡)

3v0

�
4⇡

p
1 + c2z

3v0
ln

"
16(

p
1 + c2z � 1)3v2

0

3c4z(1 + c2z)

#

� 2⇡

9v0
ln

"
(
p

1 + c2z � 1)18v16
0

21638c20z (1 + c2z)
11

#
. (80)

As expected, we can see that the result (80) does not
depend on the radius r̂. All terms with higher powers of r̂
eventually cancel out and the large-radius limit, r̂ ! 1,
gives a finite result. This agrees with the fact that the
matter flux does not depend on the choice of the surface
enclosing the BH, in the stationary regime.
As announced above, the expression (80) relates the

remaining large-distance unknown parameter ✓2 to the

accretion rate ˙̂
MBH. By construction the large-distance

expansion cannot know about the inner boundary condi-
tion (which is beyond its domain of validity) and cannot

determine the accretion rate ˙̂
MBH. However, the flow at

large distance remains sensitive to the accretion rate be-
cause of the constant-flux condition in the steady state,
as explicitly shown by Eq.(80).

B. Accretion drag and dynamical friction

In [116], using the Euler equation associated with the
Bernoulli equation (31), we showed that the drag force
on the BH can be written as

F̂z = �2⇡r̂2
Z

1

�1

du(⇢̂vrvz + P̂ u), (81)

where we have chosen the surface of integration to be a
sphere of radius r̂. As for the accretion rate in Eq.(79),
we define a function F̂z(u) to compute the drag force in
each angular domain, up to integration constants. The
junction conditions and asymptotic matching then pro-
vide the global function and the full dynamical friction
is obtained from F̂z(u = 1). Using Eq.(80) to express ✓2

in terms of ˙̂
MBH, we obtain

F̂z = ˙̂
MBHv0 +

2⇡c2z
3(1 + c2z)

ln


ev

4

0
cz r̂

2

18(1 + c2z)
2

�
, (82)

where e = exp(1) is the base of the natural logarithm. In
dimensional units, this reads as

Fz = ṀBHv0 +
⇡

3
⇢ar

2

s
c
2

s0

v
2

0

ln


ev

4

0
czr

2

18(1 + c2z)
2r2s

�
. (83)

Thus, our computation recovers in a unified manner two
contributions to the total drag force,

Fz = Facc + Fdf , (84)
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B. Dynamical friction

For v0 & cs0 the dynamical friction term in (83) reads

Fdf =
8⇡⇢0G2

M
2

BH

3v2
0

ln

✓
ra

rUV

◆
, (90)

with

rUV '
r

18

e
rsgM�3/2

0
=

r
18

e
rsv

�3/2
0

c
�1/2
s0 . (91)

The e↵ective small-scale cuto↵ rUV is explicitly obtained
from the analytical computation (83). Thus, the pressure
associated with the self-interactions damps the contribu-
tions from small scales to the dynamical friction and in
contrast with the collisionless result the Coulomb loga-
rithm does not show a small-scale divergence. On the
other hand, we still have a large-scale logarithmic diver-
gence, as for the seminal computation by Chandrasekhar
for a stellar cloud [114]. One often takes this large-scale
cuto↵ to be the size of the cloud. In our case, this is
not a free parameter as it is given by the soliton radius
Rsol = ⇡ra defined in Eq.(25).

We can check that the radius rUV is always greater
than the Schwarzschild radius as v0 and cs0 are smaller
than the speed of light. The comparison with Eq.(77)
shows that the radius rUV is the radius where the veloc-
ity is significantly perturbed by the shock, with a rela-
tive discontinuity �v✓/v0 of order unity. As compared
with the free collisionless case, this explains the origin
of the small-scale cuto↵ in the Coulomb logarithm and
why smaller radii do not contribute significantly to the
dynamical friction.

Thus, we find that that the accretion drag is negligible
at low velocity but of the same order as the dynamical
friction at high velocity,

v0 ⌧ c
2/3
s0

(3F?)1/3
: Facc ⌧ Fdf ,

v0 >
c
2/3
s0

(3F?)1/3
: Facc ⇠ Fdf , (92)

where we used Eqs.(86)-(87), as also discussed in the ap-
pendix C.

VII. GRAVITATIONAL FORCE FROM THE
LARGE-DISTANCE BH WAKE

The dynamical friction is often estimated from the
gravitational force exerted on the moving obect by the
overdensity created in its wake. For collisionless systems,
this was shown to give back the classical Chandrasekhar
result that was obtained from the deflection of distant
orbits [134]. In our case, this neglects pressure e↵ects
but it should provide at least a correct order of magni-
tude at high wave numbers. We focus on the high Mach

number regime, where the Mach angle is small and the
accretion proceeds through the accretion column at the
rear of the BH, as detailed in Appendix C. Then, consid-
ering a conical accretion column of Mach angle ✓c ⌧ 1
at large distance, its gravitational drag force on the BH
reads

Fg = GMBH

Z
dr ⇡(r✓c)

2
⇢� ⇢0

r2
(93)

= GMBH⇡✓
2

c

Z
dr (⇢� ⇢0), (94)

where ⇢ is the typical density inside the column at dis-
tance r. Let us estimate the contribution from large
radii, beyond the Hoyle-Lyttleton radius (C10), where
the shock is weak. Upstream of the shock, pressure ef-
fects are small and the streamlines follow the Keplerian
orbits and density (C1)-(C3). At first order over ✓c and
1/r, we obtain at large distance

r =
b

✓c
� 2GMBH

v0✓
2
c

, vr = v0 �
GMBH

v0r
,

v✓ = �v0✓c �
2GMBH

v0✓cr
, ⇢ = ⇢0. (95)

We recover that upstream of the shock there is no modifi-
cation of the density at order 1/r, see Eq.(49). These ex-
pressions provide the boundary conditions {vr1 , v✓1 , ⇢1}
upstream of the shock. The junction conditions are
the continuity of the longitudinal velocity vr and of the
transverse momentum ⇢v✓, while the Bernoulli equation
(C8) remains satisfied. Writing ⇢2 = ⇢1 + �⇢ and
v✓2 = v✓1 +�v✓, going up to second order over �⇢ and
�v✓, we obtain the solution

�v✓ =
8GMBH

3cs0r
, �⇢ = ⇢0

8GMBH

3c2s0r
, (96)

where we used ✓c = cs0/v0 at first order. Substituting
⇢� ⇢0 = �⇢ in Eq.(94), we obtain

Fg =
8⇡⇢0G2

M
2

BH

3v2
0

Z
dr

r
. (97)

Thus, we recover the exact expression (90), with the
Coulomb logarithm and the prefactor 8⇡/3, which dif-
fers from the standard collisionless result 4⇡ by a factor
2/3. Of course, this computation cannot compute the
small-scale cuto↵ rUV of Eq.(91).
The result (97) neglects the boundary layers and ap-

plies the junction conditions at the shock between the
upstream and downstream bulk flows. Thus, we found
in (77) that along the shock the density jump actually
decays as r

�2/3 instead of r�1. However, the width of
the boundary layer also decreases as �u ⇠ r

�2/3, which
gives an angular width �✓ ⇠ r

�2/3. Therefore, the con-
tribution from the boundary layer to the gravitational
force takes the form

Fg,bl ⇠ GMBH

Z
dr 2⇡(r✓c)r�✓

�⇢

r2
/

Z
dr r

�4/3
. (98)

Accretion

drag

Dynamical

friction

2/3 smaller than Chandrasekhar’s expression

UV cutoff greater than b_min and set by the self-interactions:

3

B. Accretion drag force
For the particular model in Eqs. (2.1) and (2.2), it was shown

in Ref. [16] that the accretion rate of scalar dark matter onto a
BH follows two regimes,

{BH < {acc : .
<BH =

.
<max, {BH > {acc : .

<BH =
.
<BHL,

(2.7)
with

{acc =
22/3
B 21/3

(3�¢)1/3 ,
.
<max = 3c�¢⇢0A2

B2 =
12c�¢⇢0G2<2

BH

22
B2

,

.
<BHL =

4c⇢0G2<2
BH

{3
BH

, (2.8)

where an overdot denotes differentiation with respect to time
and �¢ ' 0.66 is obtained from a numerical computation of
the critical flux [14], which is associated with the unique radial
transonic solution that matches the supersonic infall at the
Schwarzschild radius to the static equilibrium soliton at large
distances. This critical behavior is similar to that found for
hydrodynamical flows in the classic studies of Refs. [74,75],
and is closely related to the case of a polytropic gas with index
W = 2 [14,15]. However, close to the BH, the dynamics deviates
from that of a polytropic gas as one enters the relativistic
regime. Near the Schwarzschild radius, the scalar field must
be described by the nonlinear Klein-Gordon equation instead
of hydrodynamics [14]. This implies that the critical flux
and the accretion rate .

<max differ from the usual Bondi result
.
<Bondi ⇠ ⇢0G2<2

BH/23
B. This is manifest in the dependence of

.
<max on the speed of light 2, which is absent from the usual
Bondi result.

The high-velocity regime corresponds to the standard
accretion-column picture [76,77] and we recover the Bondi-
Hoyle-Lyttleton accretion rate .

<BHL. There, most of the
accretion comes from the narrow wake behind the BH,
delimited by a conical shock within the Mach angle sin \2 =
1/M ⌧ 1, where M = {BH/2B is the BH Mach number.

In the low-velocity regime the Bondi-Hoyle-Lyttleton ac-
cretion rate is greater than the maximum accretion rate .

<max
that is allowed by the effective pressure associated with the
self-interactions (close to the BH horizon the velocity cannot
be greater than 2 and the density greater than ⇢0). Then, the
accretion column is no longer a narrow cone behind the BH
and it encloses the BH from all sides. There is a bow shock
upstream of the BH, with a subsonic region that contains the
BH and diverts most of the dark matter flux. Close to the
horizon the flow is approximately radial and we recover the
accretion rate .

<max. See [16] for details.
Now consider a BH moving with velocity vBH through this

scalar cloud. In the nonrelativistic limit {BH ⌘ |vBH | ⌧ 2
and in the reference frame of the cloud, the accretion of zero-
momentum dark matter does not change the BH momentum
but slows down its velocity as

<BH
.vBH |acc = � .

<BHvBH. (2.9)

C. Dynamical friction
Dynamical friction also acts to reduce the BH’s velocity.

As in the hydrodynamical case [2,4,5], the dynamical friction
force (in the steady-state limit) vanishes for subsonic speeds
{BH < 2B [15] but is nonzero at supersonic speeds. The
additional force on the BH in the latter regime reads [16]

<BH
.vBH |df = �

8cG2<2
BH⇢0

3{3
BH

ln
✓

AIR
AUV

◆
vBH, (2.10)

where AIR is the usual large-radius cutoff while the small-radius
cutoff of the logarithmic Coulomb factor is given by

AUV = 6
r

2
4

G<BH

22
B

✓
2B
{BH

◆3/2
(2.11)

and 4 is Euler’s number (not to be confused with the orbital
eccentricity e in Sec. III). Equation (2.10) takes the same
form as the collisionless result by Chandrasekhar [1] but with a
multiplicative factor 2/3. In addition, the ultra-violet cutoff AUV
is here fully determined by the physics of the scalar field and its
effective pressure, instead of the minimum impact parameter
1min ⇠ G<BH/{2

BH. As we have AUV ⇠ 1min
p
{BH/2B > 1min,

we can see that the dynamical friction (2.10) is smaller than
the collisionless result, with a damping factor below 2/3.

For a steady straight-line trajectory, we may take for the
infra-red cutoff the size of the dark matter soliton, which
depends explicitly on <DM and _4 via Eq. (2.3). However,
for bodies moving on circular orbits of radius Aorb, numerical
simulations and analytical studies find that for gaseous media a
good match is obtained by using AIR = 2Aorb [78,79]. This can
be understood as follows. Estimating the dynamical friction
from the exchange of momentum with distant encounters or
streamlines of impact parameter 1, as in the classical study
[1], the duration an encounter is �C ⇠ 1/{BH. Requiring this
time to be smaller than the orbital period %orb ⇠ Aorb/{BH,
so that the BH does not turn around during the encounter,
gives 1 . Aorb. If we estimate the dynamical friction from
the gravitational attraction by the BH wake, at large distance
in the BH rest-frame matter flows away at the radial velocity
{BH. Therefore, the wake is aligned behind the BH up to the
distance 3 ⇠ {BH%orb/2, which gives again the large-radius
cutoff 3 . Aorb. Therefore, we take

AIR = 2Aorb, (2.12)

with the same normalization as found for gaseous media [78].

D. Dark matter halo
Approximating the bulk of the soliton as a spherical halo

of density ⇢0 and radius 'sol, centered at position x0, the halo
gravitational potential reads

|x � x0 | < 'sol : �halo(x) =
2c
3
G⇢0 |x � x0 |2. (2.13)

This gives the gravitational acceleration

<BH
.vBH |halo = �4c

3
G<BH⇢0(x � x0). (2.14)
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B. Dynamical friction

For v0 & cs0 the dynamical friction term in (83) reads

Fdf =
8⇡⇢0G2

M
2

BH

3v2
0

ln

✓
ra

rUV

◆
, (90)

with

rUV '
r

18

e
rsgM�3/2

0
=

r
18

e
rsv

�3/2
0

c
�1/2
s0 . (91)

The e↵ective small-scale cuto↵ rUV is explicitly obtained
from the analytical computation (83). Thus, the pressure
associated with the self-interactions damps the contribu-
tions from small scales to the dynamical friction and in
contrast with the collisionless result the Coulomb loga-
rithm does not show a small-scale divergence. On the
other hand, we still have a large-scale logarithmic diver-
gence, as for the seminal computation by Chandrasekhar
for a stellar cloud [114]. One often takes this large-scale
cuto↵ to be the size of the cloud. In our case, this is
not a free parameter as it is given by the soliton radius
Rsol = ⇡ra defined in Eq.(25).

We can check that the radius rUV is always greater
than the Schwarzschild radius as v0 and cs0 are smaller
than the speed of light. The comparison with Eq.(77)
shows that the radius rUV is the radius where the veloc-
ity is significantly perturbed by the shock, with a rela-
tive discontinuity �v✓/v0 of order unity. As compared
with the free collisionless case, this explains the origin
of the small-scale cuto↵ in the Coulomb logarithm and
why smaller radii do not contribute significantly to the
dynamical friction.

Thus, we find that that the accretion drag is negligible
at low velocity but of the same order as the dynamical
friction at high velocity,

v0 ⌧ c
2/3
s0

(3F?)1/3
: Facc ⌧ Fdf ,

v0 >
c
2/3
s0

(3F?)1/3
: Facc ⇠ Fdf , (92)

where we used Eqs.(86)-(87), as also discussed in the ap-
pendix C.

VII. GRAVITATIONAL FORCE FROM THE
LARGE-DISTANCE BH WAKE

The dynamical friction is often estimated from the
gravitational force exerted on the moving obect by the
overdensity created in its wake. For collisionless systems,
this was shown to give back the classical Chandrasekhar
result that was obtained from the deflection of distant
orbits [134]. In our case, this neglects pressure e↵ects
but it should provide at least a correct order of magni-
tude at high wave numbers. We focus on the high Mach

number regime, where the Mach angle is small and the
accretion proceeds through the accretion column at the
rear of the BH, as detailed in Appendix C. Then, consid-
ering a conical accretion column of Mach angle ✓c ⌧ 1
at large distance, its gravitational drag force on the BH
reads

Fg = GMBH

Z
dr ⇡(r✓c)

2
⇢� ⇢0

r2
(93)

= GMBH⇡✓
2

c

Z
dr (⇢� ⇢0), (94)

where ⇢ is the typical density inside the column at dis-
tance r. Let us estimate the contribution from large
radii, beyond the Hoyle-Lyttleton radius (C10), where
the shock is weak. Upstream of the shock, pressure ef-
fects are small and the streamlines follow the Keplerian
orbits and density (C1)-(C3). At first order over ✓c and
1/r, we obtain at large distance

r =
b

✓c
� 2GMBH

v0✓
2
c

, vr = v0 �
GMBH

v0r
,

v✓ = �v0✓c �
2GMBH

v0✓cr
, ⇢ = ⇢0. (95)

We recover that upstream of the shock there is no modifi-
cation of the density at order 1/r, see Eq.(49). These ex-
pressions provide the boundary conditions {vr1 , v✓1 , ⇢1}
upstream of the shock. The junction conditions are
the continuity of the longitudinal velocity vr and of the
transverse momentum ⇢v✓, while the Bernoulli equation
(C8) remains satisfied. Writing ⇢2 = ⇢1 + �⇢ and
v✓2 = v✓1 +�v✓, going up to second order over �⇢ and
�v✓, we obtain the solution

�v✓ =
8GMBH

3cs0r
, �⇢ = ⇢0

8GMBH

3c2s0r
, (96)

where we used ✓c = cs0/v0 at first order. Substituting
⇢� ⇢0 = �⇢ in Eq.(94), we obtain

Fg =
8⇡⇢0G2

M
2

BH

3v2
0

Z
dr

r
. (97)

Thus, we recover the exact expression (90), with the
Coulomb logarithm and the prefactor 8⇡/3, which dif-
fers from the standard collisionless result 4⇡ by a factor
2/3. Of course, this computation cannot compute the
small-scale cuto↵ rUV of Eq.(91).
The result (97) neglects the boundary layers and ap-

plies the junction conditions at the shock between the
upstream and downstream bulk flows. Thus, we found
in (77) that along the shock the density jump actually
decays as r

�2/3 instead of r�1. However, the width of
the boundary layer also decreases as �u ⇠ r

�2/3, which
gives an angular width �✓ ⇠ r

�2/3. Therefore, the con-
tribution from the boundary layer to the gravitational
force takes the form

Fg,bl ⇠ GMBH

Z
dr 2⇡(r✓c)r�✓

�⇢

r2
/

Z
dr r

�4/3
. (98)
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so that the de Broglie wavelength �dB = 2⇡/mv is much
smaller than the scales of interest. This implies that wave
e↵ects, such as interference patterns, are negligible. How-
ever, the dynamics remain di↵erent from that of CDM
particles because of the self-interaction, which is relevant
up to galactic scales and balances gravity, allowing for
the formation of stable equilibrium configurations often
called solitons. See [116] for a derivation of the regions
in the parameter space (m,�4,MBH) where our approxi-
mations are valid.

D. Nonrelativistic dark matter halo

On large scales, where the BH gravity is negligible
as compared with the dark matter self-gravity, the Eu-
ler equation (21) admits hydrostatic equilibria, given by
r(�N + �I) = 0. This can be integrated as

�N + �I = ↵, with ↵ = �N(Rsol). (24)

Here we introduced the radius Rsol of the spherically
symmetric halo, also called soliton, where the density
vanishes. In the Thomas-Fermi limit (24) where the
quantum pressure (23) is negligible, the solution reads
[52, 94, 95]

r � rsg : ⇢(r) = ⇢0
sin(r/ra)

(r/ra)
and Rsol = ⇡ra, (25)

and the transition radius rsg is given by

rsg = rs
⇢a

⇢0
� rs. (26)

The bulk density ⇢0 is set by the mass of this dark matter
halo, Msol = (4/⇡)⇢0R3

sol
. This is the second dark matter

parameter, in addition to ⇢a, that enters the dynamics
that we study in this paper. It depends on the formation
history of the dark matter halo. In this regime, the e↵ec-
tive pressure associated with the self-interaction � also
defines a sound speed cs given by

c
2

s(⇢) =
⇢

⇢a
⌧ 1, (27)

which corresponds to a polytropic gas of adiabatic index
� = 2. From Eq.(26) we can see that the sound speed in
the bulk is also related to the transition radius as

rsg =
rs

c
2

s0

, c
2

s0 =
⇢0

⇢a
. (28)

E. Radial accretion

Close to the horizon, the dark matter cannot remain
static and falls into the BH. The case of radial accretion
around a motionless BH was studied in [95]. Equations
(10) and (11) give the phase � and the amplitude �0

as a function of the modulus k(r). The latter is next

obtained from the continuity equation averaged over the
scalar oscillations, that is, from the condition of constant
flux over all radii in the steady state. Then, as for the
Bondi problem of the radial accretion of a perfect gas
on a BH, the dark matter profile is determined by the
unique transsonic solution that matches the quasi-static
equilibrium soliton at large radius and the free fall at the
BH horizon. This gives the accretion rate [95].

ṀBH,radial = 3⇡F?⇢ar
2

s = 3⇡F?⇢0r
2

s/c
2

s0, (29)

where F? ' 0.66. The result (29) means that the dark
matter density near the horizon is of the order of the
characteristic density ⇢a while the radial velocity is of
the order of the speed of light.
This result is much lower than the Bondi accretion

ṀBondi ⇠ ⇢0r
2

s/c
3

s0 [125]. This is because the sti↵ poly-
tropic index � = 2 makes the repulsive self-interaction
strong enough to slow down the infall significantly. More-
over, in contrast with the Bondi case with 1 < � <

5/3, the sonic radius rc where the Mach number |vr|/cs
reaches unity is located within the relativistic regime,
where the hydrodynamical picture is no longer valid and
one needs to use the Klein-Gordon equation of motion
(7), or its large-mass limit (10)-(11).

F. Isentropic potential flow

Introducing as in [116] the dimensionless variables

r̂ =
r

rs
, ⇢̂ = 2

⇢

⇢a
, �̂ =

⇡

2mrs
�, ~v = r̂�̂, (30)

the continuity equation (20) and the Bernoulli equation
associated with the Euler equation (21) coincide with
those of an isentropic potential flow with a polytropic
index � = 2,

r̂ · (⇢̂~v) = 0,
v
2

2
+ V +H = 0, (31)

where the external potential V (r̂) and the enthalpy H(⇢̂)
are given by

V (r̂) = � ⇢̂0

2
� v

2

0

2
� 1

2r̂
, H(r̂) =

⇢̂

2
. (32)

Here and throughout this paper we work in the BH frame,
where the BH is at rest and the dark matter cloud moves
at the uniform velocity ~v0 far from the BH. From the
Bernouilli equation (31) the density can be expressed in
terms of the velocity by

⇢̂ = ⇢̂0 +
1

r̂
+ v

2

0
� v

2
, (33)

and substituting into the continuity equation (31) gives

r̂ ·
✓

⇢̂0 +
1

r̂
+ v

2

0
� (r̂�̂)2

◆
r̂�̂

�
= 0. (34)

This equation holds in the nonrelativistic regime, beyond
a radius rm ⇠ 40rs.

D) Dynamical friction
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B. Accretion drag force
For the particular model in Eqs. (2.1) and (2.2), it was shown

in Ref. [16] that the accretion rate of scalar dark matter onto a
BH follows two regimes,

{BH < {acc : .
<BH =

.
<max, {BH > {acc : .

<BH =
.
<BHL,

(2.7)
with

{acc =
22/3
B 21/3

(3�¢)1/3 ,
.
<max = 3c�¢⇢0A2

B2 =
12c�¢⇢0G2<2

BH

22
B2

,

.
<BHL =

4c⇢0G2<2
BH

{3
BH

, (2.8)

where an overdot denotes differentiation with respect to time
and �¢ ' 0.66 is obtained from a numerical computation of
the critical flux [14], which is associated with the unique radial
transonic solution that matches the supersonic infall at the
Schwarzschild radius to the static equilibrium soliton at large
distances. This critical behavior is similar to that found for
hydrodynamical flows in the classic studies of Refs. [74,75],
and is closely related to the case of a polytropic gas with index
W = 2 [14,15]. However, close to the BH, the dynamics deviates
from that of a polytropic gas as one enters the relativistic
regime. Near the Schwarzschild radius, the scalar field must
be described by the nonlinear Klein-Gordon equation instead
of hydrodynamics [14]. This implies that the critical flux
and the accretion rate .

<max differ from the usual Bondi result
.
<Bondi ⇠ ⇢0G2<2

BH/23
B. This is manifest in the dependence of

.
<max on the speed of light 2, which is absent from the usual
Bondi result.

The high-velocity regime corresponds to the standard
accretion-column picture [76,77] and we recover the Bondi-
Hoyle-Lyttleton accretion rate .

<BHL. There, most of the
accretion comes from the narrow wake behind the BH,
delimited by a conical shock within the Mach angle sin \2 =
1/M ⌧ 1, where M = {BH/2B is the BH Mach number.

In the low-velocity regime the Bondi-Hoyle-Lyttleton ac-
cretion rate is greater than the maximum accretion rate .

<max
that is allowed by the effective pressure associated with the
self-interactions (close to the BH horizon the velocity cannot
be greater than 2 and the density greater than ⇢0). Then, the
accretion column is no longer a narrow cone behind the BH
and it encloses the BH from all sides. There is a bow shock
upstream of the BH, with a subsonic region that contains the
BH and diverts most of the dark matter flux. Close to the
horizon the flow is approximately radial and we recover the
accretion rate .

<max. See [16] for details.
Now consider a BH moving with velocity vBH through this

scalar cloud. In the nonrelativistic limit {BH ⌘ |vBH | ⌧ 2
and in the reference frame of the cloud, the accretion of zero-
momentum dark matter does not change the BH momentum
but slows down its velocity as

<BH
.vBH |acc = � .

<BHvBH. (2.9)

C. Dynamical friction
Dynamical friction also acts to reduce the BH’s velocity.

As in the hydrodynamical case [2,4,5], the dynamical friction
force (in the steady-state limit) vanishes for subsonic speeds
{BH < 2B [15] but is nonzero at supersonic speeds. The
additional force on the BH in the latter regime reads [16]

<BH
.vBH |df = �

8cG2<2
BH⇢0

3{3
BH

ln
✓

AIR
AUV

◆
vBH, (2.10)

where AIR is the usual large-radius cutoff while the small-radius
cutoff of the logarithmic Coulomb factor is given by

AUV = 6
r

2
4

G<BH

22
B

✓
2B
{BH

◆3/2
(2.11)

and 4 is Euler’s number (not to be confused with the orbital
eccentricity e in Sec. III). Equation (2.10) takes the same
form as the collisionless result by Chandrasekhar [1] but with a
multiplicative factor 2/3. In addition, the ultra-violet cutoff AUV
is here fully determined by the physics of the scalar field and its
effective pressure, instead of the minimum impact parameter
1min ⇠ G<BH/{2

BH. As we have AUV ⇠ 1min
p
{BH/2B > 1min,

we can see that the dynamical friction (2.10) is smaller than
the collisionless result, with a damping factor below 2/3.

For a steady straight-line trajectory, we may take for the
infra-red cutoff the size of the dark matter soliton, which
depends explicitly on <DM and _4 via Eq. (2.3). However,
for bodies moving on circular orbits of radius Aorb, numerical
simulations and analytical studies find that for gaseous media a
good match is obtained by using AIR = 2Aorb [78,79]. This can
be understood as follows. Estimating the dynamical friction
from the exchange of momentum with distant encounters or
streamlines of impact parameter 1, as in the classical study
[1], the duration an encounter is �C ⇠ 1/{BH. Requiring this
time to be smaller than the orbital period %orb ⇠ Aorb/{BH,
so that the BH does not turn around during the encounter,
gives 1 . Aorb. If we estimate the dynamical friction from
the gravitational attraction by the BH wake, at large distance
in the BH rest-frame matter flows away at the radial velocity
{BH. Therefore, the wake is aligned behind the BH up to the
distance 3 ⇠ {BH%orb/2, which gives again the large-radius
cutoff 3 . Aorb. Therefore, we take

AIR = 2Aorb, (2.12)

with the same normalization as found for gaseous media [78].

D. Dark matter halo
Approximating the bulk of the soliton as a spherical halo

of density ⇢0 and radius 'sol, centered at position x0, the halo
gravitational potential reads

|x � x0 | < 'sol : �halo(x) =
2c
3
G⇢0 |x � x0 |2. (2.13)

This gives the gravitational acceleration

<BH
.vBH |halo = �4c

3
G<BH⇢0(x � x0). (2.14)
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where an overdot denotes differentiation with respect to time
and �¢ ' 0.66 is obtained from a numerical computation of
the critical flux [14], which is associated with the unique radial
transonic solution that matches the supersonic infall at the
Schwarzschild radius to the static equilibrium soliton at large
distances. This critical behavior is similar to that found for
hydrodynamical flows in the classic studies of Refs. [74,75],
and is closely related to the case of a polytropic gas with index
W = 2 [14,15]. However, close to the BH, the dynamics deviates
from that of a polytropic gas as one enters the relativistic
regime. Near the Schwarzschild radius, the scalar field must
be described by the nonlinear Klein-Gordon equation instead
of hydrodynamics [14]. This implies that the critical flux
and the accretion rate .
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and it encloses the BH from all sides. There is a bow shock
upstream of the BH, with a subsonic region that contains the
BH and diverts most of the dark matter flux. Close to the
horizon the flow is approximately radial and we recover the
accretion rate .

<max. See [16] for details.
Now consider a BH moving with velocity vBH through this

scalar cloud. In the nonrelativistic limit {BH ⌘ |vBH | ⌧ 2
and in the reference frame of the cloud, the accretion of zero-
momentum dark matter does not change the BH momentum
but slows down its velocity as

<BH
.vBH |acc = � .
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C. Dynamical friction
Dynamical friction also acts to reduce the BH’s velocity.

As in the hydrodynamical case [2,4,5], the dynamical friction
force (in the steady-state limit) vanishes for subsonic speeds
{BH < 2B [15] but is nonzero at supersonic speeds. The
additional force on the BH in the latter regime reads [16]
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form as the collisionless result by Chandrasekhar [1] but with a
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is here fully determined by the physics of the scalar field and its
effective pressure, instead of the minimum impact parameter
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BH. As we have AUV ⇠ 1min
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we can see that the dynamical friction (2.10) is smaller than
the collisionless result, with a damping factor below 2/3.

For a steady straight-line trajectory, we may take for the
infra-red cutoff the size of the dark matter soliton, which
depends explicitly on <DM and _4 via Eq. (2.3). However,
for bodies moving on circular orbits of radius Aorb, numerical
simulations and analytical studies find that for gaseous media a
good match is obtained by using AIR = 2Aorb [78,79]. This can
be understood as follows. Estimating the dynamical friction
from the exchange of momentum with distant encounters or
streamlines of impact parameter 1, as in the classical study
[1], the duration an encounter is �C ⇠ 1/{BH. Requiring this
time to be smaller than the orbital period %orb ⇠ Aorb/{BH,
so that the BH does not turn around during the encounter,
gives 1 . Aorb. If we estimate the dynamical friction from
the gravitational attraction by the BH wake, at large distance
in the BH rest-frame matter flows away at the radial velocity
{BH. Therefore, the wake is aligned behind the BH up to the
distance 3 ⇠ {BH%orb/2, which gives again the large-radius
cutoff 3 . Aorb. Therefore, we take
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with the same normalization as found for gaseous media [78].
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where an overdot denotes differentiation with respect to time
and �¢ ' 0.66 is obtained from a numerical computation of
the critical flux [14], which is associated with the unique radial
transonic solution that matches the supersonic infall at the
Schwarzschild radius to the static equilibrium soliton at large
distances. This critical behavior is similar to that found for
hydrodynamical flows in the classic studies of Refs. [74,75],
and is closely related to the case of a polytropic gas with index
W = 2 [14,15]. However, close to the BH, the dynamics deviates
from that of a polytropic gas as one enters the relativistic
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momentum dark matter does not change the BH momentum
but slows down its velocity as
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As in the hydrodynamical case [2,4,5], the dynamical friction
force (in the steady-state limit) vanishes for subsonic speeds
{BH < 2B [15] but is nonzero at supersonic speeds. The
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form as the collisionless result by Chandrasekhar [1] but with a
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we can see that the dynamical friction (2.10) is smaller than
the collisionless result, with a damping factor below 2/3.

For a steady straight-line trajectory, we may take for the
infra-red cutoff the size of the dark matter soliton, which
depends explicitly on <DM and _4 via Eq. (2.3). However,
for bodies moving on circular orbits of radius Aorb, numerical
simulations and analytical studies find that for gaseous media a
good match is obtained by using AIR = 2Aorb [78,79]. This can
be understood as follows. Estimating the dynamical friction
from the exchange of momentum with distant encounters or
streamlines of impact parameter 1, as in the classical study
[1], the duration an encounter is �C ⇠ 1/{BH. Requiring this
time to be smaller than the orbital period %orb ⇠ Aorb/{BH,
so that the BH does not turn around during the encounter,
gives 1 . Aorb. If we estimate the dynamical friction from
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{BH. Therefore, the wake is aligned behind the BH up to the
distance 3 ⇠ {BH%orb/2, which gives again the large-radius
cutoff 3 . Aorb. Therefore, we take
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with the same normalization as found for gaseous media [78].

D. Dark matter halo
Approximating the bulk of the soliton as a spherical halo

of density ⇢0 and radius 'sol, centered at position x0, the halo
gravitational potential reads

|x � x0 | < 'sol : �halo(x) =
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This gives the gravitational acceleration
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Gravity of the dark matter cloud:

Accretion drag:

Dynamical friction:
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IPagLQe WKaW \RX·Ue WKe QXcOeXV Rf WKLV K\dURgeQ aWRP, aQd

\RX·Ue KROdLQg RQWR WKaW eOecWURQ. If LW·V RQ Q=1, WKeQ \RX·Ye gRW

\RXU aUPV ZUaSSed WLgKW aURXQd LW aQd \RX·Ue KROdLQg RQWR LW

ZLWK aOO \RX·Ye gRW.BXW ZKaW Lf a bLW Rf UadLaWLRQ cRPeV aORQg? TKLV bLW Rf UadLaWLRQ LV

a VLQgOe SKRWRQ caUU\LQg¬just eQRXgK eQeUg\ WR WeaU WKaW eOecWURQ

aZa\ fURP \RX.ORSV³\RXU gULS VOLSV a bLW. BXW \RX·Ue QRW OeWWLQg WKaW eOecWURQ gR

ZLWKRXW a ÀgKW. IW RQO\ VOLSV RXW WR WKe Q=2 RUbLW. BXW QRZ LW·OO WaNe

OeVV eQeUg\ WR SU\ LW aZa\. AQd WKe VaPe gReV fRU Lf WKe eOecWURQ LV

RQ aQ\ Rf WKe RWKeU SeUPLWWed RUbLWV.
HeUe·V WKe Ldea: eacK SeUPLWWed RUbLW LV aVVRcLaWed ZLWK a ceUWaLQ

aPRXQW Rf eQeUg\, VR WKe\·Ue caOOed¬energ\ leYels. TKaW e[SOaLQV

ZK\ \RX Vee WKRVe ZRUdV RQ WKe dLagUaP abRYe.

AQ aWRP ZKRVe eOecWURQ KaV PRYed LV caOOed aQ¬e[cited atom, aQd

RQe ZKRVe eOecWURQ KaVQ·W PRYed LV LQ LWV¬ground state.

SR ZKaW·V XS ZLWK WKe Ued/bOXe-gUeeQ/YLROeW VWXff?

WeOO«OeW·V cRQVLdeU WKe SKRWRQ WKaW caPe aORQg aQd bXPSed WKe

eOecWURQ WR a dLffeUeQW eQeUg\ OeYeO.

A SKRWRQ LV a bXQdOe Rf UadLaWLRQ¬ZaYes. AOO UadLaWLRQ

(KWWSV://VcLeQceaW\RXUdRRUVWeS.cRP/2017/09/29/WKe-VSecWUXP-

Rf-OLgKW/) WUaYeOV LQ WKe fRUP Rf ZaYeV. TKeVe aUe OLWeUaO ZaYeV,

MXVW OLNe RceaQ ZaYeV RU ZaY\ OLQeV RQ a SaSeU. YRX dRQ·W¬see WKeP

aV ZaYeV. BXW WUXVW Pe, WKaW·V ZKaW WKe\ aUe.

NRZ, WKeVe ZaYeV KaYe dLffeUeQW aPRXQWV Rf eQeUg\. See WKaW

aUURZ WKaW SRLQWV WR ´LQcUeaVLQg ZaYeOeQgWKµ? IW·V VKRZLQg \RX

WKaW aV \RX geW cORVeU WR UadLR ZaYeV RQ WKLV VSecWUXP, WKe ZaYeV

aUe gRLQg WR geW a bLW ORQgeU fURP RQe cUeVW WR WKe Qe[W.

AQd Vee KRZ, MXVW beORZ WKaW, ´LQcUeaVLQg eQeUg\µ LV OabeOed aV

gRLQg LQ WKe RWKeU dLUecWLRQ?
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I- Additional forces on the BHs due to the dark matter environment 
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with

⌫df =
8cG2⇢0µ

3

2’
8=1

⇥df,8
<3

8

µ3 ln

 
4<2µ5

18<7
8

!

,

⇠df = �8cG2⇢0µ

3

2’
8=1

⇥df,8
<3

8

µ3 . (3.31)

At lowest order over the eccentricity e we obtain

h .eidf =
3e
2

✓
0

G<

◆3/2 "

⌫df + ⇠df ln

 r
G<
0

1
2B

!

� ⇠df
3

#

,

h .0idf = �0
✓

0

G<

◆3/2 "

⌫df + ⇠df ln

 r
G<
0

1
2B

!#

. (3.32)

Thus, the dynamical friction increases the eccentricity, if e > 0,
and reduces the size of the orbit.

E. GWs emission for the Keplerian dynamics
As is well known, the emission of GWs makes the orbits

become more circular and tighter, until the BHs merge. At
lowest order in a post-Newtonian expansion and using the
quadrupole formula, the drifts of the eccentricity and of the
semi-major axis are given by the standard results [80]

h .eigw = �304⌫2
150

e
✓
G<
220

◆3
(1 � e2)�5/2

✓
1 + 121

304
e2
◆

(3.33)
and

h .0igw = �64⌫2
5

✓
G<
220

◆3 1 + 73
24e

2 + 37
96e

4

(1 � e2)7/2 . (3.34)

Throughout this paper, we work at the lowest post-Newtonian
order (3.34). This is sufficient for our purpose, which is to
estimate the dark matter density thresholds associated with a
significant impact on the GW signal. As discussed in Sec. IV
below, the dark matter corrections are most important in the
early inspiral and behave as negative post-Newtonian orders.
As such, they are not degenerate with higher post-Newtonian
orders.

We assume in this paper that the impact of the dark matter
on the binary is smaller than that of the emission of GWs,
which decreases the eccentricity. Therefore, in the following,
we consider circular orbits with e = 0.

F. Effect of the halo gravity
As can be checked at once in Eqs.(3.23)-(3.24), the ⌧-

term associated with the halo gravity does not modify the
eccentricity and the size of the orbit over one period, h .eihalo = 0
and h .0ihalo = 0. Indeed, within the approximation (2.14)
of a time-independent halo gravitational potential, this is a
conservative force. However, this modification of the Keplerian
potential induces a change of the orbital frequency and of the
emission of gravitational waves. Focusing on the binary and

halo gravity only, the equation of motion (3.14) corresponds
to the energy

⇢ =
1
2
µ{2 � Gµ<

A
+ 2cG⇢0µA2

3
. (3.35)

Writing the Euler-Lagrange equations of motion, we obtain for
circular orbits of radius 0 the velocity

{q =

r
G<
0

✓
1 + 2c⇢003

3<

◆
. (3.36)

Here and in the following, we work at linear order in ⇢0. Thus,
relative corrections to the Keplerian results are set by the ratio
between the dark matter mass inside the orbital radius and the
binary total mass, The orbital frequency and the energy read
as

5orb =
1

2c

r
G<
03

✓
1 + 2c⇢003

3<

◆
(3.37)

and

⇢ = �G<µ

20
+ 4cG⇢0µ02

3
. (3.38)

As expected, the higher mass in the system, and hence the larger
gravity, increases the orbital frequency. Using the quadrupole
formula [80],

P =
G

525
®� ( 9:)®� ( 9:), �( 9:) = ⌫<r 9r: , (3.39)

where P is the rate of energy loss by gravitational waves and
�( 9:) the mass quadrupole moment, we obtain for circular
orbits

P =
32⌫2G4<5

52505

✓
1 + 4c⇢003

<

◆
. (3.40)

Then, the balance equation 3⇢
3C = �P gives for the drift of the

orbital radius

h .0igw = �64⌫G3<3

52503

✓
1 � 4c⇢003

3<

◆
, (3.41)

which agrees with Eq.(3.34) at e = 0 when the dark matter halo
is negligible. Although the additional halo gravity increases
the radiative loss (3.40), this is more than compensated by the
higher energy (3.38) and the orbital drift is reduced.

IV. GW PHASE AND THE IMPACT OF DARK
MATTER

A. Constant mass approximation
At lowest order, we can sum the contributions from the

accretion of dark matter, the dynamical friction and the
emission of GWs. This gives the total drift of the orbital
radius

h .0i = h .0iacc + h .0idf + h .0igw. (4.1)
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At lowest order over the eccentricity e we obtain

h .eidf =
3e
2
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⌫df + ⇠df ln
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Thus, the dynamical friction increases the eccentricity, if e > 0,
and reduces the size of the orbit.

E. GWs emission for the Keplerian dynamics
As is well known, the emission of GWs makes the orbits

become more circular and tighter, until the BHs merge. At
lowest order in a post-Newtonian expansion and using the
quadrupole formula, the drifts of the eccentricity and of the
semi-major axis are given by the standard results [80]

h .eigw = �304⌫2
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e
✓
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◆3
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✓
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304
e2
◆

(3.33)
and

h .0igw = �64⌫2
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✓
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◆3 1 + 73
24e

2 + 37
96e

4

(1 � e2)7/2 . (3.34)

Throughout this paper, we work at the lowest post-Newtonian
order (3.34). This is sufficient for our purpose, which is to
estimate the dark matter density thresholds associated with a
significant impact on the GW signal. As discussed in Sec. IV
below, the dark matter corrections are most important in the
early inspiral and behave as negative post-Newtonian orders.
As such, they are not degenerate with higher post-Newtonian
orders.

We assume in this paper that the impact of the dark matter
on the binary is smaller than that of the emission of GWs,
which decreases the eccentricity. Therefore, in the following,
we consider circular orbits with e = 0.

F. Effect of the halo gravity
As can be checked at once in Eqs.(3.23)-(3.24), the ⌧-

term associated with the halo gravity does not modify the
eccentricity and the size of the orbit over one period, h .eihalo = 0
and h .0ihalo = 0. Indeed, within the approximation (2.14)
of a time-independent halo gravitational potential, this is a
conservative force. However, this modification of the Keplerian
potential induces a change of the orbital frequency and of the
emission of gravitational waves. Focusing on the binary and

halo gravity only, the equation of motion (3.14) corresponds
to the energy

⇢ =
1
2
µ{2 � Gµ<

A
+ 2cG⇢0µA2

3
. (3.35)

Writing the Euler-Lagrange equations of motion, we obtain for
circular orbits of radius 0 the velocity

{q =

r
G<
0

✓
1 + 2c⇢003

3<

◆
. (3.36)

Here and in the following, we work at linear order in ⇢0. Thus,
relative corrections to the Keplerian results are set by the ratio
between the dark matter mass inside the orbital radius and the
binary total mass, The orbital frequency and the energy read
as

5orb =
1

2c

r
G<
03

✓
1 + 2c⇢003

3<

◆
(3.37)

and

⇢ = �G<µ

20
+ 4cG⇢0µ02

3
. (3.38)

As expected, the higher mass in the system, and hence the larger
gravity, increases the orbital frequency. Using the quadrupole
formula [80],

P =
G

525
®� ( 9:)®� ( 9:), �( 9:) = ⌫<r 9r: , (3.39)

where P is the rate of energy loss by gravitational waves and
�( 9:) the mass quadrupole moment, we obtain for circular
orbits

P =
32⌫2G4<5

52505

✓
1 + 4c⇢003

<

◆
. (3.40)

Then, the balance equation 3⇢
3C = �P gives for the drift of the

orbital radius

h .0igw = �64⌫G3<3

52503

✓
1 � 4c⇢003

3<

◆
, (3.41)

which agrees with Eq.(3.34) at e = 0 when the dark matter halo
is negligible. Although the additional halo gravity increases
the radiative loss (3.40), this is more than compensated by the
higher energy (3.38) and the orbital drift is reduced.

IV. GW PHASE AND THE IMPACT OF DARK
MATTER

A. Constant mass approximation
At lowest order, we can sum the contributions from the

accretion of dark matter, the dynamical friction and the
emission of GWs. This gives the total drift of the orbital
radius

h .0i = h .0iacc + h .0idf + h .0igw. (4.1)

5

more generally that its velocity is small as compared with the
binary orbital velocity v.

For circular orbits with { =
p
G</0, we obtain

AIR,8

AUV,8
=

s
42B<2µ5

18{<7
8

,
{8
2B

=
µ{

<82B
(3.16)

and the Heaviside factor in Eq.(3.13) reads

⇥df,8 = ⇥

 
<8

µ
<

{

2B
<

4<2µ5

18<7
8

!

, (3.17)

which is unity when the conditions are satisfied and zero
otherwise. We can see that the conditions AIR,8 > AUV,8 and
{8 > 2B can only be simultaneously satisfied by the smallest
BH of the binary, when the symmetric mass ratio ⌫ defined by

⌫ = µ/< = <1<2/<2 (3.18)

is below

⌫ . 0.16. (3.19)

Following the method of the osculating orbital elements [80],
we obtain the impact of the accretion and of the dynamical
friction by computing the perturbations to the orbital elements.
It is clear from Eq.(3.15) that the orbital plane remains constant.
In particular, the specific angular momentum h remains parallel
to eI and evolves as

.
h = ��(C)h, (3.20)

whereas the Runge-Lenz vector evolves as

.
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✓ .
<

<
+ 2�(C)

◆
(A + eA ) +

⌧⌘A

G< eq . (3.21)

This gives next the evolution of the eccentricity and of the
semi-major axis,
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G<(1 + e cos i)
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(3.22)

Using Eq.(3.10), the derivatives with respect to the true
anomaly i read at first order
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and
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The perturbations generated by the dark matter lead to
oscillations and secular changes of the orbital elements. The
cumulative drift associated with the secular effects is obtained
by averaging over one orbital period, as

h .0i = 1
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Z %

0
3C
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1
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Z 2c

0
3i

30

3i
. (3.25)

C. Effect of the accretion
We first consider the impact of the accretion of dark matter

on the orbital motion. This corresponds to both the term .
</<

and the contribution �acc =
.
µ/µ to �(C). We focus on the

regime where these accretion rates vary slowly as compared
with the orbital motion and we take them constant over one
period. As seen in (2.7), we have two regimes for the accretion
rates, which are constant at low velocity and decays as {�3

8 at
high velocity. Thus, we can write
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Then, at lowest order over the eccentricity e we obtain from
Eqs.(3.23)-(3.24)
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The eccentricity remains constant in the low-velocity regime
and increases in the high-velocity regime, if e > 0. The size
of the orbit always decreases. The result (3.28) for the semi-
major axis can be recovered at once for circular orbits from the
constancy of the total angular momentum ! = µ

p
G<?, with

0 = ? and { =
p
G</0 for e = 0.

D. Effect of the dynamical friction
The dynamical friction corresponds to the contribution

�df =
<2 51
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+ <1 52
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, (3.29)

and we can write
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At lowest order over the eccentricity e we obtain
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Thus, the dynamical friction increases the eccentricity, if e > 0,
and reduces the size of the orbit.

E. GWs emission for the Keplerian dynamics
As is well known, the emission of GWs makes the orbits

become more circular and tighter, until the BHs merge. At
lowest order in a post-Newtonian expansion and using the
quadrupole formula, the drifts of the eccentricity and of the
semi-major axis are given by the standard results [80]
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Throughout this paper, we work at the lowest post-Newtonian
order (3.34). This is sufficient for our purpose, which is to
estimate the dark matter density thresholds associated with a
significant impact on the GW signal. As discussed in Sec. IV
below, the dark matter corrections are most important in the
early inspiral and behave as negative post-Newtonian orders.
As such, they are not degenerate with higher post-Newtonian
orders.

We assume in this paper that the impact of the dark matter
on the binary is smaller than that of the emission of GWs,
which decreases the eccentricity. Therefore, in the following,
we consider circular orbits with e = 0.

F. Effect of the halo gravity
As can be checked at once in Eqs.(3.23)-(3.24), the ⌧-

term associated with the halo gravity does not modify the
eccentricity and the size of the orbit over one period, h .eihalo = 0
and h .0ihalo = 0. Indeed, within the approximation (2.14)
of a time-independent halo gravitational potential, this is a
conservative force. However, this modification of the Keplerian
potential induces a change of the orbital frequency and of the
emission of gravitational waves. Focusing on the binary and

halo gravity only, the equation of motion (3.14) corresponds
to the energy
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Writing the Euler-Lagrange equations of motion, we obtain for
circular orbits of radius 0 the velocity
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Here and in the following, we work at linear order in ⇢0. Thus,
relative corrections to the Keplerian results are set by the ratio
between the dark matter mass inside the orbital radius and the
binary total mass, The orbital frequency and the energy read
as
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As expected, the higher mass in the system, and hence the larger
gravity, increases the orbital frequency. Using the quadrupole
formula [80],
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G
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where P is the rate of energy loss by gravitational waves and
�( 9:) the mass quadrupole moment, we obtain for circular
orbits
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Then, the balance equation 3⇢
3C = �P gives for the drift of the

orbital radius
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which agrees with Eq.(3.34) at e = 0 when the dark matter halo
is negligible. Although the additional halo gravity increases
the radiative loss (3.40), this is more than compensated by the
higher energy (3.38) and the orbital drift is reduced.

IV. GW PHASE AND THE IMPACT OF DARK
MATTER

A. Constant mass approximation
At lowest order, we can sum the contributions from the

accretion of dark matter, the dynamical friction and the
emission of GWs. This gives the total drift of the orbital
radius

h .0i = h .0iacc + h .0idf + h .0igw. (4.1)

Correction due to the halo bulk gravity

Accretion drag

Dynamical friction

II- Decay of the orbital radius
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We recover the fact that the dark matter contributions are
more important during the early stages of the inspiral, that is,
at low frequencies. This means that relativistic corrections to
the orbital motion would not change our results for the dark
matter detection thresholds.

The GW signal is of the form ⌘(C) = A(C) cos[�(C)], where
�(C) is implicitly determined by Eqs.(4.10)-(4.11) and A(C) /
f 2/3 if we neglect the dark matter corrections in the amplitude
[80]. The Fourier-space data analysis considers the Fourier
transform ⌘̃( 5 ) =

R
3C 482c 5 C⌘(C). In the stationary phase

approximation [92], one obtains ⌘̃( 5 ) = A( 5 )48 ( 5 ), with

A( 5 ) / 5 �7/6,  ( 5 ) = 2c 5 C¢ ��(C¢) � c/4, (4.13)

where the saddle-point C¢ is defined by f(C¢) = 5 , as
.
� = 2cf.

Using Eqs.(4.10)-(4.11) we obtain

 ( 5 ) = 2c 5 C2 ��2 �
c

4
+  gw +  halo +  acc +  df , (4.14)

where the different contributions are
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This gives [92]
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where M is the chirp mass,

M = ⌫3/5<, (4.17)

and
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The factor⇥ in the first line means that only the smaller BH can
contribute, if there exists a range for dynamical friction where
the two conditions {8 > 2B and AIR,8 > AUV,8 are satisfied.

In the gravitational wave phase (4.16) we have included
the first post-Newtonian 1-PN order [92]. This breaks the
degeneracy over the two BH masses <1 and <2 shown by the
leading term that only depends on the chirp mass M. Then,
the phase (4.16) depends independently on both <1 and <2 and
the gravitational wave signal can constrain both BH masses.
Higher-order 1.5-PN and 2-PN terms allow one to constrain
the BH spins [92], however we do not consider BH spins in
this paper.

C. Relative impact of various contributions
1. Dark matter halo gravity

From Eqs.(4.16) and (4.18), we obtain

 halo
 gw

=
800⇢0G
693c 5 2 ⇠ 2 ⇥ 10�8 ⇢0

1 g · cm�3

✓
5

1 Hz

◆�2
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where we only kept the leading term in  gw. This ratio
happens to be independent of the BH masses and is very small.
Therefore, the impact of the dark matter cloud gravitational
potential is typically negligible.

2. Accretion on the BHs

Denoting <> = max(<1,<2) and << = min(<1,<2) the
greater and smaller mass of the binary, we obtain from Eq.(4.9)
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Since we typically have ⇢0 ⌧ ⇢0, these frequencies are usually
below 1 Hz and the smaller BH can experience both accretion
regimes in the range of frequencies probed by observations.
The impact of the accretion is typically greater for the more
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the two conditions {8 > 2B and AIR,8 > AUV,8 are satisfied.

In the gravitational wave phase (4.16) we have included
the first post-Newtonian 1-PN order [92]. This breaks the
degeneracy over the two BH masses <1 and <2 shown by the
leading term that only depends on the chirp mass M. Then,
the phase (4.16) depends independently on both <1 and <2 and
the gravitational wave signal can constrain both BH masses.
Higher-order 1.5-PN and 2-PN terms allow one to constrain
the BH spins [92], however we do not consider BH spins in
this paper.

C. Relative impact of various contributions
1. Dark matter halo gravity
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where we only kept the leading term in  gw. This ratio
happens to be independent of the BH masses and is very small.
Therefore, the impact of the dark matter cloud gravitational
potential is typically negligible.

2. Accretion on the BHs

Denoting <> = max(<1,<2) and << = min(<1,<2) the
greater and smaller mass of the binary, we obtain from Eq.(4.9)
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Since we typically have ⇢0 ⌧ ⇢0, these frequencies are usually
below 1 Hz and the smaller BH can experience both accretion
regimes in the range of frequencies probed by observations.
The impact of the accretion is typically greater for the more

Frequency drift:

7

This drift depends on the masses of the two BHs and their
accretion rates. However, for small accretion rates we can take
<8 and .

<8 to be constant over the duration of the measurement.
Assuming this spansN orbital periods, with typicallyN ⇠ 100,
we require that .

<8N% ⌧ <8 . For the maximum accretion rate
(2.7) this gives

⇢0 ⌧ 23 5

24c�¢G2<>N
, (4.2)

where 5 = 2/%orb is the GW frequency (which is twice the
orbital frequency) and <> = max(<1,<2). This gives

⇢0 ⌧ 6 ⇥ 1010 N �1
✓

<>

1"�

◆�1✓ 5

1 Hz

◆
g · cm�3. (4.3)

The strongest limitation is associated with the case of Massive
Binary Black Holes (MBBH) to be detected with the space
interferometer LISA, at frequencies 5 & 10�4Hz. This gives
the upper bound ⇢0 ⌧ 0.01 g/cm3, which is much beyond the
expected dark matter densities. For instance, the dark matter
density in the Solar System is about 10�24g/cm3 [82–90]. On
the other hand, accretion disks around supermassive BHs can
have baryonic densities up to 10�9g/cm3 for thick disks and
10�1g/cm3 for thin disks [91]. Therefore, the bound (4.3) is
well satisfied up to the baryonic densities found in accretion
disks. At higher densities, we should explicitly take into
account the time dependence of the BH masses and accretion
rates. This would further enhance the deviation from the signal
associated with the binary system in vacuum and increase
the dark matter impact on the waveform. Therefore, our
computation provides a conservative estimate of the detection
threshold.

B. Phase and coalescence time
In the limit of small eccentricity, e ⌧ 1, the drift (4.1) reads
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The frequency f of the gravitational waves is twice the orbital
frequency (3.37),

f =
1
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. (4.5)

We use a gothic font in this section to distinguish f, the function
of time describing the frequency sweep, from 5 , the Fourier-
transform variable used below in the Fourier-space analysis of
the time-sequence data. This also gives, at first order in dark
matter perturbations,
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Together with Eqs.(4.4)-(4.5), and using Eqs.(2.7) and (3.27)
to combine the accretion terms, we obtain
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(4.9)
In (4.7) we split the contributions from gravitational waves in
the standard f 8/3 term associated with Keplerian orbits and the
correction in f 2/3 due to the dark matter halo. Integrating the
phase �(C) = 2c

R
3f (f/

.
f) and the time C =

R
3f (1/

.
f) over

the GW frequency [92], we obtain

�(f) = �2 +�gw +�halo +�acc +�df (4.10)

and

C(f) = C2 + Cgw + Chalo + Cacc + Cdf , (4.11)

where �2 and C2 are the phase and the time at coalescence
time, and we introduced
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Equations (4.10)-(4.11) provide an implicit expression for the
function �(C), describing the GWs phase as a function of
time. Here, we linearized over the dark matter contributions
to the frequency drift, assuming they are weaker than the
Keplerian GW contribution. As seen in Sec. IV C below,
this is the case in realistic configurations. Besides, this is
sufficient for the purpose of estimating the dark matter density
thresholds required for detection. At much higher densities,
our computation of the frequency drift is no longer reliable but
the presence of dark matter would remain clear in the data.
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our computation of the frequency drift is no longer reliable but
the presence of dark matter would remain clear in the data.
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This drift depends on the masses of the two BHs and their
accretion rates. However, for small accretion rates we can take
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<8 to be constant over the duration of the measurement.
Assuming this spansN orbital periods, with typicallyN ⇠ 100,
we require that .
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The strongest limitation is associated with the case of Massive
Binary Black Holes (MBBH) to be detected with the space
interferometer LISA, at frequencies 5 & 10�4Hz. This gives
the upper bound ⇢0 ⌧ 0.01 g/cm3, which is much beyond the
expected dark matter densities. For instance, the dark matter
density in the Solar System is about 10�24g/cm3 [82–90]. On
the other hand, accretion disks around supermassive BHs can
have baryonic densities up to 10�9g/cm3 for thick disks and
10�1g/cm3 for thin disks [91]. Therefore, the bound (4.3) is
well satisfied up to the baryonic densities found in accretion
disks. At higher densities, we should explicitly take into
account the time dependence of the BH masses and accretion
rates. This would further enhance the deviation from the signal
associated with the binary system in vacuum and increase
the dark matter impact on the waveform. Therefore, our
computation provides a conservative estimate of the detection
threshold.

B. Phase and coalescence time
In the limit of small eccentricity, e ⌧ 1, the drift (4.1) reads
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We use a gothic font in this section to distinguish f, the function
of time describing the frequency sweep, from 5 , the Fourier-
transform variable used below in the Fourier-space analysis of
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matter perturbations,
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Together with Eqs.(4.4)-(4.5), and using Eqs.(2.7) and (3.27)
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Equations (4.10)-(4.11) provide an implicit expression for the
function �(C), describing the GWs phase as a function of
time. Here, we linearized over the dark matter contributions
to the frequency drift, assuming they are weaker than the
Keplerian GW contribution. As seen in Sec. IV C below,
this is the case in realistic configurations. Besides, this is
sufficient for the purpose of estimating the dark matter density
thresholds required for detection. At much higher densities,
our computation of the frequency drift is no longer reliable but
the presence of dark matter would remain clear in the data.
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Equations (4.10)-(4.11) provide an implicit expression for the
function �(C), describing the GWs phase as a function of
time. Here, we linearized over the dark matter contributions
to the frequency drift, assuming they are weaker than the
Keplerian GW contribution. As seen in Sec. IV C below,
this is the case in realistic configurations. Besides, this is
sufficient for the purpose of estimating the dark matter density
thresholds required for detection. At much higher densities,
our computation of the frequency drift is no longer reliable but
the presence of dark matter would remain clear in the data.

Time:

Fourier transform of the GW signal:

DM corrections

8

We recover the fact that the dark matter contributions are
more important during the early stages of the inspiral, that is,
at low frequencies. This means that relativistic corrections to
the orbital motion would not change our results for the dark
matter detection thresholds.

The GW signal is of the form ⌘(C) = A(C) cos[�(C)], where
�(C) is implicitly determined by Eqs.(4.10)-(4.11) and A(C) /
f 2/3 if we neglect the dark matter corrections in the amplitude
[80]. The Fourier-space data analysis considers the Fourier
transform ⌘̃( 5 ) =

R
3C 482c 5 C⌘(C). In the stationary phase

approximation [92], one obtains ⌘̃( 5 ) = A( 5 )48 ( 5 ), with

A( 5 ) / 5 �7/6,  ( 5 ) = 2c 5 C¢ ��(C¢) � c/4, (4.13)

where the saddle-point C¢ is defined by f(C¢) = 5 , as
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This gives [92]
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where M is the chirp mass,
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The factor⇥ in the first line means that only the smaller BH can
contribute, if there exists a range for dynamical friction where
the two conditions {8 > 2B and AIR,8 > AUV,8 are satisfied.

In the gravitational wave phase (4.16) we have included
the first post-Newtonian 1-PN order [92]. This breaks the
degeneracy over the two BH masses <1 and <2 shown by the
leading term that only depends on the chirp mass M. Then,
the phase (4.16) depends independently on both <1 and <2 and
the gravitational wave signal can constrain both BH masses.
Higher-order 1.5-PN and 2-PN terms allow one to constrain
the BH spins [92], however we do not consider BH spins in
this paper.

C. Relative impact of various contributions
1. Dark matter halo gravity

From Eqs.(4.16) and (4.18), we obtain
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where we only kept the leading term in  gw. This ratio
happens to be independent of the BH masses and is very small.
Therefore, the impact of the dark matter cloud gravitational
potential is typically negligible.

2. Accretion on the BHs

Denoting <> = max(<1,<2) and << = min(<1,<2) the
greater and smaller mass of the binary, we obtain from Eq.(4.9)
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Since we typically have ⇢0 ⌧ ⇢0, these frequencies are usually
below 1 Hz and the smaller BH can experience both accretion
regimes in the range of frequencies probed by observations.
The impact of the accretion is typically greater for the more
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where we only kept the leading term in  gw. This ratio
happens to be independent of the BH masses and is very small.
Therefore, the impact of the dark matter cloud gravitational
potential is typically negligible.

2. Accretion on the BHs

Denoting <> = max(<1,<2) and << = min(<1,<2) the
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Since we typically have ⇢0 ⌧ ⇢0, these frequencies are usually
below 1 Hz and the smaller BH can experience both accretion
regimes in the range of frequencies probed by observations.
The impact of the accretion is typically greater for the more
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timing problem [115], a discrepancy observed in the For-
nax galaxy where the expected strong dynamical friction,
predicted by the standard CDM model, fails to reproduce
the observations of slowly migrating globular clusters to-
wards the galaxy center, and their relevance to gravi-
tational waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.

In this paper, we explore the e↵ects of dynamical fric-
tion and mass accretion experienced by a Schwarzschild
black hole moving within a self-interacting scalar dark
matter cloud at supersonic velocities. Our primary focus
is on the Thomas-Fermi regime, where self-interactions
are significant and the wavelike e↵ects of the scalar field
are negligible. This regime results in dark matter dynam-
ics within the solitonic solution behaving more like a gas
than FDM, although it retains distinctive characteristics.
This study of the supersonic regime complements our
previous investigation in the subsonic case [116], o↵er-
ing relevance to ongoing research on gravitational waves.
The implications of mass accretion and dynamical fric-
tion on binary systems can be critical, potentially de-
tectable by upcoming gravitational wave detectors such
as DECIGO or LISA [101, 117–120]. Additionally, the
application of such results to the Fornax globular clus-
ter timing problem, where the CDM dynamical friction
appears too strong, is of particular interest.

The outline of the paper is as follows. Section II
introduces scalar field dark matter with quartic self-
interactions, discussing its equations of motion and equi-
librium solitonic solutions. Section III compares the sub-
sonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymp-
totic expansions and the BH accretion rate and derives
the drag force exerted on the BH. Section V discusses
the accretion rate in comparison with the radial case and
with the classical Hoyle-Lyttleton prediction, and high-
lights the two regimes obtained at moderate and high
Mach numbers. Section VI compares the magnitudes
of the accretion drag and dynamical friction, while Sec-
tion VII provides an independent computation of the dy-
namical friction from the gravitational force exerted by
the BH wake. Section VIII presents a numerical compu-
tation of the density and velocity fields for a moderate
Mach number, to illustrate the behaviour of the system
with a bow shock upstream of the BH. Section IX com-
pares our results with the behaviours of other systems
(collisionless, perfect fluid and FDM cases). Finally, we
conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
dark matter scenario described by the action

S� =

Z
d
4
x
p
�g


�1

2
g
µ⌫
@µ�@⌫�� V (�)

�
, (1)

with a quartic self-interaction,

V (�) =
m

2

2
�
2 + VI(�) with VI(�) =

�4

4
�
4
. (2)

Here m is the mass of the scalar field and �4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an e↵ective
pressure that can balance gravity. This allows the for-
mation of stable static equilibria, also called boson stars
or solitons. Thus, in this paper we consider the super-
sonic motion of a BH inside such an extended soliton, or
quasi-static dark matter halo.
The parameters m and �4 determine the characteristic

density and radius

⇢a =
4m4

3�4

, ra =
1p

4⇡G⇢a
. (3)

The dynamics that we study in this paper will only de-
pend on this combination ⇢a and on the mass and veloc-
ity of the BH. Thus, di↵erent dark matter models with
the same ⇢a show the same large-scale dynamics. We
refer to [116] for a presentation of the regions in the pa-
rameter space (m,�4) where our computations apply, for
various BH masses. We briefly recall below the equa-
tions of motion of the scalar field in the relativistic and
nonrelativistic regimes.

B. Relativistic regime

As in [116], we neglect the gravitational backreaction
of the scalar cloud and we consider the steady-state limit,
that is, the growth and the displacement of the BH are
small as compared with the BH mass and the dark mat-
ter halo radius. Then, working with the isotropic radial
coordinate r, the static spherically symmetric metric can
be written as

ds
2 = �f(r) dt2 + h(r) (dr2 + r

2
d~⌦2). (4)

Close to the BH, below a transition radius rsg, the BH
gravity dominates and the isotropic metric functions f(r)
and h(r) read as
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FIG. 1: Maps of the detection prospects with LISA for different events, in terms of the dark matter parameters ⇢0 and ⇢0. The
lower right area below the black dashed line is not physical. The shaded upper right area shows the region of the parameter
space where the dark matter environment can be detected.

are in the intermediate regime (5.15), with a weak dependence
on ⇢0 through 2B in the terms inside the brackets in Eq.(4.20).
Thus, we still have a roughly vertical line. Below ~+acc,1 we
are in the low-~ regime (5.16), which is now dominated by
the new dependence of the accretion term on ⇢0, which gives
a roughly horizontal line with ⇢0¢ ' 2 ⇥ 10�8g/cm3. The
simple estimate (5.19) gives ⇢0¢ & 10�9g/cm3, which is again
within a factor 100 of the more accurate Fisher matrix result
and reproduces the large hierarchy between ⇢0¢ and ⇢0¢.

We obtain similar behaviors for the LISA-EMRI case, shown
in the lower right panel in Fig. 1. With 5min ⇠ 3⇥ 10�3 Hz, the
simple estimates (5.14) and (5.19) give ⇢0¢ & 10�24g/cm3 and
⇢0¢ & 10�10g/cm3, whereas the more accurate Fisher matrix
results are ⇢0¢ ' 10�22g/cm3 and ⇢0¢ ' 10�8g/cm3.

We obtain similar behaviors in 2 for the B-DECIGO, ET
and Adv-LIGO detectors, for stellar-mass binaries. As in the
MBBH and IBBH cases, there is no dynamical friction regime.
B-DECIGO provides constraints on DM environments that are
similar to those obtained from LISA, but the ET and Adv-LIGO

cannot detect the dark matter cloud for realistic densities.
Thus, in all cases the detection domain is an upper right

region, delimited from the left by ⇢0¢, from below by ⇢0¢, and
from the right by the diagonal ⇢0 = ⇢0. The simple estimates
(5.14) and (5.19) are typically below the exact thresholds ⇢0¢
and ⇢0¢ by a factor of up to 100, but they reproduce the
main trends and the hierarchy between ⇢0¢ and ⇢0¢. The DM
detection is dominated by the accretion contribution  acc on
the larger BH. Above the diagonal ~+acc,1, which runs through
the lower-left corner of this domain, the accretion rate is
proportional to ⇢0 whereas below the diagonal ~+acc,1 it is
proportional to ⇢0. Therefore, in the shaded domain above
~+acc,1 we measure ⇢0 whereas below ~+acc,1 we measure ⇢0.

We summarize in Table IV the density thresholds ⇢0¢ and
⇢0¢ above which the DM cloud can be detected, for the
detectors and binary systems displayed in Figs. 1 and 2. This
is only possible at much higher densities than the typical
dark matter density on galaxy scales, which is about 10�26

to 10�23 g/cm3 [72,113–115]. For comparison, we also note
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nax galaxy where the expected strong dynamical friction,
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the observations of slowly migrating globular clusters to-
wards the galaxy center, and their relevance to gravi-
tational waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.

In this paper, we explore the e↵ects of dynamical fric-
tion and mass accretion experienced by a Schwarzschild
black hole moving within a self-interacting scalar dark
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is on the Thomas-Fermi regime, where self-interactions
are significant and the wavelike e↵ects of the scalar field
are negligible. This regime results in dark matter dynam-
ics within the solitonic solution behaving more like a gas
than FDM, although it retains distinctive characteristics.
This study of the supersonic regime complements our
previous investigation in the subsonic case [116], o↵er-
ing relevance to ongoing research on gravitational waves.
The implications of mass accretion and dynamical fric-
tion on binary systems can be critical, potentially de-
tectable by upcoming gravitational wave detectors such
as DECIGO or LISA [101, 117–120]. Additionally, the
application of such results to the Fornax globular clus-
ter timing problem, where the CDM dynamical friction
appears too strong, is of particular interest.

The outline of the paper is as follows. Section II
introduces scalar field dark matter with quartic self-
interactions, discussing its equations of motion and equi-
librium solitonic solutions. Section III compares the sub-
sonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymp-
totic expansions and the BH accretion rate and derives
the drag force exerted on the BH. Section V discusses
the accretion rate in comparison with the radial case and
with the classical Hoyle-Lyttleton prediction, and high-
lights the two regimes obtained at moderate and high
Mach numbers. Section VI compares the magnitudes
of the accretion drag and dynamical friction, while Sec-
tion VII provides an independent computation of the dy-
namical friction from the gravitational force exerted by
the BH wake. Section VIII presents a numerical compu-
tation of the density and velocity fields for a moderate
Mach number, to illustrate the behaviour of the system
with a bow shock upstream of the BH. Section IX com-
pares our results with the behaviours of other systems
(collisionless, perfect fluid and FDM cases). Finally, we
conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
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Here m is the mass of the scalar field and �4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an e↵ective
pressure that can balance gravity. This allows the for-
mation of stable static equilibria, also called boson stars
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The dynamics that we study in this paper will only de-
pend on this combination ⇢a and on the mass and veloc-
ity of the BH. Thus, di↵erent dark matter models with
the same ⇢a show the same large-scale dynamics. We
refer to [116] for a presentation of the regions in the pa-
rameter space (m,�4) where our computations apply, for
various BH masses. We briefly recall below the equa-
tions of motion of the scalar field in the relativistic and
nonrelativistic regimes.
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As in [116], we neglect the gravitational backreaction
of the scalar cloud and we consider the steady-state limit,
that is, the growth and the displacement of the BH are
small as compared with the BH mass and the dark mat-
ter halo radius. Then, working with the isotropic radial
coordinate r, the static spherically symmetric metric can
be written as
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use the noise spectral densities presented in [105–108]. The
frequency ranges are given in Table I, where the PhenomB
inspiral-merger transition value 51 is defined in [100] and

5obs = 4.149 ⇥ 10�5
⇣

M
106"�

⌘�5/8 ⇣
)obs
1 yr

⌘�3/8
is the frequency

at a given observational time before the merger, as defined in
[109]. We take )obs = 4 yr in our computations.

Detector
Frequency

5min(Hz) 5max(Hz)

LISA max
�
2 ⇥ 10�5, 5obs

�
min

�
1, 51, 5W

�

B-DECIGO 10�2 min
�
100, 51, 5W

�

ET 3 min
�
51, 5W

�

Adv-LIGO 10 min
�
51, 5W

�

TABLE I: Gravitational waves frequency band considered for
the LISA, B-DECIGO, ET and Adv-LIGO interferometers,
where 5obs is the frequency of the binary 4 years before
the merger [109] and 51 is the PhenomB inspiral-merger
transition value [100].

B. Events
We focus on the description of 6 events, 2 ground based and

4 space based, the last ones being for LISA since its detection
range differs from the others. All the events are BH binaries.
The virtual events correspond to different types of binaries:
Massive Binary Black Holes (MBBH), Intermediate Binary
Black Holes (IBBH), an Intermediate Mass Ratio Inspiral
(IMRI) and an Extreme Mass Ratio Inspiral (EMRI). All of
these events are of the same type as the ones considered by [99],
but we focus on BH binaries and do not consider neutron star
binaries. The details of these events are given in Table II. For
completeness, we included the spins and jeff , which sets the
upper frequency cutoff of the data analysis. The SNR values
for each of these events are taken from [99] and summarized
in Table III.

Event
Properties

<1 (M�) <2 (M�) j1 j2 jeff

MBBH 106 5 ⇥ 105 0.9 0.8 0.87
IBBH 104 5 ⇥ 103 0.3 0.4 0.33
IMRI 104 10 0.8 0.5 0.80
EMRI 105 10 0.8 0.5 0.80
GW150914 35.6 30.6 �0.01
GW170608 11 7.6 0.03

TABLE II: Details on masses and spins of the considered
events. The information on GW150914 and GW170608 are
taken from [110].

C. Detection thresholds in the (⇢0, ⇢0) plane
We show in Figs. 1 and 2 our results for the detection

thresholds in the (⇢0, ⇢0), following the Fisher matrix analysis
described in Sec. V. Let us first describe the LISA-MBBH

Event
Detector LISA B-DECIGO ET Adv-LIGO

MBBH 3 ⇥ 104 ⇥ ⇥ ⇥
IBBH 708 ⇥ ⇥ ⇥
IMRI 64 ⇥ ⇥ ⇥
EMRI 22 ⇥ ⇥ ⇥
GW150914 ⇥ 2815 615 40
GW170608 ⇥ 2124 303 35

TABLE III: Value of the signal-to-noise ratio (SNR) of the
considered events for each detector, taken from [99].

case, shown in the upper left panel in Fig. 1. The lower
diagonal black dashed line is the lower limit ~ = 1 (2B = 2)
on the physical part of the parameter space. The parallel blue
dotted lines are the thresholds ~+acc,1 and ~�acc,1 while the green
dot-dashed lines are the thresholds ~+acc,2 and ~�acc,2 (constant-~
lines are parallel to the diagonal ~ = 1 in the (log(⇢0), log(⇢0))
logarithmic plane). Because ⌫ > 0.16 there is no dynamical
friction.

Then, above the upper blue dotted line ~+acc,1, we are in the
large-~ regime (5.12) and there is no constraint on ⇢0. Thus, we
obtain a vertical line ⇢0 > ⇢0¢ with ⇢0¢ ' 8⇥10�13g/cm3 This
should be compared with the simple estimate (5.14), which
gives ⇢0¢ & 10�14g/cm3 as we have 5min ' 6 ⇥ 10�5 Hz. As
expected the more accurate Fisher analysis gives a higher value
but we roughly recover the same order of magnitude. This
gives the shaded area to the right of ⇢0¢ and above the line
~+acc,1 as a region where DM would be detected, mostly because
of the accretion contribution  acc,1 on the larger BH.

Between the lines ~+acc,1 and ~ = 1, we are in the low-~ regime
(5.16) where the phase depends on both ⇢0 and ⇢0. The Fisher
matrix analysis gives an almost flat boundary curve ⇢0 > ⇢0¢
with ⇢0¢ ' 5 ⇥ 10�9g/cm3 This should be compared with the
simple estimate (5.19), which gives ⇢0¢ & 10�11g/cm3. Again,
the more accurate Fisher analysis gives a higher value but we
roughly recover the same order of magnitude. In particular, the
estimates (5.14) and (5.19) correctly predict the large hierarchy
between the thresholds ⇢0¢ and ⇢0¢. This gives the remaining
shaded area between the lines ~+acc,1 and ~ = 1, above ⇢0¢, as
a region where DM would be detected, mostly because of the
accretion contribution  acc,1 on the larger BH, but now in the
low-velocity self-regulated regime.

The same behaviors are found for the LISA-IBBH case,
shown in the lower left panel in Fig. 1. In particular, with
5min ' 6 ⇥ 10�4 Hz, Eqs.(5.14) and (5.19) give the simple
estimates ⇢0¢ & 10�14g/cm3 and ⇢0¢ & 10�9g/cm3, whereas
the detailed Fisher matrix inversion gives the more accurate
results ⇢0¢ ' 5 ⇥ 10�13g/cm3 and ⇢0¢ ' 3 ⇥ 10�8g/cm3.

Let us now consider the LISA-IMRI case, shown in the upper
right panel in Fig. 1. In addition to the thresholds {~+acc,1, ~

�
acc,1}

and {~+acc,2, ~
�
acc,2}, the red solid lines show the dynamical

friction thresholds {~+df,2, ~
�
df,2}. Above the upper line ~+df,2 we

are again in the large-~ regime (5.12), with a vertical bound
⇢0¢ = 3⇥ 10�20g/cm3. This is again within a factor 100 of the
simple estimate (5.14), which gives ⇢0¢ & 10�21g/cm3 with
5min ' 6 ⇥ 10�3 Hz. In the narrow band ~+acc,1 < ~ < ~+df,2 we

BHL accretion mode

Max. radial

accretion 

mode
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6. Dark matter parameters ⇢0 and ⇢0

As seen in the previous sections, the gravitational wave signal
only depends on the dark matter environment through the two
parameters ⇢0 and ⇢0, which are the characteristic density (2.3)
determined by the self-interaction and the bulk density of the
dark matter cloud. The cloud gravity (4.18), the accretion at
high frequency (4.19) and the dynamical friction (4.20) are
proportional to ⇢0, whereas the accretion at low frequency
(4.19) is proportional to ⇢0. On the other hand, the thresholds
(4.9) depend on 2B /

p
⇢0/⇢0. Therefore, in principles it

is possible to constrain both parameters if the observational
frequency range contains the low-frequency accretion regime
or at least one of these frequency thresholds.

V. FISHER INFORMATION MATRIX
A. Fisher analysis

We use a Fisher matrix analysis to estimate the dark
matter densities ⇢0 and ⇢0 that could be detected through
the measurement of GWs emitted by binary BHs in the inspiral
phase. The Fisher matrix is given by [92,98]

�8 9 = 4 Re
Z 5max

5min

35

(=( 5 )

✓
@ ⌘̃

@\8

◆¢✓
@ ⌘̃

@\ 9

◆
, (5.1)

where {\8} is the set of parameters that we wish to measure
and (=( 5 ) is the noise spectral density, which depends on the
GW interferometer. The signal-to-noise ratio is

(SNR)2 = 4
Z 5max

5min

35

(=( 5 )
| ⌘̃( 5 )|2. (5.2)

Writing the gravitational waveform as ⌘̃( 5 ) = A0 5 �7/648 ( 5 ),
as in Eqs.(4.13)-(4.14), we obtain

�8 9 =
(SNR)2

R 5max
5min

3 5
(=( 5 )

5 �7/3

Z 5max

5min

35

(=( 5 )
5 �7/3 @ 

@\8

@ 
@\ 9

(5.3)

where the parameters that we consider in our analysis are
{\8} = {C2,�2, ln(<1), ln(<2), ⇢0, ⇢0}. The amplitude A0
would be an additional parameter. However, the Fisher matrix
is block-diagonal as �A0 ,\8 = 0 and the amplitude A0 is
completely decorrelated from the other parameters {\8} [92].
Therefore, we do not consider the amplitude any further. From
the Fisher matrix we obtain the covariance ⌃8 9 =

�
��1�

8 9 ,
which gives the standard deviation on the various parameters
as �8 = h(�\8)2i1/2 =

p
⌃88 .

As compared with the study presented in [99], we neglect
the effective spin jeff ⌘ (<1j1 + <2j2)/<, which is only
considered to calculate the last stable orbit using the analytical
PhenomB templates [100]. This is because our results for
the accretion rate and the dynamical friction have only been
derived for Schwarzschild BHs. However, we expect the order
of magnitude that we obtain for the dark matter densities to
remain valid for moderate spins. A second difference from [99]
is that in addition to the dark-matter density ⇢0, which describes
the bulk of the cloud, we also have a second characteristic
density ⇢0. It describes the dark matter density close to the
Schwarzschild radius and it is directly related to the strength
of the dark-matter self-interaction.

B. Sectors in the (⇢0, ⇢0) plane
1. Binary and dark matter parameters

In this paper, we investigate the detection thresholds for a
dark matter environment. Then, we assumed that the dark
matter impact is small and we linearized in all its contributions.
Thus, the phases (4.18)-(4.20) are proportional to the densities
⇢0 or ⇢0 (at fixed 2B). As expected, the contributions from the
halo gravity (4.18), the accretion in the high-frequency or high-
velocity regime (4.19), and the dynamical friction (4.20) are
proportional to the bulk halo density ⇢0. The contribution from
the accretion in the low-frequency or low-velocity regime (4.19)
is proportional to the characteristic density ⇢0, associated with
the maximum allowed accretion rate.

Then, for vanishing or negligible dark matter
halo the standard waveform parameters {\8}8=1,4 =
{C2,�2, ln(<1), ln(<2)} are determined by the first four terms
in the phase (4.14), that is, the C2 and �2 factors and the
gravitational wave contribution  gw. This corresponds to the
standard analysis for binary systems in vacuum. For a small
dark matter halo, or for the fiducial ⇢0 = ⇢0 = 0, this also
provides the 4 ⇥ 4 components �8 9 with 1  8, 9  4 of the
Fisher matrix.

The presence of a dark matter environment can be detected
through the phases (4.18)-(4.20). These contributions have
an amplitude proportional to ⇢0 or ⇢0, multiplied Heaviside
factors ⇥ and slowly-varying terms such as 1 + ( 5 / 5acc)13/3 or
ln( 5 / 5 +df). The frequencies (4.9) do not depend on ⇢0 and ⇢0
independently, but only on the sound-speed 2B, that is, on the
ratio ~ defined by

~ ⌘ ⇢0
⇢0

=
22

22
B

� 1. (5.4)

Therefore, the different accretion and dynamical friction
regimes are delimited by specific values of ~, which determine
several angular sectors in the (⇢0, ⇢0) plane. The physical part
of the positive quadrant {⇢0 � 0, ⇢0 � 0} is restricted to the
upper-diagonal sector ⇢0 � ⇢0 because of the condition 2B  2.
For a given binary system and observational frequency band
[ 5min, 5max], let us define the accretion thresholds in ~,

5min < 5acc,8 : ~ < ~+acc,8 , ~+acc,8 =
23<3

8

3c�¢G<µ3 5min
, (5.5)

5max < 5acc,8 : ~ < ~�acc,8 , ~�acc,8 =
23<3

8

3c�¢G<µ3 5max
, (5.6)

and the dynamical friction thresholds

5min < 5 +df,8 : ~ < ~+df,8 , ~+df,8 =

 
4323<5µ15

5832cG<21
8 5min

!2/3

,

(5.7)

5max < 5 �df,8 : ~ < ~�df,8 , ~�df,8 =

 
23<3

8

cG<µ3 5max

!2/3

. (5.8)
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FIG. 2: Maps of the detection prospects for three different interferometers (from left-to-right: B-DECIGO, ET, and Adv-
LIGO), for the two events GW150914 (upper row) and GW170608 (lower row).

Event
Detector

LISA B-DECIGO ET Adv-LIGO

MBBH ⇢0 > 8 ⇥ 10�13 g/cm3 > > >

⇢0 > 5 ⇥ 10�9 g/cm3 > > >

IBBH ⇢0 > 5 ⇥ 10�13 g/cm3 > > >

⇢0 > 3 ⇥ 10�8 g/cm3 > > >

IMRI ⇢0 > 3 ⇥ 10�20 g/cm3 > > >

⇢0 > 2 ⇥ 10�8 g/cm3 > > >

EMRI ⇢0 > 10�22 g/cm3 > > >

⇢0 > 10�8 g/cm3 > > >

GW150914
>

⇢0 > 8 ⇥ 10�14 g/cm3 ⇢0 > 0.9 g/cm3 ⇢0 > 104 g/cm3
>

⇢0 > 2 ⇥ 10�8 g/cm3 ⇢0 > 103 g/cm3 ⇢0 > 5 ⇥ 106 g/cm3

GW170608
>

⇢0 > 10�15 g/cm3 ⇢0 > 0.02 g/cm3 ⇢0 > 120 g/cm3
>

⇢0 > 2 ⇥ 10�9 g/cm3 ⇢0 > 101 g/cm3 ⇢0 > 2 ⇥ 105 g/cm3

TABLE IV: Lower bounds ⇢0¢ and ⇢0¢ on the DM density parameters for a detection of the DM cloud, for various detectors
and binary systems.

that accretion disks have a baryonic matter density below
⇠ 0.1 g/cm3 for thin disks, and below 10�9g/cm3 for thick
disks [91], with a lower bound around 10�16g/cm3. Therefore,
only LISA and B-DECIGO could detect DM clouds with
realistic bulk densities, ⇢0 > 10�22g/cm3 for LISA-EMRI
and ⇢0 > 10�15g/cm3 for B-DECIGO. The detection of the
scalar cloud also requires a very high value of the density
parameter ⇢0, ⇢0 & 10�8g/cm3. However, this is not the
typical density of the DM cloud but only the density close to

the Schwarzschild radius, in the accretion regime regulated
by the self-interactions. On the other hand, DM clouds with
densities much higher than typical baryonic accretion disks
may be produced in the early universe, as discussed for instance
in [67,116] for several scenarios. Then, in contrast with the
standard CDM case, the dark matter density field would be
extremely clumpy, in the form of a distribution of small and
dense clouds (in a manner somewhat similar to primordial
BHs or macroscopic dark matter scenarios, but with larger-size
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that accretion disks have a baryonic matter density below
⇠ 0.1 g/cm3 for thin disks, and below 10�9g/cm3 for thick
disks [91], with a lower bound around 10�16g/cm3. Therefore,
only LISA and B-DECIGO could detect DM clouds with
realistic bulk densities, ⇢0 > 10�22g/cm3 for LISA-EMRI
and ⇢0 > 10�15g/cm3 for B-DECIGO. The detection of the
scalar cloud also requires a very high value of the density
parameter ⇢0, ⇢0 & 10�8g/cm3. However, this is not the
typical density of the DM cloud but only the density close to

the Schwarzschild radius, in the accretion regime regulated
by the self-interactions. On the other hand, DM clouds with
densities much higher than typical baryonic accretion disks
may be produced in the early universe, as discussed for instance
in [67,116] for several scenarios. Then, in contrast with the
standard CDM case, the dark matter density field would be
extremely clumpy, in the form of a distribution of small and
dense clouds (in a manner somewhat similar to primordial
BHs or macroscopic dark matter scenarios, but with larger-size
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timing problem [115], a discrepancy observed in the For-
nax galaxy where the expected strong dynamical friction,
predicted by the standard CDM model, fails to reproduce
the observations of slowly migrating globular clusters to-
wards the galaxy center, and their relevance to gravi-
tational waves where dynamical friction can slow down
binary systems and induce phase shifts in gravitational
wave emission.

In this paper, we explore the e↵ects of dynamical fric-
tion and mass accretion experienced by a Schwarzschild
black hole moving within a self-interacting scalar dark
matter cloud at supersonic velocities. Our primary focus
is on the Thomas-Fermi regime, where self-interactions
are significant and the wavelike e↵ects of the scalar field
are negligible. This regime results in dark matter dynam-
ics within the solitonic solution behaving more like a gas
than FDM, although it retains distinctive characteristics.
This study of the supersonic regime complements our
previous investigation in the subsonic case [116], o↵er-
ing relevance to ongoing research on gravitational waves.
The implications of mass accretion and dynamical fric-
tion on binary systems can be critical, potentially de-
tectable by upcoming gravitational wave detectors such
as DECIGO or LISA [101, 117–120]. Additionally, the
application of such results to the Fornax globular clus-
ter timing problem, where the CDM dynamical friction
appears too strong, is of particular interest.

The outline of the paper is as follows. Section II
introduces scalar field dark matter with quartic self-
interactions, discussing its equations of motion and equi-
librium solitonic solutions. Section III compares the sub-
sonic and supersonic regimes and calculates the large-
distance expansions of the dark matter flow for both the
upstream and downstream regions, including the appear-
ance and location of shock fronts and boundary layers.
Section IV describes the relation between these asymp-
totic expansions and the BH accretion rate and derives
the drag force exerted on the BH. Section V discusses
the accretion rate in comparison with the radial case and
with the classical Hoyle-Lyttleton prediction, and high-
lights the two regimes obtained at moderate and high
Mach numbers. Section VI compares the magnitudes
of the accretion drag and dynamical friction, while Sec-
tion VII provides an independent computation of the dy-
namical friction from the gravitational force exerted by
the BH wake. Section VIII presents a numerical compu-
tation of the density and velocity fields for a moderate
Mach number, to illustrate the behaviour of the system
with a bow shock upstream of the BH. Section IX com-
pares our results with the behaviours of other systems
(collisionless, perfect fluid and FDM cases). Finally, we
conclude our study in Section X.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

As in our previous work [116], we consider a scalar-field
dark matter scenario described by the action

S� =

Z
d
4
x
p
�g


�1

2
g
µ⌫
@µ�@⌫�� V (�)

�
, (1)

with a quartic self-interaction,

V (�) =
m

2

2
�
2 + VI(�) with VI(�) =

�4

4
�
4
. (2)

Here m is the mass of the scalar field and �4 its coupling
constant, which is taken positive. This corresponds to a
repulsive self-interaction, which gives rise to an e↵ective
pressure that can balance gravity. This allows the for-
mation of stable static equilibria, also called boson stars
or solitons. Thus, in this paper we consider the super-
sonic motion of a BH inside such an extended soliton, or
quasi-static dark matter halo.
The parameters m and �4 determine the characteristic

density and radius

⇢a =
4m4

3�4

, ra =
1p

4⇡G⇢a
. (3)

The dynamics that we study in this paper will only de-
pend on this combination ⇢a and on the mass and veloc-
ity of the BH. Thus, di↵erent dark matter models with
the same ⇢a show the same large-scale dynamics. We
refer to [116] for a presentation of the regions in the pa-
rameter space (m,�4) where our computations apply, for
various BH masses. We briefly recall below the equa-
tions of motion of the scalar field in the relativistic and
nonrelativistic regimes.

B. Relativistic regime

As in [116], we neglect the gravitational backreaction
of the scalar cloud and we consider the steady-state limit,
that is, the growth and the displacement of the BH are
small as compared with the BH mass and the dark mat-
ter halo radius. Then, working with the isotropic radial
coordinate r, the static spherically symmetric metric can
be written as

ds
2 = �f(r) dt2 + h(r) (dr2 + r

2
d~⌦2). (4)

Close to the BH, below a transition radius rsg, the BH
gravity dominates and the isotropic metric functions f(r)
and h(r) read as

rs

4
< r ⌧ rsg : f(r) =

✓
1� rs/(4r)

1 + rs/(4r)

◆2

,

h(r) = (1 + rs/(4r))
4
, (5)

halo bulk density

Solar neighborhood:

Baryonic density in thick disks:
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FIG. 3: Domain over the parameter space (<DM, _4) where our derivations are applicable, in the case of the LISA interferome-
ter. The white area represents the allowed parameter space. The upper left red region is excluded by observational constraints.
In the lower right blue region the scalar dark matter model is allowed but the assumptions used in our computations must be
revised. The black line corresponds to the detection limit obtained in Fig. 1. Parameter values above this line are beyond the
detectability range of the interferometer.

We can see in Fig. 3 and Fig.4 that in all cases the detection
threshold ⇢0¢ runs through the white area. In particular, it
is parallel but below the upper bound associated with the
soliton size limit and above the lower bound associated with
the orbital radius limit. Thus, whereas the largest solitons
cannot be detected, a large part of the available parameter
space could lead to detection by interferometers such as LISA
and B-DECIGO.

E. Constraints on the soliton radius
The two parameters <DM and _4 also determine the soliton

size 'sol, as seen in Eqs.(2.3) and (2.4). As 'sol is more relevant
for observational purposes than the coupling _4, we show in
Figs. 5 and 6 the application domain of our computations and
the detection threshold ⇢0¢ in the parameter space (<DM, 'sol),
instead of the plane (<DM, _4) shown in Figs. 3 and 4 above.

We can see that no experiment can probe galactic-size
soltons, 'sol & 1 kpc, that could be invoked to alleviate
the small-scale problems encountered by the standard CDM
scenario. At best, LISA and B-DECIGO can probe models
associated with 10�7 . 'sol . 0.1 pc. These astrophysical
scales range from a percent of astronomical unit to a tenth of the
typical distance between stars in the Milky Way. Nevertheless,
this is still a large fraction of the parameter space. Whereas
LISA probes models with a scalar mass 10�15 . <DM . 1 eV,
B-DECIGO is restricted to 10�12 . <DM . 1 eV.

F. Comparison with other results
Our results for the minimal value ⇢0¢ of the bulk density ⇢0

that can be measured (i.e., its detection threshold) is close to
the results for �0 obtained in [99] from collisionless dynamical
friction, for the B-DECIGO, ET and ADv-LIGO events and for

Plane
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FIG. 5: Domain over the parameter space (<DM, 'sol) where our derivations are applicable and detection threshold, in the case
of the LISA interferometer as in Fig. 3

environments, provided binary systems are embedded within
such scalar clouds. This would give new clues about the nature
of dark matter. Within the framework of the scalar field models
with quartic self-interactions studied in this paper, this would
give indications on the value of the bulk dark matter density
⇢0 as well as the characteristic density ⇢0 of Eq.(2.3), that is,
the combination <4

DM/_4. This would also give an indirect
estimate of the size 'sol of the solitons, from Eq.(2.4). However,
whereas ⇢0 seems within reach of planned GW experiments
for a large part of the parameter space of these dark matter
scenarios (provided such clouds exist), the bulk density ⇢0
seems less likely to be measured. Indeed, this would only be
possible for densities much higher than the typical dark matter
density on galactic scales. Nevertheless, such high densities
could be reached in scenarios where the dark matter clumps
are much smaller and more dense than the averaged galactic
halos. This corresponds to models where these clumps would
form at high redshifts, giving rise to a very clumpy dark matter
distribution. The fact that we have not detected such dark

matter effects in the ET and LIGO events is consistent with the
high bulk densities, ⇢0 & 1 g/cm3, that are needed to allow a
detection with these interferometers.

Perturbations to the gravitational waveforms may result
from diverse environments, including gaseous clouds or dark
matter halos associated with other dark matter models. In all
cases where such environments are present, we can expect
accretion and dynamical friction to occur and slow down the
orbital motion. It would be interesting to study whether one
can discriminate between these different environments. As
shown in this paper, to do so we could use the magnitude
of these two effects and also the parts in the data sequence
where dynamical friction appears to be active or not. Indeed,
depending on the medium dynamical friction is expected to be
negligible in some regimes, such as subsonic velocities. If one
can extract such conditions from the data, one may gain some
useful information on the environment of the binary systems.
We leave such studies to future works.

Plane
<latexit sha1_base64="1dbCnG/C7OBOdFaiNbb2QBlNxOE=">AAACAXicbZDLSgMxFIYz9VbrbdSN4CZYhApSZsTbsqgLN0IVe4F2GDJp2oYmkyHJCGUYN76KGxeKuPUt3Pk2pu0stPWHwMd/zuHk/EHEqNKO823l5uYXFpfyy4WV1bX1DXtzq65ELDGpYcGEbAZIEUZDUtNUM9KMJEE8YKQRDC5H9cYDkYqK8F4PI+Jx1Atpl2KkjeXbOyXuJ23J4dVNeng3QSVYeuDbRafsjAVnwc2gCDJVffur3RE45iTUmCGlWq4TaS9BUlPMSFpox4pECA9Qj7QMhogT5SXjC1K4b5wO7AppXqjh2P09kSCu1JAHppMj3VfTtZH5X60V6+65l9AwijUJ8WRRN2ZQCziKA3aoJFizoQGEJTV/hbiPJMLahFYwIbjTJ89C/ajsnpZPbo+LlYssjjzYBXugBFxwBirgGlRBDWDwCJ7BK3iznqwX6936mLTmrGxmG/yR9fkDQIyWJA==</latexit>

(mDM, Rsol)
<latexit sha1_base64="KcS3RYXBhyl734LhUxZoA2n0XgY="></latexit>

Rsol = ⇡

r
3�4

2

MPl

m2

Radius of the scalar 
cloud (soliton)

Models with 
soliton radius 
below this line 

can be 
detected
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Impact of the time-dependent DM 
gravitational potential on GW



A) Frequency shift

de Broglie wavelength �dB of dark matter particles. Since the characteristic momen-

tum of the dark matter particles is k = mv, where v ⇡ 10�3 is the typical velocity

in the Galaxy, we have

�dB ⌘ k�1 = (mv)�1 ⇡ 600 pc

✓
10�23 eV

m

◆✓
10�3

v

◆
. (2.1)

Taking into account that the number density of dark matter particles in the Galaxy

is given by n = ⇢DM/m, we estimate the characteristic occupation number of dark

matter in the galactic halo as

�N

�x3�p3
⇠ n/k3 =

⇢DM

mk3
⇡ 1096

✓
⇢DM

0.3GeV/cm3

◆✓
10�23 eV

m

◆
. (2.2)

Since the occupation number is huge, the dark matter in the Galaxy is in the domain

of validity of the classical field theory, and can be described by a classical scalar field

�(x, t). Generally, such a field can be represented as a collection of plane waves of

typical momentum k. The frequencies are given by the corresponding energy, which

in the non-relativistic limit equals E ' m+mv2/2. Since the characteristic time scale

corresponding to the second term (�!)�1 = 2/(mv2) is very large (the corresponding

length scale is of order 1 Mpc), to the leading order we can set the frequency to be

equal to m. Thus the field we are dealing with has the form

�(x, t) = A(x) cos (mt+ ↵(x)) . (2.3)

Energy-momentum tensor of a free scalar field is given by

Tµ⌫ = @µ� @⌫�� 1

2
gµ⌫

�
(@�)2 �m2�2

�
. (2.4)

Plugging here the Ansatz for the field (2.3), we see that the energy density T00 has

a dominant time-independent component

⇢DM ⌘ T00 =
1

2
m2A2 , (2.5)

and an oscillating part which, however, is proportional to (r�)2 ⇠ k2�2 and hence

small,

⇢oscDM ⇠ k2

m2
⇢DM = v2⇢DM . (2.6)

On the other hand, the dominant term of the spatial components Tij oscillates in

time with frequency

! = 2m

and amplitude of the order of ⇢DM :

Tij = �1

2
m2A2 cos (! t+ 2↵) �ij ⌘ p(x, t) �ij . (2.7)
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slow variations on astrophysical scales

fast oscillations

The density field has a subleading oscillatory component:
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�dB =
2⇡

mv
, k <

2⇡

�dB
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 N (~x, t) =  0(~x) + osc(~x) cos[!t+ 2↵(~x)]The gravitational potential also has a subleading oscillatory component:
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r2 0 = 4⇡G⇢0
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G⇢
m2
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⇢osc ⇠ (r�)2 ⇠ k2�2 ⇠ k2

m2
⇢0 < v2⇢0

(shift of PTA time delays)



In the optical approximation, as for the Sachs-Wolfe effect for CMB photons, the gravitational potential along the line of sight 
leads to a frequency shift of the GW signal:
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f & !

The integrated Sachs-Wolfe effect is neglected (many oscillations along the l.o.s.):
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� =
c

f
⌧ 2⇡

k

178 equations we find the local Newtonian potential to be [52]

ΨNðx⃗; tÞ ¼ Ψ0ðx⃗Þ þ Ψoscðx⃗Þ cos½ωtþ 2αðx⃗Þ&; ð3Þ

179180 with

ω ¼ 2mϕ: ð4Þ

181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have

k <
2π
λdB

∶ k < mϕv;
Ψosc

Ψ0

∼
k2

m2
ϕ

< v2 ≪ 1; ð7Þ

200201 for nonrelativistic DM clouds.
202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
!
fmin

1 Hz

"
3 × 10−16 eV; ð10Þ

219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
238frequency drift ḟ by

Φ ¼ 2π
Z

df
f
ḟ
; t ¼

Z
df

1

ḟ
: ð11Þ

239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3

5c5
ðGMÞ5=3f11=3; ð12Þ

243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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reception (negligible)emission

B) GW phase shift

GW signal:
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179180 with
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181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have
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202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
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219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
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239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3
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243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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Phase and time related to the frequency drift:

Going to Fourier space:
<latexit sha1_base64="sm3xX25uICUB2dhaxYOIwVE75hc="></latexit>

h̃(f) =

Z
dt ei2⇡fth(t) = A(f)ei (f)

178 equations we find the local Newtonian potential to be [52]

ΨNðx⃗; tÞ ¼ Ψ0ðx⃗Þ þ Ψoscðx⃗Þ cos½ωtþ 2αðx⃗Þ&; ð3Þ

179180 with

ω ¼ 2mϕ: ð4Þ

181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have

k <
2π
λdB

∶ k < mϕv;
Ψosc

Ψ0

∼
k2

m2
ϕ

< v2 ≪ 1; ð7Þ

200201 for nonrelativistic DM clouds.
202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
!
fmin

1 Hz

"
3 × 10−16 eV; ð10Þ

219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
238frequency drift ḟ by

Φ ¼ 2π
Z

df
f
ḟ
; t ¼

Z
df

1

ḟ
: ð11Þ

239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3

5c5
ðGMÞ5=3f11=3; ð12Þ

243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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178 equations we find the local Newtonian potential to be [52]
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181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have

k <
2π
λdB

∶ k < mϕv;
Ψosc

Ψ0

∼
k2

m2
ϕ

< v2 ≪ 1; ð7Þ

200201 for nonrelativistic DM clouds.
202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
!
fmin

1 Hz

"
3 × 10−16 eV; ð10Þ

219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
238frequency drift ḟ by

Φ ¼ 2π
Z

df
f
ḟ
; t ¼

Z
df

1

ḟ
: ð11Þ

239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3

5c5
ðGMÞ5=3f11=3; ð12Þ

243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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Saddle-point approximation:

2

focus on binary systems that could potentially belong
to these dense clumps and the e↵ects on the GWs they
produce that could be probed by future experiments like
LISA [40–42] and DECIGO [43–45]. We note that the
capture of binary systems by these dense clumps remains
a subject for future study.

Environmental e↵ects, associated with baryons or dark
matter, generically a↵ect the gravitational waves signal
emitted by binary systems via their impact on the or-
bital features. Typically, they are the consequences of
three possible e↵ects, the conservative gravitational pull
of the enclosed dark matter mass within the binary orbit,
the dynamical friction (i.e., the drag force on the binary
components due to the gravitational exchange of momen-
tum with the environment), or the accretion of matter.
Recent studies of these e↵ects can be found for instance
in [46–51]. In this paper, following [52], we focus on a
di↵erent e↵ect that is specific to scalar field scenarios (as
opposed to classical particles or fluids) and associated
with the fast oscillations of the scalar field �(~x, t), which
can be written as

�(~x, t) = A(~x, t) cos[m�t+ ↵(~x, t)]. (1)

where m� is the dark matter particle mass. The ampli-
tude A and the phase ↵ vary on astrophysical or cosmo-
logical timescales. Similarly the dark matter density and
the gravitational field, when averaged over the fast oscil-
lations of the scalar field at frequency m�, vary also on
such large time scales. As recalled above, the dynamics
of the dark matter density field, such as the formation of
solitons, are usually studied using the equations of mo-
tion obtained after this averaging procedure, written in
terms of the amplitude A and the phase ↵ or the com-
plex field  = Aei↵. However, as pointed out by [52], the
underlying fast oscillations (1) lead to a subleading oscil-
lating component of the gravitational potential  N , as in
Eq.(3) below. This in turns gives rise to a specific time-
dependent shift of the gravitational waveform, which is
not due to a change of the orbital dynamics but to the
propagation of the gravitational wave in the surrounding
oscillating gravitational potential.

In this paper, we compute this specific phase shift and
we compare its magnitude with a generic dynamical fric-
tion [50, 53, 54]. Interestingly, we find that the oscillat-
ing DM e↵ects can only be probed for a specific range
of scalar masses, dependent on the GW frequency and
the total mass of the binary system. Practically, our re-
sults suggest that only scalar masses lower than 10�21 eV
could be tested when the local matter density exceeds one
million times the estimated density for DM in the Milky
Way. The formation of very dense clumps around the
matter-radiation equality epoch would then lead to po-
tentially observable e↵ects. Our analysis applies to sce-
narios of the form (1), which include both FDM models
and models with non-negligeable self-interactions.

In Section II, we compute the shift in the frequency
and phase of the gravitational waves due to the oscillating
dark matter background, and compare this to the size of

similar e↵ects arising from dynamical friction. In Section
III, we use a Fisher matrix analysis to determine which
local dark matter overdensities can be probed with near
future experiments, focusing in particular on LISA and
DECIGO. We conclude in Section IV.

II. IMPACT OF THE TIME-DEPENDENT
DARK MATTER POTENTIAL ON GW

A. Frequency shift

In the near future the LISA experiment will detect and
analyse the GWs due to white dwarf binaries in the Milky
Way. It is expected that over 10 years of observation,
some 104 White Dwarf Binaries (WDB) will be observed
at frequencies f0 & 5 mHz [55, 56]. These systems will
allow us to test the nature of their DM environment [52].
In a fashion similar to the Sachs-Wolfe e↵ect for the Cos-
mic Microwave Background (CMB), the fluctuations of
the gravitational potential along the line of sight lead to
a drift of the frequency, f , of the emitted GWs,

�f

f
=  N (~xe, te)� N (~x, t), (2)

where {~xe, te} and {~x, t} indicate the position and time of
the emission and reception of the GW. This description
is valid as long as the GWs can be described as rays
in an optical approximation where their frequency must
be larger than the inverse of the typical variation scale
of the surrounding medium. The integrated Sachs-Wolfe
e↵ect is also neglected. This follows from the fact that
the spatial variation of the gravitational potential occurs
on scales much larger than the wavelength.
If the galactic halo is composed of clumps of DM whose

particle mass is m�, the local matter density will include
a subleading component that oscillates with a frequency
! = 2m� locally inside each clump, associated with the
underlying oscillation (1) of the field. Through the Ein-
stein equations we find the local Newtonian potential to
be [52]

 N (~x, t) =  0(~x) + osc(~x) cos[!t+ 2↵(~x)], (3)

with

! = 2m�. (4)

The leading component in Eq. (3),  0, which evolves on
astrophysical timescales, is given by the usual Poisson
equation,

r2 0 = 4⇡G⇢, (5)

where ⇢ is the DM density averaged over the fast oscilla-
tions at frequency !, whereas the subleading oscillating
component  osc is given by

 osc = ⇡
G⇢
m2

�

. (6)



At leading order, the frequency drift is due to the emission of GW:

178 equations we find the local Newtonian potential to be [52]

ΨNðx⃗; tÞ ¼ Ψ0ðx⃗Þ þ Ψoscðx⃗Þ cos½ωtþ 2αðx⃗Þ&; ð3Þ

179180 with

ω ¼ 2mϕ: ð4Þ

181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have

k <
2π
λdB

∶ k < mϕv;
Ψosc

Ψ0

∼
k2

m2
ϕ

< v2 ≪ 1; ð7Þ

200201 for nonrelativistic DM clouds.
202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
!
fmin

1 Hz

"
3 × 10−16 eV; ð10Þ

219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
238frequency drift ḟ by

Φ ¼ 2π
Z

df
f
ḟ
; t ¼

Z
df

1

ḟ
: ð11Þ

239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3

5c5
ðGMÞ5=3f11=3; ð12Þ

243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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The DM gravitational potential gives a correction:

tc − t̄⋆ ¼
Z

∞

f
df

1

ḟ
¼ 5

256π

!
πGM
c3

"−5=3
f−8=3; ð15Þ

255256 with the phase given by

Φc − Φ̄⋆ ¼ 2π
Z

∞

f
df

f
ḟ
¼ 1

16

!
πGMf
c3

"−5=3
; ð16Þ

257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with

ψGWðfÞ ¼
3

128

!
πGMf
c3

"−5=3#
1þ

!
3715

756
þ 55ν

9

"

×
!
πGMf
c3

"
2=3

$
: ð18Þ

263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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The contribution from the constant part is degenerate 
with the leading GW contribution:tc − t̄⋆ ¼

Z
∞

f
df

1

ḟ
¼ 5

256π

!
πGM
c3

"−5=3
f−8=3; ð15Þ

255256 with the phase given by

Φc − Φ̄⋆ ¼ 2π
Z

∞

f
df

f
ḟ
¼ 1

16

!
πGMf
c3

"−5=3
; ð16Þ

257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with

ψGWðfÞ ¼
3

128

!
πGMf
c3

"−5=3#
1þ

!
3715

756
þ 55ν

9

"

×
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πGMf
c3

"
2=3

$
: ð18Þ

263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z
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t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as
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280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,
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Ψ0

16

!
πGMf
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"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π
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297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc
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!
πGMf
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"−5=3
cosðωtc − θÞ:
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300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!
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256π

"
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×
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305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z
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275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,
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280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,
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Ψ0
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283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π
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295296where γða; zÞ is the incomplete gamma function and
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297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16
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πGMf
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"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
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×
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"−5=8
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305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z
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t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z
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278279 Using Eq. (15), we can write this integral as
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280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16
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πGMf
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"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π
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295296where γða; zÞ is the incomplete gamma function and
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297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
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πGMω

c3

"−5=8
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305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z
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dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,
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Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,
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Ψ0
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283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,
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297298299For low scalar mass, mϕ ≪ m⋆, we obtain
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300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
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256π
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×
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305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ
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273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by
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275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
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282 Eq. (9) gives the contribution,
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283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π
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300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
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×
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305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
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Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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f
ḟ
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c3

"−5=3
; ð16Þ

257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with

ψGWðfÞ ¼
3

128

!
πGMf
c3

"−5=3#
1þ

!
3715

756
þ 55ν

9

"

×
!
πGMf
c3

"
2=3

$
: ð18Þ

263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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Low scalar mass, degeneracy with leading GW term
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255256 with the phase given by
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257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with

ψGWðfÞ ¼
3

128

!
πGMf
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"−5=3#
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9

"

×
!
πGMf
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"
2=3

$
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.

BRAX, VALAGEAS, BURRAGE, and CEMBRANOS PHYS. REV. D XX, 000000 (XXXX)

4

Large scalar mass, degeneracy with constant factor
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257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with

ψGWðfÞ ¼
3
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!
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"
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,

ψ̄ðfÞ ¼ 2πftc −Φc −
π
4
þ ψGWðfÞ; ð17Þ

261262 with
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π
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!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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ḟ
¼ 1

16

!
πGMf
c3

"−5=3
; ð16Þ

257258 where tc and Φc are the time and the phase at that
259 coalescence time. This gives the standard result for the
260 phase ψ̄ðfÞ of the Fourier-space waveform,
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263264 Here we have included the first post-Newtonian correction
265 (1-PN order). This gives two terms, which behave as f−5=3

266 and f−1, that allowus to constrain both binarymassesm1 and
267 m2 from the observations [50]. We do not consider higher
268 order post-Newtonian contributions in this paper, which can
269 be used to constrain the spins of the compact objects.
270 Because of the DM perturbation Eq. (8), the saddle
271 point time t⋆ associated with a frequency f is shifted at first
272 order by

t⋆ ¼ t̄⋆ þ Δt⋆; with Δt⋆ ¼ − f̄ðt̄⋆Þ
f̄0ðt̄⋆Þ

Ψðt̄⋆Þ; ð19Þ

273274 while the phase Φ⋆ ¼ Φ̄⋆ þ ΔΦ⋆ is shifted by

ΔΦ⋆ ¼ 2πfΔt⋆ − 2π
Z

tc

t̄⋆
dtf̄Ψ: ð20Þ

275276 This gives a shift of the phase ΔψðfÞ of the Fourier-space
277 waveform,

ΔψðfÞ ¼ 2π
Z

tc

t̄⋆
dtf̄Ψ: ð21Þ

278279 Using Eq. (15), we can write this integral as

Δψ ¼ 2π

!
5

256π

"
3=8

!
πGM
c3

"−5=8 Z tc

t̄⋆
dtðtc − tÞ−3=8ΨðtÞ:

ð22Þ

280281 The constant term Ψ0 of the gravitational potential in
282 Eq. (9) gives the contribution,

Δψ0ðfÞ ¼
Ψ0

16

!
πGMf
c3

"−5=3
: ð23Þ

283284We can see that this term, which scales as f−5=3, is fully
285degenerate with the leading GW phase in Eq. (18).
286Moreover, for nonrelativistic DM clouds Ψ0 ≪ 1.
287Therefore, we would need to know the distribution of
288white dwarf masses (or more generally binary masses) with
289a very high accuracy to distinguish the effect of the
290contribution (23). Thus Ψ0 cannot be discriminated from
291a small shift of the binary massesm1 andm2, and we do not
292consider it any further.
293The time-dependent term of the gravitational potential in
294Eq. (9) gives the contribution,

ΔψoscðfÞ ¼ Ψosc2π

!
5

256π

"
3=8

!
πGMω

c3

"−5=8

× Re½eið5π=16þθ−ωtcÞγð5=8;−iyÞ&; ð24Þ

295296where γða; zÞ is the incomplete gamma function and

y ¼ ωðtc − t̄⋆Þ ¼
mϕ

m⋆
; m⋆ ¼ f

128π
5

!
πGMf
c3

"
5=3

:

ð25Þ

297298299For low scalar mass, mϕ ≪ m⋆, we obtain

mϕ ≪ m⋆∶ ΔψoscðfÞ ¼
Ψosc

16

!
πGMf
c3

"−5=3
cosðωtc − θÞ:

ð26Þ

300301Because of the bounds in Eq. (7), this phase shift is even
302smaller than for the constant potential contribution of
303Eq. (23), and it is again degenerate with the GW phase
304in Eq. (18). For high scalar masses, mϕ ≫ m⋆, we obtain

mϕ ≫ m⋆∶ ΔψoscðfÞ ¼ ΨoscΓð5=8Þ2π
!

5

256π

"
3=8

×
!
πGMω

c3

"−5=8
cosðωtc − θ − 5π=16Þ; ð27Þ

305306which is degenerate with the constant factorΦc in Eq. (17).
307Therefore, the DM phase shift is degenerate in both low and
308high scalar mass limits. This means that the contribution of
309the DM environment binary gravitational wave forms can
310only potentially be distinguished for scalar masses of the
311order of m⋆, which can span a few orders of magnitude
312depending on the frequency range of the GW interferom-
313eter. Notice that this typical mass m⋆ is much smaller than
314the signal’s frequency as long as the GWs do not probe the
315Schwarzschild radius of the system. This must of course be
316satisfied for our semiclassical description of the propaga-
317tion of the GWs to hold.
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C) Comparison with dynamical friction

In many cases (CDM, supersonic motion in fluids or SFDM), the drag force on a BH moving within a medium 
takes the form of the Chandrasekhar result:

318 The factor (24) depends on the chirp mass M, which at
319 the Newtonian level is degenerate with Ψ0 as seen in (23).
320 However, for nonrelativistic DM clouds Ψ0 ≪ 1, and this
321 shift can only lead to a small bias in the measurement of
322 M, as seen by the comparison with (18). Therefore, we can
323 neglect the impact of the shift (23) and the parameter Ψ0 in
324 the Fisher matrix analysis described in Sec. III below. For
325 jΨ0j < 0.1 the detection thresholds that we obtain for Ψosc
326 and the dark matter density ρ would be biased by less
327 than 10%.

328 C. Comparison with dynamical friction

329 If a binary system is embedded within a DM halo, its
330 GWs signal will be affected by other, more usual, effects, in
331 addition to the phase shift in Eq. (24) associated with the
332 specific oscillatory behavior of the Newtonian potential in
333 Eq. (3). These include the impact of the DM halo on the
334 orbital radius of the binary, due to gravitational force from
335 the enclosed DM mass, the matter accretion onto the
336 compact objects, and the dynamical friction. The rate of
337 matter accretion can depend on the details of the DMmodel
338 but the dynamical friction often takes the form of the usual
339 Chandrasekhar result [53],

mi
˙v⃗i ¼ −

4πG2m2
i ρ

v3i
Λv⃗i; ð28Þ

340341 where Λ is the Coulomb logarithm and the index i ¼ f1; 2g
342 labels the two components of the binary system. The
343 expression in Eq. (28) derived for collisionless media,
344 such as CDM, also applies to Fuzzy DM or scenarios with
345 non-negligible self-interactions in the supersonic regime,
346 although Λ depends on the model. Therefore, it is interest-
347 ing to compare the phase shift we derived in Eq. (24) with
348 the generic effect of the dynamical friction, Eq. (28), which
349 is expected to be also present in most cases. To keep the
350 analysis general and simple, we approximate Λ as a
351 constant, and in our numerical computations we will take
352 Λ ¼ 10. As described for instance in Ref. [50], the drag
353 force, Eq. (28), leads to a slow decay of the orbital radius a,
354 in addition to the shrinking due to the emission of GWs,
355 which reads

ȧdf ¼ −a
!

a
GM

"
3=2

8πG2ρΛ
m3

1 þm3
2

μ2
; ð29Þ

356357 where μ ¼ m1m2=M is the reduced mass. This in turn gives
358 rise to an additional drift of the GWs frequency,

ḟdf ¼ 12Gρ
Λðm3

1 þm3
2Þ

ν1=5M3
; ð30Þ

359360 and to a phase shift,

Δψdf ¼ −
75

38912

πG3Mρ
c6

!
πGMf
c3

"−16=3 Λðm3
1 þm3

2Þ
ν1=5M3

:

ð31Þ

361362Here, as in [50], we consider the effects due to DM as a
363linear perturbation to the GW emission and assumed that
364the contribution of Eq. (30) to the frequency drift is small as
365compared with the contribution of Eq. (12) due to the
366emission of GWs.

367III. DETECTION THRESHOLD

368A. Fisher matrix analysis

369We use a Fisher matrix analysis to investigate which DM
370densities can be probed by GW waveforms, through the
371impact of the oscillating Newtonian potential in Eq. (9) on
372the phase of Eq. (24). As usual [58,59], the Fisher matrix
373reads

Γij ¼ 4Re
Z

fmax

fmin

df
SnðfÞ

!
∂h̃
∂θi

"⋆!
∂h̃
∂θj

"
; ð32Þ

374375where SnðfÞ is the noise spectral density of the GW
376interferometer and fθig is the set of parameters that we
377wish to measure. In this paper we consider fθig ¼
378ftc;Φc; lnðm1Þ; lnðm2Þ;Ψoscg, as we discard the spins of
379the compact objects. The amplitude A0 would be an
380additional parameter; however, the Fisher matrix is
381block-diagonal as ΓA0;θi ¼ 0 and the amplitude A0 is com-
382pletely decorrelated from the other parameters fθig [58].
383Therefore, we do not consider the amplitude any further.
384From the Fisher matrix Γij we obtain the covariance matrix
385Σij ¼ ðΓ−1Þij, which gives the standard deviation on the
386various parameters as σi ¼ hðΔθiÞ2i1=2 ¼

ffiffiffiffiffiffi
Σii

p
. We obtain

387in this fashion the 1-sigma error bar on the amplitude of
388the DM oscillating potential Ψosc, or equivalently on the
389DM density ρ through Eq. (6). We perform the analysis for
390a fiducial ρ ¼ 0, i.e. assuming the binary is in vacuum.
391Then, we identify σρ as the detection threshold on the DM
392density ρ.
393The signal-to-noise ratio is given by

ðSNRÞ2 ¼ 4

Z
fmax

fmin

df
SnðfÞ

jh̃ðfÞj2: ð33Þ

394395Writing the GWform as h̃ðfÞ ¼ A0f−7=6eiψðfÞ at leading
396order, we obtain the standard expression,

Γij ¼
ðSNRÞ2

R fmax
fmin

df
SnðfÞ

f−7=3

Z
fmax

fmin

df
SnðfÞ

f−7=3
∂ψ
∂θi

∂ψ
∂θj

: ð34Þ

397398The derivatives are computed from Eqs. (17), (18), and
399(24), which we simplify as
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This gives a correction to the frequency drift and to the GW phase,

which is independent of the scalar mass:

318 The factor (24) depends on the chirp mass M, which at
319 the Newtonian level is degenerate with Ψ0 as seen in (23).
320 However, for nonrelativistic DM clouds Ψ0 ≪ 1, and this
321 shift can only lead to a small bias in the measurement of
322 M, as seen by the comparison with (18). Therefore, we can
323 neglect the impact of the shift (23) and the parameter Ψ0 in
324 the Fisher matrix analysis described in Sec. III below. For
325 jΨ0j < 0.1 the detection thresholds that we obtain for Ψosc
326 and the dark matter density ρ would be biased by less
327 than 10%.

328 C. Comparison with dynamical friction

329 If a binary system is embedded within a DM halo, its
330 GWs signal will be affected by other, more usual, effects, in
331 addition to the phase shift in Eq. (24) associated with the
332 specific oscillatory behavior of the Newtonian potential in
333 Eq. (3). These include the impact of the DM halo on the
334 orbital radius of the binary, due to gravitational force from
335 the enclosed DM mass, the matter accretion onto the
336 compact objects, and the dynamical friction. The rate of
337 matter accretion can depend on the details of the DMmodel
338 but the dynamical friction often takes the form of the usual
339 Chandrasekhar result [53],

mi
˙v⃗i ¼ −

4πG2m2
i ρ

v3i
Λv⃗i; ð28Þ

340341 where Λ is the Coulomb logarithm and the index i ¼ f1; 2g
342 labels the two components of the binary system. The
343 expression in Eq. (28) derived for collisionless media,
344 such as CDM, also applies to Fuzzy DM or scenarios with
345 non-negligible self-interactions in the supersonic regime,
346 although Λ depends on the model. Therefore, it is interest-
347 ing to compare the phase shift we derived in Eq. (24) with
348 the generic effect of the dynamical friction, Eq. (28), which
349 is expected to be also present in most cases. To keep the
350 analysis general and simple, we approximate Λ as a
351 constant, and in our numerical computations we will take
352 Λ ¼ 10. As described for instance in Ref. [50], the drag
353 force, Eq. (28), leads to a slow decay of the orbital radius a,
354 in addition to the shrinking due to the emission of GWs,
355 which reads

ȧdf ¼ −a
!

a
GM

"
3=2

8πG2ρΛ
m3

1 þm3
2

μ2
; ð29Þ

356357 where μ ¼ m1m2=M is the reduced mass. This in turn gives
358 rise to an additional drift of the GWs frequency,

ḟdf ¼ 12Gρ
Λðm3

1 þm3
2Þ

ν1=5M3
; ð30Þ

359360 and to a phase shift,

Δψdf ¼ −
75

38912

πG3Mρ
c6

!
πGMf
c3

"−16=3 Λðm3
1 þm3

2Þ
ν1=5M3

:

ð31Þ

361362Here, as in [50], we consider the effects due to DM as a
363linear perturbation to the GW emission and assumed that
364the contribution of Eq. (30) to the frequency drift is small as
365compared with the contribution of Eq. (12) due to the
366emission of GWs.

367III. DETECTION THRESHOLD

368A. Fisher matrix analysis

369We use a Fisher matrix analysis to investigate which DM
370densities can be probed by GW waveforms, through the
371impact of the oscillating Newtonian potential in Eq. (9) on
372the phase of Eq. (24). As usual [58,59], the Fisher matrix
373reads

Γij ¼ 4Re
Z

fmax

fmin

df
SnðfÞ

!
∂h̃
∂θi

"⋆!
∂h̃
∂θj

"
; ð32Þ

374375where SnðfÞ is the noise spectral density of the GW
376interferometer and fθig is the set of parameters that we
377wish to measure. In this paper we consider fθig ¼
378ftc;Φc; lnðm1Þ; lnðm2Þ;Ψoscg, as we discard the spins of
379the compact objects. The amplitude A0 would be an
380additional parameter; however, the Fisher matrix is
381block-diagonal as ΓA0;θi ¼ 0 and the amplitude A0 is com-
382pletely decorrelated from the other parameters fθig [58].
383Therefore, we do not consider the amplitude any further.
384From the Fisher matrix Γij we obtain the covariance matrix
385Σij ¼ ðΓ−1Þij, which gives the standard deviation on the
386various parameters as σi ¼ hðΔθiÞ2i1=2 ¼

ffiffiffiffiffiffi
Σii

p
. We obtain

387in this fashion the 1-sigma error bar on the amplitude of
388the DM oscillating potential Ψosc, or equivalently on the
389DM density ρ through Eq. (6). We perform the analysis for
390a fiducial ρ ¼ 0, i.e. assuming the binary is in vacuum.
391Then, we identify σρ as the detection threshold on the DM
392density ρ.
393The signal-to-noise ratio is given by

ðSNRÞ2 ¼ 4

Z
fmax

fmin

df
SnðfÞ

jh̃ðfÞj2: ð33Þ

394395Writing the GWform as h̃ðfÞ ¼ A0f−7=6eiψðfÞ at leading
396order, we obtain the standard expression,

Γij ¼
ðSNRÞ2

R fmax
fmin

df
SnðfÞ

f−7=3

Z
fmax

fmin

df
SnðfÞ

f−7=3
∂ψ
∂θi

∂ψ
∂θj

: ð34Þ

397398The derivatives are computed from Eqs. (17), (18), and
399(24), which we simplify as
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D) Fisher matrix analysis

318 The factor (24) depends on the chirp mass M, which at
319 the Newtonian level is degenerate with Ψ0 as seen in (23).
320 However, for nonrelativistic DM clouds Ψ0 ≪ 1, and this
321 shift can only lead to a small bias in the measurement of
322 M, as seen by the comparison with (18). Therefore, we can
323 neglect the impact of the shift (23) and the parameter Ψ0 in
324 the Fisher matrix analysis described in Sec. III below. For
325 jΨ0j < 0.1 the detection thresholds that we obtain for Ψosc
326 and the dark matter density ρ would be biased by less
327 than 10%.

328 C. Comparison with dynamical friction

329 If a binary system is embedded within a DM halo, its
330 GWs signal will be affected by other, more usual, effects, in
331 addition to the phase shift in Eq. (24) associated with the
332 specific oscillatory behavior of the Newtonian potential in
333 Eq. (3). These include the impact of the DM halo on the
334 orbital radius of the binary, due to gravitational force from
335 the enclosed DM mass, the matter accretion onto the
336 compact objects, and the dynamical friction. The rate of
337 matter accretion can depend on the details of the DMmodel
338 but the dynamical friction often takes the form of the usual
339 Chandrasekhar result [53],

mi
˙v⃗i ¼ −

4πG2m2
i ρ

v3i
Λv⃗i; ð28Þ

340341 where Λ is the Coulomb logarithm and the index i ¼ f1; 2g
342 labels the two components of the binary system. The
343 expression in Eq. (28) derived for collisionless media,
344 such as CDM, also applies to Fuzzy DM or scenarios with
345 non-negligible self-interactions in the supersonic regime,
346 although Λ depends on the model. Therefore, it is interest-
347 ing to compare the phase shift we derived in Eq. (24) with
348 the generic effect of the dynamical friction, Eq. (28), which
349 is expected to be also present in most cases. To keep the
350 analysis general and simple, we approximate Λ as a
351 constant, and in our numerical computations we will take
352 Λ ¼ 10. As described for instance in Ref. [50], the drag
353 force, Eq. (28), leads to a slow decay of the orbital radius a,
354 in addition to the shrinking due to the emission of GWs,
355 which reads

ȧdf ¼ −a
!

a
GM

"
3=2

8πG2ρΛ
m3

1 þm3
2

μ2
; ð29Þ

356357 where μ ¼ m1m2=M is the reduced mass. This in turn gives
358 rise to an additional drift of the GWs frequency,

ḟdf ¼ 12Gρ
Λðm3

1 þm3
2Þ

ν1=5M3
; ð30Þ

359360 and to a phase shift,

Δψdf ¼ −
75

38912

πG3Mρ
c6

!
πGMf
c3

"−16=3 Λðm3
1 þm3

2Þ
ν1=5M3

:

ð31Þ

361362Here, as in [50], we consider the effects due to DM as a
363linear perturbation to the GW emission and assumed that
364the contribution of Eq. (30) to the frequency drift is small as
365compared with the contribution of Eq. (12) due to the
366emission of GWs.

367III. DETECTION THRESHOLD

368A. Fisher matrix analysis

369We use a Fisher matrix analysis to investigate which DM
370densities can be probed by GW waveforms, through the
371impact of the oscillating Newtonian potential in Eq. (9) on
372the phase of Eq. (24). As usual [58,59], the Fisher matrix
373reads

Γij ¼ 4Re
Z

fmax

fmin

df
SnðfÞ

!
∂h̃
∂θi

"⋆!
∂h̃
∂θj

"
; ð32Þ

374375where SnðfÞ is the noise spectral density of the GW
376interferometer and fθig is the set of parameters that we
377wish to measure. In this paper we consider fθig ¼
378ftc;Φc; lnðm1Þ; lnðm2Þ;Ψoscg, as we discard the spins of
379the compact objects. The amplitude A0 would be an
380additional parameter; however, the Fisher matrix is
381block-diagonal as ΓA0;θi ¼ 0 and the amplitude A0 is com-
382pletely decorrelated from the other parameters fθig [58].
383Therefore, we do not consider the amplitude any further.
384From the Fisher matrix Γij we obtain the covariance matrix
385Σij ¼ ðΓ−1Þij, which gives the standard deviation on the
386various parameters as σi ¼ hðΔθiÞ2i1=2 ¼

ffiffiffiffiffiffi
Σii

p
. We obtain

387in this fashion the 1-sigma error bar on the amplitude of
388the DM oscillating potential Ψosc, or equivalently on the
389DM density ρ through Eq. (6). We perform the analysis for
390a fiducial ρ ¼ 0, i.e. assuming the binary is in vacuum.
391Then, we identify σρ as the detection threshold on the DM
392density ρ.
393The signal-to-noise ratio is given by

ðSNRÞ2 ¼ 4

Z
fmax

fmin

df
SnðfÞ

jh̃ðfÞj2: ð33Þ

394395Writing the GWform as h̃ðfÞ ¼ A0f−7=6eiψðfÞ at leading
396order, we obtain the standard expression,

Γij ¼
ðSNRÞ2

R fmax
fmin

df
SnðfÞ

f−7=3

Z
fmax

fmin

df
SnðfÞ

f−7=3
∂ψ
∂θi

∂ψ
∂θj

: ð34Þ

397398The derivatives are computed from Eqs. (17), (18), and
399(24), which we simplify as
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318 The factor (24) depends on the chirp mass M, which at
319 the Newtonian level is degenerate with Ψ0 as seen in (23).
320 However, for nonrelativistic DM clouds Ψ0 ≪ 1, and this
321 shift can only lead to a small bias in the measurement of
322 M, as seen by the comparison with (18). Therefore, we can
323 neglect the impact of the shift (23) and the parameter Ψ0 in
324 the Fisher matrix analysis described in Sec. III below. For
325 jΨ0j < 0.1 the detection thresholds that we obtain for Ψosc
326 and the dark matter density ρ would be biased by less
327 than 10%.

328 C. Comparison with dynamical friction

329 If a binary system is embedded within a DM halo, its
330 GWs signal will be affected by other, more usual, effects, in
331 addition to the phase shift in Eq. (24) associated with the
332 specific oscillatory behavior of the Newtonian potential in
333 Eq. (3). These include the impact of the DM halo on the
334 orbital radius of the binary, due to gravitational force from
335 the enclosed DM mass, the matter accretion onto the
336 compact objects, and the dynamical friction. The rate of
337 matter accretion can depend on the details of the DMmodel
338 but the dynamical friction often takes the form of the usual
339 Chandrasekhar result [53],

mi
˙v⃗i ¼ −

4πG2m2
i ρ

v3i
Λv⃗i; ð28Þ

340341 where Λ is the Coulomb logarithm and the index i ¼ f1; 2g
342 labels the two components of the binary system. The
343 expression in Eq. (28) derived for collisionless media,
344 such as CDM, also applies to Fuzzy DM or scenarios with
345 non-negligible self-interactions in the supersonic regime,
346 although Λ depends on the model. Therefore, it is interest-
347 ing to compare the phase shift we derived in Eq. (24) with
348 the generic effect of the dynamical friction, Eq. (28), which
349 is expected to be also present in most cases. To keep the
350 analysis general and simple, we approximate Λ as a
351 constant, and in our numerical computations we will take
352 Λ ¼ 10. As described for instance in Ref. [50], the drag
353 force, Eq. (28), leads to a slow decay of the orbital radius a,
354 in addition to the shrinking due to the emission of GWs,
355 which reads

ȧdf ¼ −a
!

a
GM

"
3=2

8πG2ρΛ
m3

1 þm3
2

μ2
; ð29Þ

356357 where μ ¼ m1m2=M is the reduced mass. This in turn gives
358 rise to an additional drift of the GWs frequency,

ḟdf ¼ 12Gρ
Λðm3

1 þm3
2Þ

ν1=5M3
; ð30Þ

359360 and to a phase shift,

Δψdf ¼ −
75

38912

πG3Mρ
c6

!
πGMf
c3

"−16=3 Λðm3
1 þm3

2Þ
ν1=5M3

:

ð31Þ

361362Here, as in [50], we consider the effects due to DM as a
363linear perturbation to the GW emission and assumed that
364the contribution of Eq. (30) to the frequency drift is small as
365compared with the contribution of Eq. (12) due to the
366emission of GWs.

367III. DETECTION THRESHOLD

368A. Fisher matrix analysis

369We use a Fisher matrix analysis to investigate which DM
370densities can be probed by GW waveforms, through the
371impact of the oscillating Newtonian potential in Eq. (9) on
372the phase of Eq. (24). As usual [58,59], the Fisher matrix
373reads

Γij ¼ 4Re
Z

fmax

fmin

df
SnðfÞ

!
∂h̃
∂θi

"⋆!
∂h̃
∂θj

"
; ð32Þ

374375where SnðfÞ is the noise spectral density of the GW
376interferometer and fθig is the set of parameters that we
377wish to measure. In this paper we consider fθig ¼
378ftc;Φc; lnðm1Þ; lnðm2Þ;Ψoscg, as we discard the spins of
379the compact objects. The amplitude A0 would be an
380additional parameter; however, the Fisher matrix is
381block-diagonal as ΓA0;θi ¼ 0 and the amplitude A0 is com-
382pletely decorrelated from the other parameters fθig [58].
383Therefore, we do not consider the amplitude any further.
384From the Fisher matrix Γij we obtain the covariance matrix
385Σij ¼ ðΓ−1Þij, which gives the standard deviation on the
386various parameters as σi ¼ hðΔθiÞ2i1=2 ¼

ffiffiffiffiffiffi
Σii

p
. We obtain

387in this fashion the 1-sigma error bar on the amplitude of
388the DM oscillating potential Ψosc, or equivalently on the
389DM density ρ through Eq. (6). We perform the analysis for
390a fiducial ρ ¼ 0, i.e. assuming the binary is in vacuum.
391Then, we identify σρ as the detection threshold on the DM
392density ρ.
393The signal-to-noise ratio is given by

ðSNRÞ2 ¼ 4

Z
fmax

fmin

df
SnðfÞ

jh̃ðfÞj2: ð33Þ

394395Writing the GWform as h̃ðfÞ ¼ A0f−7=6eiψðfÞ at leading
396order, we obtain the standard expression,

Γij ¼
ðSNRÞ2

R fmax
fmin

df
SnðfÞ

f−7=3

Z
fmax

fmin

df
SnðfÞ

f−7=3
∂ψ
∂θi

∂ψ
∂θj

: ð34Þ

397398The derivatives are computed from Eqs. (17), (18), and
399(24), which we simplify as

DETECTING DARK MATTER OSCILLATIONS WITH … PHYS. REV. D XX, 000000 (XXXX)

5

318 The factor (24) depends on the chirp mass M, which at
319 the Newtonian level is degenerate with Ψ0 as seen in (23).
320 However, for nonrelativistic DM clouds Ψ0 ≪ 1, and this
321 shift can only lead to a small bias in the measurement of
322 M, as seen by the comparison with (18). Therefore, we can
323 neglect the impact of the shift (23) and the parameter Ψ0 in
324 the Fisher matrix analysis described in Sec. III below. For
325 jΨ0j < 0.1 the detection thresholds that we obtain for Ψosc
326 and the dark matter density ρ would be biased by less
327 than 10%.

328 C. Comparison with dynamical friction

329 If a binary system is embedded within a DM halo, its
330 GWs signal will be affected by other, more usual, effects, in
331 addition to the phase shift in Eq. (24) associated with the
332 specific oscillatory behavior of the Newtonian potential in
333 Eq. (3). These include the impact of the DM halo on the
334 orbital radius of the binary, due to gravitational force from
335 the enclosed DM mass, the matter accretion onto the
336 compact objects, and the dynamical friction. The rate of
337 matter accretion can depend on the details of the DMmodel
338 but the dynamical friction often takes the form of the usual
339 Chandrasekhar result [53],

mi
˙v⃗i ¼ −

4πG2m2
i ρ

v3i
Λv⃗i; ð28Þ

340341 where Λ is the Coulomb logarithm and the index i ¼ f1; 2g
342 labels the two components of the binary system. The
343 expression in Eq. (28) derived for collisionless media,
344 such as CDM, also applies to Fuzzy DM or scenarios with
345 non-negligible self-interactions in the supersonic regime,
346 although Λ depends on the model. Therefore, it is interest-
347 ing to compare the phase shift we derived in Eq. (24) with
348 the generic effect of the dynamical friction, Eq. (28), which
349 is expected to be also present in most cases. To keep the
350 analysis general and simple, we approximate Λ as a
351 constant, and in our numerical computations we will take
352 Λ ¼ 10. As described for instance in Ref. [50], the drag
353 force, Eq. (28), leads to a slow decay of the orbital radius a,
354 in addition to the shrinking due to the emission of GWs,
355 which reads

ȧdf ¼ −a
!

a
GM

"
3=2

8πG2ρΛ
m3

1 þm3
2

μ2
; ð29Þ

356357 where μ ¼ m1m2=M is the reduced mass. This in turn gives
358 rise to an additional drift of the GWs frequency,

ḟdf ¼ 12Gρ
Λðm3

1 þm3
2Þ

ν1=5M3
; ð30Þ

359360 and to a phase shift,

Δψdf ¼ −
75

38912

πG3Mρ
c6

!
πGMf
c3

"−16=3 Λðm3
1 þm3

2Þ
ν1=5M3

:

ð31Þ

361362Here, as in [50], we consider the effects due to DM as a
363linear perturbation to the GW emission and assumed that
364the contribution of Eq. (30) to the frequency drift is small as
365compared with the contribution of Eq. (12) due to the
366emission of GWs.

367III. DETECTION THRESHOLD

368A. Fisher matrix analysis

369We use a Fisher matrix analysis to investigate which DM
370densities can be probed by GW waveforms, through the
371impact of the oscillating Newtonian potential in Eq. (9) on
372the phase of Eq. (24). As usual [58,59], the Fisher matrix
373reads

Γij ¼ 4Re
Z

fmax

fmin

df
SnðfÞ

!
∂h̃
∂θi

"⋆!
∂h̃
∂θj

"
; ð32Þ

374375where SnðfÞ is the noise spectral density of the GW
376interferometer and fθig is the set of parameters that we
377wish to measure. In this paper we consider fθig ¼
378ftc;Φc; lnðm1Þ; lnðm2Þ;Ψoscg, as we discard the spins of
379the compact objects. The amplitude A0 would be an
380additional parameter; however, the Fisher matrix is
381block-diagonal as ΓA0;θi ¼ 0 and the amplitude A0 is com-
382pletely decorrelated from the other parameters fθig [58].
383Therefore, we do not consider the amplitude any further.
384From the Fisher matrix Γij we obtain the covariance matrix
385Σij ¼ ðΓ−1Þij, which gives the standard deviation on the
386various parameters as σi ¼ hðΔθiÞ2i1=2 ¼

ffiffiffiffiffiffi
Σii

p
. We obtain

387in this fashion the 1-sigma error bar on the amplitude of
388the DM oscillating potential Ψosc, or equivalently on the
389DM density ρ through Eq. (6). We perform the analysis for
390a fiducial ρ ¼ 0, i.e. assuming the binary is in vacuum.
391Then, we identify σρ as the detection threshold on the DM
392density ρ.
393The signal-to-noise ratio is given by

ðSNRÞ2 ¼ 4

Z
fmax

fmin

df
SnðfÞ

jh̃ðfÞj2: ð33Þ

394395Writing the GWform as h̃ðfÞ ¼ A0f−7=6eiψðfÞ at leading
396order, we obtain the standard expression,

Γij ¼
ðSNRÞ2

R fmax
fmin

df
SnðfÞ

f−7=3

Z
fmax

fmin

df
SnðfÞ

f−7=3
∂ψ
∂θi

∂ψ
∂θj

: ð34Þ

397398The derivatives are computed from Eqs. (17), (18), and
399(24), which we simplify as
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!
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256π

"
3=8
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πGM2mϕ

c3

"−5=8

×
####γ
!
5

8
;−i

mϕ

m⋆ðfÞ
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400401 where we have discarded the random phase factor and
402 directly compute the modulus of the term in the real part.
403 This provides the order of magnitude of the phase shift
404 associated with the DM environment, through the impact of
405 the oscillating gravitational potential. As we take Ψosc ¼ 0
406 as the fiducial case, the derivatives in Eq. (34) with respect
407 to ftc;Φc; lnðm1Þ; lnðm2Þg arise from the zeroth-order
408 terms, Eqs. (17) and (18), whereas the derivative with
409 respect to Ψosc is given by (35).
410 To compare with the impact of dynamical friction,
411 Eq. (31), we also perform a separate Fisher analysis
412 where we only include the phase shift in Eq. (31) for
413 the impact of DM. Then we consider the parameters
414 fθig ¼ ftc;Φc; lnðm1Þ; lnðm2Þ; ρg, and we directly obtain
415 the detection threshold σρ on the DM density ρ, which does
416 not depend on the particle mass mϕ.

417 B. LISA

418 We now consider various binary systems that should be
419 observed by the LISA interferometer: massive binary black
420 holes (MBBH), intermediary binary black holes (IBBH),
421 intermediate mass ratio inspirals (IMRI), extreme mass
422 ratio inspirals (EMRI), and white dwarfs binaries (WD).
423 We give in Table I the masses, SNR, luminosity distance dL
424 and expected number of detections over four years of the
425 typical events that we use for the numerical computations.
426 The predictions of the numbers of events involving massive
427 BHs are very uncertain, as shown by the range of the
428 estimates given inTable I, obtained from [60–63]. In contrast,
429 LISA is guaranteed to observed many WD binaries
430 [42,64,65]. Note that the detection thresholds obtained in
431 Figs. 1 and 2 are for a single event and the estimates for the
432 number of detections shown in Tables I and II are only given
433 as an indication of the likelihood of such events.
434 We show in the upper panel in Fig. 1 our results for the
435 detection threshold on the oscillating DM gravitational
436 potentialΨosc, for these events. The vertical blue dotted line

437is the upper boundary, Eq. (10), for the MBBH case.
438For other events this upper boundary is located to the right of
439the DM particle mass range shown in the picture. As
440explained in Sec. II B, the phase shift of Eq. (24) due to
441the DM oscillating gravitational potential is degenerate at
442low and high masses with the standard result. Thus, the
443amplitudeΨosc is poorly constrained at low and high masses
444and the best constraints are obtained formϕ ∼ 10−22 eV. We
445do not consider masses below 10−23 eV because they cannot
446constitute a large fraction of the DM (the de Broglie wave-
447length would be greater than galactic cores). In agreement
448withEq. (25),MBBHand IBBHevents,which have a greater
449chirp mass M, probe somewhat higher scalar masses than
450EMRI and IMRI events. White dwarfs have smaller mass
451than these massive BHs. This increases the phase shift (35)
452and improves the detection threshold, in agreement with our
453numerical result shown in Fig. 1.
454We show in the lower panel in Fig. 1 our results for the
455detection threshold on the DM density ρ. From Eq. (6) we
456have σρ ∝ m2σΨosc

. This leads to the very fast growth with
457mϕ of the detection threshold σρ. In addition to these
458curves, the horizontal lines show the detection thresholds
459associated with the dynamical friction, Eq. (31), which are

F1:1FIG. 1. Detection thresholds on the amplitude Ψosc of the
F1:2oscillating DM gravitational potential (upper panel) and on the
F1:3DM density ρ (lower panel), as a function of the scalar mass mϕ.
F1:4We show the results obtained for various events with the
F1:5LISA interferometer. In the lower panel, the shaded blue area
F1:6is the exclusion region associated with the upper bound (37)
F1:7with Mcloud ¼ 107M⊙.

TABLE I. Masses, SNR (signal-to-noise ratio), luminosity
distance and expected number of detections for the events that
we consider for LISA (for a four-year observational time).

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

MBBH 106 5 × 105 3 × 104 103 0.4–600
IBBH 104 5 × 103 708 103 0.4–600
IMRI 104 10 64 103 8–80
EMRI 105 10 22 103 20–400
WD 0.4 0.3 7 5 × 10−3 104
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400401 where we have discarded the random phase factor and
402 directly compute the modulus of the term in the real part.
403 This provides the order of magnitude of the phase shift
404 associated with the DM environment, through the impact of
405 the oscillating gravitational potential. As we take Ψosc ¼ 0
406 as the fiducial case, the derivatives in Eq. (34) with respect
407 to ftc;Φc; lnðm1Þ; lnðm2Þg arise from the zeroth-order
408 terms, Eqs. (17) and (18), whereas the derivative with
409 respect to Ψosc is given by (35).
410 To compare with the impact of dynamical friction,
411 Eq. (31), we also perform a separate Fisher analysis
412 where we only include the phase shift in Eq. (31) for
413 the impact of DM. Then we consider the parameters
414 fθig ¼ ftc;Φc; lnðm1Þ; lnðm2Þ; ρg, and we directly obtain
415 the detection threshold σρ on the DM density ρ, which does
416 not depend on the particle mass mϕ.

417 B. LISA

418 We now consider various binary systems that should be
419 observed by the LISA interferometer: massive binary black
420 holes (MBBH), intermediary binary black holes (IBBH),
421 intermediate mass ratio inspirals (IMRI), extreme mass
422 ratio inspirals (EMRI), and white dwarfs binaries (WD).
423 We give in Table I the masses, SNR, luminosity distance dL
424 and expected number of detections over four years of the
425 typical events that we use for the numerical computations.
426 The predictions of the numbers of events involving massive
427 BHs are very uncertain, as shown by the range of the
428 estimates given inTable I, obtained from [60–63]. In contrast,
429 LISA is guaranteed to observed many WD binaries
430 [42,64,65]. Note that the detection thresholds obtained in
431 Figs. 1 and 2 are for a single event and the estimates for the
432 number of detections shown in Tables I and II are only given
433 as an indication of the likelihood of such events.
434 We show in the upper panel in Fig. 1 our results for the
435 detection threshold on the oscillating DM gravitational
436 potentialΨosc, for these events. The vertical blue dotted line

437is the upper boundary, Eq. (10), for the MBBH case.
438For other events this upper boundary is located to the right of
439the DM particle mass range shown in the picture. As
440explained in Sec. II B, the phase shift of Eq. (24) due to
441the DM oscillating gravitational potential is degenerate at
442low and high masses with the standard result. Thus, the
443amplitudeΨosc is poorly constrained at low and high masses
444and the best constraints are obtained formϕ ∼ 10−22 eV. We
445do not consider masses below 10−23 eV because they cannot
446constitute a large fraction of the DM (the de Broglie wave-
447length would be greater than galactic cores). In agreement
448withEq. (25),MBBHand IBBHevents,which have a greater
449chirp mass M, probe somewhat higher scalar masses than
450EMRI and IMRI events. White dwarfs have smaller mass
451than these massive BHs. This increases the phase shift (35)
452and improves the detection threshold, in agreement with our
453numerical result shown in Fig. 1.
454We show in the lower panel in Fig. 1 our results for the
455detection threshold on the DM density ρ. From Eq. (6) we
456have σρ ∝ m2σΨosc

. This leads to the very fast growth with
457mϕ of the detection threshold σρ. In addition to these
458curves, the horizontal lines show the detection thresholds
459associated with the dynamical friction, Eq. (31), which are

F1:1FIG. 1. Detection thresholds on the amplitude Ψosc of the
F1:2oscillating DM gravitational potential (upper panel) and on the
F1:3DM density ρ (lower panel), as a function of the scalar mass mϕ.
F1:4We show the results obtained for various events with the
F1:5LISA interferometer. In the lower panel, the shaded blue area
F1:6is the exclusion region associated with the upper bound (37)
F1:7with Mcloud ¼ 107M⊙.

TABLE I. Masses, SNR (signal-to-noise ratio), luminosity
distance and expected number of detections for the events that
we consider for LISA (for a four-year observational time).

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

MBBH 106 5 × 105 3 × 104 103 0.4–600
IBBH 104 5 × 103 708 103 0.4–600
IMRI 104 10 64 103 8–80
EMRI 105 10 22 103 20–400
WD 0.4 0.3 7 5 × 10−3 104
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Detection thresholds for 1 event (comparison of various binary systems)
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400401 where we have discarded the random phase factor and
402 directly compute the modulus of the term in the real part.
403 This provides the order of magnitude of the phase shift
404 associated with the DM environment, through the impact of
405 the oscillating gravitational potential. As we take Ψosc ¼ 0
406 as the fiducial case, the derivatives in Eq. (34) with respect
407 to ftc;Φc; lnðm1Þ; lnðm2Þg arise from the zeroth-order
408 terms, Eqs. (17) and (18), whereas the derivative with
409 respect to Ψosc is given by (35).
410 To compare with the impact of dynamical friction,
411 Eq. (31), we also perform a separate Fisher analysis
412 where we only include the phase shift in Eq. (31) for
413 the impact of DM. Then we consider the parameters
414 fθig ¼ ftc;Φc; lnðm1Þ; lnðm2Þ; ρg, and we directly obtain
415 the detection threshold σρ on the DM density ρ, which does
416 not depend on the particle mass mϕ.

417 B. LISA

418 We now consider various binary systems that should be
419 observed by the LISA interferometer: massive binary black
420 holes (MBBH), intermediary binary black holes (IBBH),
421 intermediate mass ratio inspirals (IMRI), extreme mass
422 ratio inspirals (EMRI), and white dwarfs binaries (WD).
423 We give in Table I the masses, SNR, luminosity distance dL
424 and expected number of detections over four years of the
425 typical events that we use for the numerical computations.
426 The predictions of the numbers of events involving massive
427 BHs are very uncertain, as shown by the range of the
428 estimates given inTable I, obtained from [60–63]. In contrast,
429 LISA is guaranteed to observed many WD binaries
430 [42,64,65]. Note that the detection thresholds obtained in
431 Figs. 1 and 2 are for a single event and the estimates for the
432 number of detections shown in Tables I and II are only given
433 as an indication of the likelihood of such events.
434 We show in the upper panel in Fig. 1 our results for the
435 detection threshold on the oscillating DM gravitational
436 potentialΨosc, for these events. The vertical blue dotted line

437is the upper boundary, Eq. (10), for the MBBH case.
438For other events this upper boundary is located to the right of
439the DM particle mass range shown in the picture. As
440explained in Sec. II B, the phase shift of Eq. (24) due to
441the DM oscillating gravitational potential is degenerate at
442low and high masses with the standard result. Thus, the
443amplitudeΨosc is poorly constrained at low and high masses
444and the best constraints are obtained formϕ ∼ 10−22 eV. We
445do not consider masses below 10−23 eV because they cannot
446constitute a large fraction of the DM (the de Broglie wave-
447length would be greater than galactic cores). In agreement
448withEq. (25),MBBHand IBBHevents,which have a greater
449chirp mass M, probe somewhat higher scalar masses than
450EMRI and IMRI events. White dwarfs have smaller mass
451than these massive BHs. This increases the phase shift (35)
452and improves the detection threshold, in agreement with our
453numerical result shown in Fig. 1.
454We show in the lower panel in Fig. 1 our results for the
455detection threshold on the DM density ρ. From Eq. (6) we
456have σρ ∝ m2σΨosc

. This leads to the very fast growth with
457mϕ of the detection threshold σρ. In addition to these
458curves, the horizontal lines show the detection thresholds
459associated with the dynamical friction, Eq. (31), which are

F1:1FIG. 1. Detection thresholds on the amplitude Ψosc of the
F1:2oscillating DM gravitational potential (upper panel) and on the
F1:3DM density ρ (lower panel), as a function of the scalar mass mϕ.
F1:4We show the results obtained for various events with the
F1:5LISA interferometer. In the lower panel, the shaded blue area
F1:6is the exclusion region associated with the upper bound (37)
F1:7with Mcloud ¼ 107M⊙.

TABLE I. Masses, SNR (signal-to-noise ratio), luminosity
distance and expected number of detections for the events that
we consider for LISA (for a four-year observational time).

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

MBBH 106 5 × 105 3 × 104 103 0.4–600
IBBH 104 5 × 103 708 103 0.4–600
IMRI 104 10 64 103 8–80
EMRI 105 10 22 103 20–400
WD 0.4 0.3 7 5 × 10−3 104
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400401 where we have discarded the random phase factor and
402 directly compute the modulus of the term in the real part.
403 This provides the order of magnitude of the phase shift
404 associated with the DM environment, through the impact of
405 the oscillating gravitational potential. As we take Ψosc ¼ 0
406 as the fiducial case, the derivatives in Eq. (34) with respect
407 to ftc;Φc; lnðm1Þ; lnðm2Þg arise from the zeroth-order
408 terms, Eqs. (17) and (18), whereas the derivative with
409 respect to Ψosc is given by (35).
410 To compare with the impact of dynamical friction,
411 Eq. (31), we also perform a separate Fisher analysis
412 where we only include the phase shift in Eq. (31) for
413 the impact of DM. Then we consider the parameters
414 fθig ¼ ftc;Φc; lnðm1Þ; lnðm2Þ; ρg, and we directly obtain
415 the detection threshold σρ on the DM density ρ, which does
416 not depend on the particle mass mϕ.

417 B. LISA

418 We now consider various binary systems that should be
419 observed by the LISA interferometer: massive binary black
420 holes (MBBH), intermediary binary black holes (IBBH),
421 intermediate mass ratio inspirals (IMRI), extreme mass
422 ratio inspirals (EMRI), and white dwarfs binaries (WD).
423 We give in Table I the masses, SNR, luminosity distance dL
424 and expected number of detections over four years of the
425 typical events that we use for the numerical computations.
426 The predictions of the numbers of events involving massive
427 BHs are very uncertain, as shown by the range of the
428 estimates given inTable I, obtained from [60–63]. In contrast,
429 LISA is guaranteed to observed many WD binaries
430 [42,64,65]. Note that the detection thresholds obtained in
431 Figs. 1 and 2 are for a single event and the estimates for the
432 number of detections shown in Tables I and II are only given
433 as an indication of the likelihood of such events.
434 We show in the upper panel in Fig. 1 our results for the
435 detection threshold on the oscillating DM gravitational
436 potentialΨosc, for these events. The vertical blue dotted line

437is the upper boundary, Eq. (10), for the MBBH case.
438For other events this upper boundary is located to the right of
439the DM particle mass range shown in the picture. As
440explained in Sec. II B, the phase shift of Eq. (24) due to
441the DM oscillating gravitational potential is degenerate at
442low and high masses with the standard result. Thus, the
443amplitudeΨosc is poorly constrained at low and high masses
444and the best constraints are obtained formϕ ∼ 10−22 eV. We
445do not consider masses below 10−23 eV because they cannot
446constitute a large fraction of the DM (the de Broglie wave-
447length would be greater than galactic cores). In agreement
448withEq. (25),MBBHand IBBHevents,which have a greater
449chirp mass M, probe somewhat higher scalar masses than
450EMRI and IMRI events. White dwarfs have smaller mass
451than these massive BHs. This increases the phase shift (35)
452and improves the detection threshold, in agreement with our
453numerical result shown in Fig. 1.
454We show in the lower panel in Fig. 1 our results for the
455detection threshold on the DM density ρ. From Eq. (6) we
456have σρ ∝ m2σΨosc

. This leads to the very fast growth with
457mϕ of the detection threshold σρ. In addition to these
458curves, the horizontal lines show the detection thresholds
459associated with the dynamical friction, Eq. (31), which are

F1:1FIG. 1. Detection thresholds on the amplitude Ψosc of the
F1:2oscillating DM gravitational potential (upper panel) and on the
F1:3DM density ρ (lower panel), as a function of the scalar mass mϕ.
F1:4We show the results obtained for various events with the
F1:5LISA interferometer. In the lower panel, the shaded blue area
F1:6is the exclusion region associated with the upper bound (37)
F1:7with Mcloud ¼ 107M⊙.

TABLE I. Masses, SNR (signal-to-noise ratio), luminosity
distance and expected number of detections for the events that
we consider for LISA (for a four-year observational time).

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

MBBH 106 5 × 105 3 × 104 103 0.4–600
IBBH 104 5 × 103 708 103 0.4–600
IMRI 104 10 64 103 8–80
EMRI 105 10 22 103 20–400
WD 0.4 0.3 7 5 × 10−3 104
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WD have smaller mass, which improves the detection threshold.

178 equations we find the local Newtonian potential to be [52]

ΨNðx⃗; tÞ ¼ Ψ0ðx⃗Þ þ Ψoscðx⃗Þ cos½ωtþ 2αðx⃗Þ&; ð3Þ

179180 with

ω ¼ 2mϕ: ð4Þ

181182 The leading component in Eq. (3), Ψ0, which evolves on
183 astrophysical timescales, is given by the usual Poisson
184 equation,

∇2Ψ0 ¼ 4πGρ; ð5Þ

185186 where ρ is the DM density averaged over the fast oscil-
187 lations at frequency ω, whereas the subleading oscillating
188 component Ψosc is given by

Ψosc ¼ π
Gρ
m2

ϕ

: ð6Þ

189190 The de Broglie wavelength λdB of the DM particles is
191 λdB ¼ 2π=ðmϕvÞ, with v the typical virial velocity of the
192 DM cloud. The effective quantum pressure smoothes out
193 inhomogeneities on scales smaller than λdB; therefore
194 typical wave numbers k of the DM density field verify
195 k < 2π=λdB (k can be much smaller if there are repulsive
196 self-interactions that contribute to an additional pressure, or
197 more generally as in CDM scenarios when the size of the
198 cloud is related to its formation process rather than to mϕ).
199 Then, comparing Eqs. (5) and (6) we have

k <
2π
λdB

∶ k < mϕv;
Ψosc

Ψ0

∼
k2

m2
ϕ

< v2 ≪ 1; ð7Þ

200201 for nonrelativistic DM clouds.
202 As pointed out in Ref. [52] in the context of pulsar timing
203 arrays (PTAs), the oscillating component Ψosc will lead,
204 through Eq. (2), to an oscillating frequency drift of the GW,
205 which could be detected, whereas the constant term Ψ0 is
206 degenerate with binary parameters. We shall find below that
207 a detection requires a DM density that is much larger than
208 the solar neighborhood estimate. Therefore, we can assume
209 the gravitational potential at emission to dominate in
210 Eq. (2), and we write the observed frequency of the GW
211 signal as

f ¼ f̄ þ Δf ¼ f̄ð1þ ΨÞ; ð8Þ

212213 where f̄ is the unperturbed frequency, that is, for a binary
214 system in vacuum, and Δf is the frequency shift due to the
215 binary DM environment, with

Ψ ¼ Ψ0 þΨosc cosðωt − θÞ; ð9Þ

216217where θ ¼ −2αðx⃗eÞ − π and we redefinedΨ0 with a change
218of sign. The optical approximation (2) is valid for

f ≳ ω; whence mϕ <
!
fmin

1 Hz

"
3 × 10−16 eV; ð10Þ

219220where fmin is the minimum frequency of the GW interfer-
221ometer. Compared with the contributions from Eq. (2), the
222integrated Sachs-Wolfe effect is suppressed by a factor
223k=ω < v ≪ 1 and can be neglected for nonrelativistic
224clouds.
225Throughout this paper, we work at linear order in the DM
226density and gravitational potential. Our analysis is not
227restricted to the clouds associated with solitons in Fuzzy
228DM scenarios (i.e., stable equilibria governed by the
229balance between gravity and quantum pressure). It also
230applies to more general cases, such as solitons governed by
231the balance between gravity and the effective pressure due
232to repulsive self-interactions, or virialized halos supported
233by their velocity dispersion (as for CDM).

234B. Gravitational wave phase shift

235The GW signal from the binary systems we consider
236takes the form hðtÞ ¼ AðtÞ cos½ΦðtÞ&, where the phase ΦðtÞ
237and the time t are related to the frequency f and the
238frequency drift ḟ by

Φ ¼ 2π
Z

df
f
ḟ
; t ¼

Z
df

1

ḟ
: ð11Þ

239240At leading order, the amplitude grows as AðtÞ ∝ f2=3 and
241the frequency drift due to the emission of GW by the binary
242system reads

ḟ ¼ 96π8=3

5c5
ðGMÞ5=3f11=3; ð12Þ

243244where M is the chirp mass of the two compact objects of
245mass m1 and m2, and

M ¼ m1 þm2; ν ¼ m1m2=M2; M ¼ ν3=5M; ð13Þ

246247where ν is the symmetric mass ratio [54,57].
248Going to Fourier space, h̃ðfÞ ¼

R
dtei2πfthðtÞ, one

249obtains in the stationary phase approximation h̃ðfÞ ¼
250AðfÞeiψðfÞ with

AðfÞ ∝ f−7=6; ψðfÞ ¼ 2πft⋆ −Φðt⋆Þ − π=4; ð14Þ

251252where the saddle point t⋆ is determined by fðt⋆Þ ¼ f.
253At zeroth order in the DM environment, we have
254f̄ðt̄⋆Þ ¼ f and
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DM gravitational potential DM density

ΔψoscðfÞ ∼ Ψosc2π

!
5

256π

"
3=8

!
πGM2mϕ

c3

"−5=8

×
####γ
!
5

8
;−i

mϕ

m⋆ðfÞ

"####; ð35Þ

400401 where we have discarded the random phase factor and
402 directly compute the modulus of the term in the real part.
403 This provides the order of magnitude of the phase shift
404 associated with the DM environment, through the impact of
405 the oscillating gravitational potential. As we take Ψosc ¼ 0
406 as the fiducial case, the derivatives in Eq. (34) with respect
407 to ftc;Φc; lnðm1Þ; lnðm2Þg arise from the zeroth-order
408 terms, Eqs. (17) and (18), whereas the derivative with
409 respect to Ψosc is given by (35).
410 To compare with the impact of dynamical friction,
411 Eq. (31), we also perform a separate Fisher analysis
412 where we only include the phase shift in Eq. (31) for
413 the impact of DM. Then we consider the parameters
414 fθig ¼ ftc;Φc; lnðm1Þ; lnðm2Þ; ρg, and we directly obtain
415 the detection threshold σρ on the DM density ρ, which does
416 not depend on the particle mass mϕ.

417 B. LISA

418 We now consider various binary systems that should be
419 observed by the LISA interferometer: massive binary black
420 holes (MBBH), intermediary binary black holes (IBBH),
421 intermediate mass ratio inspirals (IMRI), extreme mass
422 ratio inspirals (EMRI), and white dwarfs binaries (WD).
423 We give in Table I the masses, SNR, luminosity distance dL
424 and expected number of detections over four years of the
425 typical events that we use for the numerical computations.
426 The predictions of the numbers of events involving massive
427 BHs are very uncertain, as shown by the range of the
428 estimates given inTable I, obtained from [60–63]. In contrast,
429 LISA is guaranteed to observed many WD binaries
430 [42,64,65]. Note that the detection thresholds obtained in
431 Figs. 1 and 2 are for a single event and the estimates for the
432 number of detections shown in Tables I and II are only given
433 as an indication of the likelihood of such events.
434 We show in the upper panel in Fig. 1 our results for the
435 detection threshold on the oscillating DM gravitational
436 potentialΨosc, for these events. The vertical blue dotted line

437is the upper boundary, Eq. (10), for the MBBH case.
438For other events this upper boundary is located to the right of
439the DM particle mass range shown in the picture. As
440explained in Sec. II B, the phase shift of Eq. (24) due to
441the DM oscillating gravitational potential is degenerate at
442low and high masses with the standard result. Thus, the
443amplitudeΨosc is poorly constrained at low and high masses
444and the best constraints are obtained formϕ ∼ 10−22 eV. We
445do not consider masses below 10−23 eV because they cannot
446constitute a large fraction of the DM (the de Broglie wave-
447length would be greater than galactic cores). In agreement
448withEq. (25),MBBHand IBBHevents,which have a greater
449chirp mass M, probe somewhat higher scalar masses than
450EMRI and IMRI events. White dwarfs have smaller mass
451than these massive BHs. This increases the phase shift (35)
452and improves the detection threshold, in agreement with our
453numerical result shown in Fig. 1.
454We show in the lower panel in Fig. 1 our results for the
455detection threshold on the DM density ρ. From Eq. (6) we
456have σρ ∝ m2σΨosc

. This leads to the very fast growth with
457mϕ of the detection threshold σρ. In addition to these
458curves, the horizontal lines show the detection thresholds
459associated with the dynamical friction, Eq. (31), which are

F1:1FIG. 1. Detection thresholds on the amplitude Ψosc of the
F1:2oscillating DM gravitational potential (upper panel) and on the
F1:3DM density ρ (lower panel), as a function of the scalar mass mϕ.
F1:4We show the results obtained for various events with the
F1:5LISA interferometer. In the lower panel, the shaded blue area
F1:6is the exclusion region associated with the upper bound (37)
F1:7with Mcloud ¼ 107M⊙.

TABLE I. Masses, SNR (signal-to-noise ratio), luminosity
distance and expected number of detections for the events that
we consider for LISA (for a four-year observational time).

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

MBBH 106 5 × 105 3 × 104 103 0.4–600
IBBH 104 5 × 103 708 103 0.4–600
IMRI 104 10 64 103 8–80
EMRI 105 10 22 103 20–400
WD 0.4 0.3 7 5 × 10−3 104
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The density threshold increases with the scalar mass.

dynamical friction

460 independent of mϕ. We can see that for mϕ ≳ 10−21 eV
461 dynamical friction is more important than the oscillatory
462 gravitational potential. For EMRIs and IMRIs this is
463 actually the case at all masses. As compared with the
464 DM density in the solar neighborhood, ρ ∼ 1M⊙=pc3,
465 LISA can only detect DM densities that are higher by a
466 factor of at least 105. Such DM clouds may be formed at
467 high redshifts, z ∼ 104. This would correspond to the matter
468 density at the formation time when such clumps form by a
469 rapid instability, e.g. tachyonic [39]. However, their very
470 large radii make such a scenario somewhat unlikely.
471 Indeed, we can expect their radius to be greater than the
472 Compton wavelength,

λC ¼ 2π
mϕ

¼
!

mϕ

1 eV

"−1
4 × 10−23 pc: ð36Þ

473474For mϕ ∼ 10−22 eV, as for Fuzzy DM scenarios, this
475corresponds to clouds of parsec size or greater. They would
476be smaller than globular clusters, which can reach sizes of
477100 pc, but denser by a factor 103. The comparison between
478the Compton and de Broglie wavelengths, λdB ¼ λC=v,
479suggests that clouds with R ∼ λC would also be relativistic.
480For a given mass Mcloud of the DM cloud, the inequality
481R > λc of the cloud radius gives the upper bound,

ρ ¼ Mcloud

R3
<

Mcloud

λ3c
¼ Mcloud

1M⊙

!
mϕ

1 eV

"
3

1045 g=cm3: ð37Þ

482483We show this upper bound with Mcloud ¼ 107M⊙ by the
484blue shaded area in the lower panel in Fig. 1. Thus, we can
485see that the high densities required to detect the phase shift
486Δψosc also imply very high cloud masses,Mcloud ≳ 105M⊙
487for WD binaries.

488C. DECIGO

489We also consider stellar-mass BHs, neutron stars and
490white dwarfs events that could be detected by the DECIGO
491interferometer. We choose as typical cases three events
492detected by LIGO and Virgo [66] given in Table II, as well
493as a typical white dwarf merger. The expected detection
494rates are obtained from [43–45,67]. We can see that many
495events are expected for these four classes of binaries.
496We show in Fig. 2 our results for the detection thresholds
497on the oscillating DM gravitational potential Ψosc and the
498density ρ, for various events with the DECIGO interfer-
499ometer. For all events the upper boundary, Eq. (10), is
500located to the right of the DM particle mass range shown in
501the picture. The thresholds for DECIGO and LISA are of
502about the same orders of magnitude, although they are
503somewhat more favorable for DECIGO. In particular, the
504required DM density are further below the upper bound of
505Eq. (37). For NS and WD binaries the GW waveform is
506more sensitive to dynamical friction than to the DM
507oscillations for almost all DM masses. For BH binaries
508the signal associated with the DM oscillations dominates
509over dynamical friction for mϕ ≲ 10−21 eV.

510IV. CONCLUSIONS

511In this work, we have examined whether the oscillatory
512behavior of the gravitational potential of DM halos pre-
513dicted by some DM scenarios could be detected by
514gravitational wave interferometers such as LISA and
515DECIGO, if binary systems were embedded within high-
516density DM clouds. Building on the early work in Ref. [52],
517which considered the impact of these oscillations on pulsar
518timing signals, we now consider their impact on the phase
519of the GW form received by interferometers. We derived
520the associated phase shift and performed a Fisher analysis
521to estimate the detection thresholds that can be expected for
522near future instruments, for a variety of binary systems.

F2:1 FIG. 2. DM detection thresholds as in Fig. 1 but for the
F2:2 DECIGO interferometer.

TABLE II. Masses, SNR, luminosity distance and expected
number of detections of the events that we consider for DECIGO,
for a one-year observational time.

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

GW150914 35.6 30.6 2815 440 >104

GW170608 11 7.6 1290 320 >104

GW170817 1.46 1.27 2124 40 105

WD 0.4 0.3 8 375 >6600
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For dynamical friction is more important than the oscillations of the DM potential.

460 independent of mϕ. We can see that for mϕ ≳ 10−21 eV
461 dynamical friction is more important than the oscillatory
462 gravitational potential. For EMRIs and IMRIs this is
463 actually the case at all masses. As compared with the
464 DM density in the solar neighborhood, ρ ∼ 1M⊙=pc3,
465 LISA can only detect DM densities that are higher by a
466 factor of at least 105. Such DM clouds may be formed at
467 high redshifts, z ∼ 104. This would correspond to the matter
468 density at the formation time when such clumps form by a
469 rapid instability, e.g. tachyonic [39]. However, their very
470 large radii make such a scenario somewhat unlikely.
471 Indeed, we can expect their radius to be greater than the
472 Compton wavelength,

λC ¼ 2π
mϕ

¼
!

mϕ

1 eV

"−1
4 × 10−23 pc: ð36Þ

473474For mϕ ∼ 10−22 eV, as for Fuzzy DM scenarios, this
475corresponds to clouds of parsec size or greater. They would
476be smaller than globular clusters, which can reach sizes of
477100 pc, but denser by a factor 103. The comparison between
478the Compton and de Broglie wavelengths, λdB ¼ λC=v,
479suggests that clouds with R ∼ λC would also be relativistic.
480For a given mass Mcloud of the DM cloud, the inequality
481R > λc of the cloud radius gives the upper bound,

ρ ¼ Mcloud

R3
<

Mcloud

λ3c
¼ Mcloud

1M⊙

!
mϕ

1 eV

"
3

1045 g=cm3: ð37Þ

482483We show this upper bound with Mcloud ¼ 107M⊙ by the
484blue shaded area in the lower panel in Fig. 1. Thus, we can
485see that the high densities required to detect the phase shift
486Δψosc also imply very high cloud masses,Mcloud ≳ 105M⊙
487for WD binaries.

488C. DECIGO

489We also consider stellar-mass BHs, neutron stars and
490white dwarfs events that could be detected by the DECIGO
491interferometer. We choose as typical cases three events
492detected by LIGO and Virgo [66] given in Table II, as well
493as a typical white dwarf merger. The expected detection
494rates are obtained from [43–45,67]. We can see that many
495events are expected for these four classes of binaries.
496We show in Fig. 2 our results for the detection thresholds
497on the oscillating DM gravitational potential Ψosc and the
498density ρ, for various events with the DECIGO interfer-
499ometer. For all events the upper boundary, Eq. (10), is
500located to the right of the DM particle mass range shown in
501the picture. The thresholds for DECIGO and LISA are of
502about the same orders of magnitude, although they are
503somewhat more favorable for DECIGO. In particular, the
504required DM density are further below the upper bound of
505Eq. (37). For NS and WD binaries the GW waveform is
506more sensitive to dynamical friction than to the DM
507oscillations for almost all DM masses. For BH binaries
508the signal associated with the DM oscillations dominates
509over dynamical friction for mϕ ≲ 10−21 eV.

510IV. CONCLUSIONS

511In this work, we have examined whether the oscillatory
512behavior of the gravitational potential of DM halos pre-
513dicted by some DM scenarios could be detected by
514gravitational wave interferometers such as LISA and
515DECIGO, if binary systems were embedded within high-
516density DM clouds. Building on the early work in Ref. [52],
517which considered the impact of these oscillations on pulsar
518timing signals, we now consider their impact on the phase
519of the GW form received by interferometers. We derived
520the associated phase shift and performed a Fisher analysis
521to estimate the detection thresholds that can be expected for
522near future instruments, for a variety of binary systems.

F2:1 FIG. 2. DM detection thresholds as in Fig. 1 but for the
F2:2 DECIGO interferometer.

TABLE II. Masses, SNR, luminosity distance and expected
number of detections of the events that we consider for DECIGO,
for a one-year observational time.

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

GW150914 35.6 30.6 2815 440 >104

GW170608 11 7.6 1290 320 >104

GW170817 1.46 1.27 2124 40 105

WD 0.4 0.3 8 375 >6600

DETECTING DARK MATTER OSCILLATIONS WITH … PHYS. REV. D XX, 000000 (XXXX)

7

460 independent of mϕ. We can see that for mϕ ≳ 10−21 eV
461 dynamical friction is more important than the oscillatory
462 gravitational potential. For EMRIs and IMRIs this is
463 actually the case at all masses. As compared with the
464 DM density in the solar neighborhood, ρ ∼ 1M⊙=pc3,
465 LISA can only detect DM densities that are higher by a
466 factor of at least 105. Such DM clouds may be formed at
467 high redshifts, z ∼ 104. This would correspond to the matter
468 density at the formation time when such clumps form by a
469 rapid instability, e.g. tachyonic [39]. However, their very
470 large radii make such a scenario somewhat unlikely.
471 Indeed, we can expect their radius to be greater than the
472 Compton wavelength,

λC ¼ 2π
mϕ

¼
!

mϕ

1 eV

"−1
4 × 10−23 pc: ð36Þ

473474For mϕ ∼ 10−22 eV, as for Fuzzy DM scenarios, this
475corresponds to clouds of parsec size or greater. They would
476be smaller than globular clusters, which can reach sizes of
477100 pc, but denser by a factor 103. The comparison between
478the Compton and de Broglie wavelengths, λdB ¼ λC=v,
479suggests that clouds with R ∼ λC would also be relativistic.
480For a given mass Mcloud of the DM cloud, the inequality
481R > λc of the cloud radius gives the upper bound,

ρ ¼ Mcloud

R3
<

Mcloud

λ3c
¼ Mcloud

1M⊙

!
mϕ

1 eV

"
3

1045 g=cm3: ð37Þ

482483We show this upper bound with Mcloud ¼ 107M⊙ by the
484blue shaded area in the lower panel in Fig. 1. Thus, we can
485see that the high densities required to detect the phase shift
486Δψosc also imply very high cloud masses,Mcloud ≳ 105M⊙
487for WD binaries.

488C. DECIGO

489We also consider stellar-mass BHs, neutron stars and
490white dwarfs events that could be detected by the DECIGO
491interferometer. We choose as typical cases three events
492detected by LIGO and Virgo [66] given in Table II, as well
493as a typical white dwarf merger. The expected detection
494rates are obtained from [43–45,67]. We can see that many
495events are expected for these four classes of binaries.
496We show in Fig. 2 our results for the detection thresholds
497on the oscillating DM gravitational potential Ψosc and the
498density ρ, for various events with the DECIGO interfer-
499ometer. For all events the upper boundary, Eq. (10), is
500located to the right of the DM particle mass range shown in
501the picture. The thresholds for DECIGO and LISA are of
502about the same orders of magnitude, although they are
503somewhat more favorable for DECIGO. In particular, the
504required DM density are further below the upper bound of
505Eq. (37). For NS and WD binaries the GW waveform is
506more sensitive to dynamical friction than to the DM
507oscillations for almost all DM masses. For BH binaries
508the signal associated with the DM oscillations dominates
509over dynamical friction for mϕ ≲ 10−21 eV.

510IV. CONCLUSIONS

511In this work, we have examined whether the oscillatory
512behavior of the gravitational potential of DM halos pre-
513dicted by some DM scenarios could be detected by
514gravitational wave interferometers such as LISA and
515DECIGO, if binary systems were embedded within high-
516density DM clouds. Building on the early work in Ref. [52],
517which considered the impact of these oscillations on pulsar
518timing signals, we now consider their impact on the phase
519of the GW form received by interferometers. We derived
520the associated phase shift and performed a Fisher analysis
521to estimate the detection thresholds that can be expected for
522near future instruments, for a variety of binary systems.

F2:1 FIG. 2. DM detection thresholds as in Fig. 1 but for the
F2:2 DECIGO interferometer.

TABLE II. Masses, SNR, luminosity distance and expected
number of detections of the events that we consider for DECIGO,
for a one-year observational time.

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

GW150914 35.6 30.6 2815 440 >104

GW170608 11 7.6 1290 320 >104

GW170817 1.46 1.27 2124 40 105

WD 0.4 0.3 8 375 >6600
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F) DECIGO

460 independent of mϕ. We can see that for mϕ ≳ 10−21 eV
461 dynamical friction is more important than the oscillatory
462 gravitational potential. For EMRIs and IMRIs this is
463 actually the case at all masses. As compared with the
464 DM density in the solar neighborhood, ρ ∼ 1M⊙=pc3,
465 LISA can only detect DM densities that are higher by a
466 factor of at least 105. Such DM clouds may be formed at
467 high redshifts, z ∼ 104. This would correspond to the matter
468 density at the formation time when such clumps form by a
469 rapid instability, e.g. tachyonic [39]. However, their very
470 large radii make such a scenario somewhat unlikely.
471 Indeed, we can expect their radius to be greater than the
472 Compton wavelength,

λC ¼ 2π
mϕ

¼
!

mϕ

1 eV

"−1
4 × 10−23 pc: ð36Þ

473474For mϕ ∼ 10−22 eV, as for Fuzzy DM scenarios, this
475corresponds to clouds of parsec size or greater. They would
476be smaller than globular clusters, which can reach sizes of
477100 pc, but denser by a factor 103. The comparison between
478the Compton and de Broglie wavelengths, λdB ¼ λC=v,
479suggests that clouds with R ∼ λC would also be relativistic.
480For a given mass Mcloud of the DM cloud, the inequality
481R > λc of the cloud radius gives the upper bound,

ρ ¼ Mcloud

R3
<

Mcloud

λ3c
¼ Mcloud

1M⊙

!
mϕ

1 eV

"
3

1045 g=cm3: ð37Þ

482483We show this upper bound with Mcloud ¼ 107M⊙ by the
484blue shaded area in the lower panel in Fig. 1. Thus, we can
485see that the high densities required to detect the phase shift
486Δψosc also imply very high cloud masses,Mcloud ≳ 105M⊙
487for WD binaries.

488C. DECIGO

489We also consider stellar-mass BHs, neutron stars and
490white dwarfs events that could be detected by the DECIGO
491interferometer. We choose as typical cases three events
492detected by LIGO and Virgo [66] given in Table II, as well
493as a typical white dwarf merger. The expected detection
494rates are obtained from [43–45,67]. We can see that many
495events are expected for these four classes of binaries.
496We show in Fig. 2 our results for the detection thresholds
497on the oscillating DM gravitational potential Ψosc and the
498density ρ, for various events with the DECIGO interfer-
499ometer. For all events the upper boundary, Eq. (10), is
500located to the right of the DM particle mass range shown in
501the picture. The thresholds for DECIGO and LISA are of
502about the same orders of magnitude, although they are
503somewhat more favorable for DECIGO. In particular, the
504required DM density are further below the upper bound of
505Eq. (37). For NS and WD binaries the GW waveform is
506more sensitive to dynamical friction than to the DM
507oscillations for almost all DM masses. For BH binaries
508the signal associated with the DM oscillations dominates
509over dynamical friction for mϕ ≲ 10−21 eV.

510IV. CONCLUSIONS

511In this work, we have examined whether the oscillatory
512behavior of the gravitational potential of DM halos pre-
513dicted by some DM scenarios could be detected by
514gravitational wave interferometers such as LISA and
515DECIGO, if binary systems were embedded within high-
516density DM clouds. Building on the early work in Ref. [52],
517which considered the impact of these oscillations on pulsar
518timing signals, we now consider their impact on the phase
519of the GW form received by interferometers. We derived
520the associated phase shift and performed a Fisher analysis
521to estimate the detection thresholds that can be expected for
522near future instruments, for a variety of binary systems.

F2:1 FIG. 2. DM detection thresholds as in Fig. 1 but for the
F2:2 DECIGO interferometer.

TABLE II. Masses, SNR, luminosity distance and expected
number of detections of the events that we consider for DECIGO,
for a one-year observational time.

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

GW150914 35.6 30.6 2815 440 >104

GW170608 11 7.6 1290 320 >104

GW170817 1.46 1.27 2124 40 105

WD 0.4 0.3 8 375 >6600
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460 independent of mϕ. We can see that for mϕ ≳ 10−21 eV
461 dynamical friction is more important than the oscillatory
462 gravitational potential. For EMRIs and IMRIs this is
463 actually the case at all masses. As compared with the
464 DM density in the solar neighborhood, ρ ∼ 1M⊙=pc3,
465 LISA can only detect DM densities that are higher by a
466 factor of at least 105. Such DM clouds may be formed at
467 high redshifts, z ∼ 104. This would correspond to the matter
468 density at the formation time when such clumps form by a
469 rapid instability, e.g. tachyonic [39]. However, their very
470 large radii make such a scenario somewhat unlikely.
471 Indeed, we can expect their radius to be greater than the
472 Compton wavelength,

λC ¼ 2π
mϕ

¼
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1 eV

"−1
4 × 10−23 pc: ð36Þ

473474For mϕ ∼ 10−22 eV, as for Fuzzy DM scenarios, this
475corresponds to clouds of parsec size or greater. They would
476be smaller than globular clusters, which can reach sizes of
477100 pc, but denser by a factor 103. The comparison between
478the Compton and de Broglie wavelengths, λdB ¼ λC=v,
479suggests that clouds with R ∼ λC would also be relativistic.
480For a given mass Mcloud of the DM cloud, the inequality
481R > λc of the cloud radius gives the upper bound,

ρ ¼ Mcloud
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<

Mcloud

λ3c
¼ Mcloud

1M⊙
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482483We show this upper bound with Mcloud ¼ 107M⊙ by the
484blue shaded area in the lower panel in Fig. 1. Thus, we can
485see that the high densities required to detect the phase shift
486Δψosc also imply very high cloud masses,Mcloud ≳ 105M⊙
487for WD binaries.

488C. DECIGO

489We also consider stellar-mass BHs, neutron stars and
490white dwarfs events that could be detected by the DECIGO
491interferometer. We choose as typical cases three events
492detected by LIGO and Virgo [66] given in Table II, as well
493as a typical white dwarf merger. The expected detection
494rates are obtained from [43–45,67]. We can see that many
495events are expected for these four classes of binaries.
496We show in Fig. 2 our results for the detection thresholds
497on the oscillating DM gravitational potential Ψosc and the
498density ρ, for various events with the DECIGO interfer-
499ometer. For all events the upper boundary, Eq. (10), is
500located to the right of the DM particle mass range shown in
501the picture. The thresholds for DECIGO and LISA are of
502about the same orders of magnitude, although they are
503somewhat more favorable for DECIGO. In particular, the
504required DM density are further below the upper bound of
505Eq. (37). For NS and WD binaries the GW waveform is
506more sensitive to dynamical friction than to the DM
507oscillations for almost all DM masses. For BH binaries
508the signal associated with the DM oscillations dominates
509over dynamical friction for mϕ ≲ 10−21 eV.

510IV. CONCLUSIONS

511In this work, we have examined whether the oscillatory
512behavior of the gravitational potential of DM halos pre-
513dicted by some DM scenarios could be detected by
514gravitational wave interferometers such as LISA and
515DECIGO, if binary systems were embedded within high-
516density DM clouds. Building on the early work in Ref. [52],
517which considered the impact of these oscillations on pulsar
518timing signals, we now consider their impact on the phase
519of the GW form received by interferometers. We derived
520the associated phase shift and performed a Fisher analysis
521to estimate the detection thresholds that can be expected for
522near future instruments, for a variety of binary systems.

F2:1 FIG. 2. DM detection thresholds as in Fig. 1 but for the
F2:2 DECIGO interferometer.

TABLE II. Masses, SNR, luminosity distance and expected
number of detections of the events that we consider for DECIGO,
for a one-year observational time.

m1 (M⊙) m2 (M⊙) SNR dL (Mpc) Detections

GW150914 35.6 30.6 2815 440 >104

GW170608 11 7.6 1290 320 >104

GW170817 1.46 1.27 2124 40 105

WD 0.4 0.3 8 375 >6600
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The detection thresholds are of the same order as for LISA, but somewhat better.



G) Conclusion

This probe is unlikely to be competitive with other more direct observations of DM substructures. 
523 We find that this probe is unlikely to be competitive
524 with more direct observations of DM substructures. For
525 mϕ > 10−21 eV the effect of the DM environment on the
526 GW form due to the usual dynamical friction (the drag
527 force that contributes to the shrinking of the orbital radius
528 of the binary system) is expected to dominate over the
529 effect associated with these oscillatory features of the DM
530 gravitational potential (which only affect a subleading
531 component of ΨN). For low particle masses below
532 10−23 eV, the scalar clouds are associated with Compton
533 wavelengths greater than the parsec scale. This implies DM
534 clouds that are too large to provide realistic DM scenarios.
535 For DM masses mϕ ∼ 10−22 eV, the phase shift asso-
536 ciated with the oscillations of the DM gravitational poten-
537 tial can only be detected by LISA or DECIGO for densities
538 that are greater than that in the solar neighborhood by a
539 factor 105 (LISA) or 104 (DECIGO). This would also
540 correspond to cloud masses above 105M⊙ (LISA) or
541 103M⊙ (DECIGO) and radii above 0.4 pc. Although such
542 high-density structures may be possible, if they formed at
543 redshifts z ∼ 104, this would require a nonstandard for-
544 mation mechanism, such as instabilities due to DM self-
545 interactions. In this sense, LISA and DECIGO would only
546 be sensitive to the oscillatory features from exotic types
547 of DM.
548 Therefore, except for a small region in the parameter
549 space of DM models, the phase of the GW wave form is
550 unlikely to be sensitive to the oscillatory features of DM

551gravitational potentials. This justifies standard analyses of
552the emission of GWs by binary systems, where the DM
553environment is neglected or considered through its usual
554effects: dynamical friction, accretion and gravitational pull
555by the enclosed DM mass within the orbital radius. On the
556other hand, from a beyond the standard model perspective,
557LISA and DECIGO could provide us with a window on the
558physics of dark matter and its possible exotic properties in
559the radiation era before large scale structures of the
560Universe form.
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528 of the binary system) is expected to dominate over the
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530 gravitational potential (which only affect a subleading
531 component of ΨN). For low particle masses below
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547 of DM.
548 Therefore, except for a small region in the parameter
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551gravitational potentials. This justifies standard analyses of
552the emission of GWs by binary systems, where the DM
553environment is neglected or considered through its usual
554effects: dynamical friction, accretion and gravitational pull
555by the enclosed DM mass within the orbital radius. On the
556other hand, from a beyond the standard model perspective,
557LISA and DECIGO could provide us with a window on the
558physics of dark matter and its possible exotic properties in
559the radiation era before large scale structures of the
560Universe form.
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the clouds that could be detected by LISA would have a density that is greater than in the solar 
neighbourhood by a factor of        , a mass above               and a radius above 
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non-standard formation mechanism at
<latexit sha1_base64="o5o3TcqDlcMux4x7++bj2OYVD20=">AAAB8nicbVDLSgNBEOyNrxhfUY9eBoPgKexKfByDXjxGMA/YrGF2MpsMmZ1ZZmaFuOQzvHhQxKtf482/cZLsQRMLGoqqbrq7woQzbVz32ymsrK6tbxQ3S1vbO7t75f2DlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4upn67UeqNJPi3owTGsR4IFjECDZW8p9QV7MYee5DrVeuuFV3BrRMvJxUIEejV/7q9iVJYyoM4Vhr33MTE2RYGUY4nZS6qaYJJiM8oL6lAsdUB9ns5Ak6sUofRVLZEgbN1N8TGY61Hseh7YyxGepFbyr+5/mpia6CjIkkNVSQ+aIo5chINP0f9ZmixPCxJZgoZm9FZIgVJsamVLIheIsvL5PWWdW7qJ7f1Sr16zyOIhzBMZyCB5dQh1toQBMISHiGV3hzjPPivDsf89aCk88cwh84nz+/zpBE</latexit>

z ⇠ 104

Except for a small region of the DM parameter space, standard analysis where such an effect is neglected are justified.



CONCLUSIONS



- Scalar dark matter models with self-interactions allow detailed analysis in the large scalar-mass limit  

- Hydrodynamical picture in the non-relativistic regime (but does not always hold: mapping can be singular)

- Radial accretion onto a BH similar to Bondi problem, with unique transsonic solution, 

but with a much smaller accretion rate, self-regulated by a bottleneck in the relativistic regime

- Such a dark matter environment could be detected by LISA and B-DECIGO, if it contains BH binaries.

- They would see scalar clouds that are smaller than 0.1 pc: difficult to detect by other probes

THANK YOU FOR YOUR ATTENTION !

- Solitons (flat cores) appear at the center of virialized halos

- They do not seem to converge to a scaling regime expect a large diversity of profiles 

- Transitions between different regimes could take place for some models

Other topics: vorticity, gravitational atoms (superradiance), 
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<latexit sha1_base64="+UclGHF8pBSRdoie/KFSlpHAM+c=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5JIfSyLblxWsA9oYphMJ83QmUmYmQg1FH/FjQtF3Pof7vwbp20W2nrgwuGce7n3njBlVGnH+bZKS8srq2vl9crG5tb2jr2711ZJJjFp4YQlshsiRRgVpKWpZqSbSoJ4yEgnHF5P/M4DkYom4k6PUuJzNBA0ohhpIwX2gSfjJPCaMYWeohx6PLuvB3bVqTlTwEXiFqQKCjQD+8vrJzjjRGjMkFI910m1nyOpKWZkXPEyRVKEh2hAeoYKxIny8+n1Y3hslD6MEmlKaDhVf0/kiCs14qHp5EjHat6biP95vUxHl35ORZppIvBsUZQxqBM4iQL2qSRYs5EhCEtqboU4RhJhbQKrmBDc+ZcXSfu05p7Xzm7r1cZVEUcZHIIjcAJccAEa4AY0QQtg8AiewSt4s56sF+vd+pi1lqxiZh/8gfX5A5+xlLM=</latexit>

⇢� ⇠ µ4At this time the DM density is

<latexit sha1_base64="U68I8G4ag/IGLr9r7ARl2EvFKPU=">AAACDXicbVA7T8MwGHR4lvIKMLJYFCQWqoTyGitYGIvUl9SkkeO6rVUntmwHqYr6B1j4KywMIMTKzsa/wW0jBC0nWTrffZ/su1AwqrTjfFkLi0vLK6u5tfz6xubWtr2zW1c8kZjUMGdcNkOkCKMxqWmqGWkKSVAUMtIIBzdjv3FPpKI8ruqhIH6EejHtUoy0kQL70JN9HniiT6EnJBeaQ9ROT0qjn2u1XQrsglN0JoDzxM1IAWSoBPan1+E4iUisMUNKtVxHaD9FUlPMyCjvJYoIhAeoR1qGxigiyk8naUbwyCgd2OXSnFjDifp7I0WRUsMoNJMR0n01643F/7xWortXfkpjkWgS4+lD3YRBE3JcDexQSbBmQ0MQltT8FeI+kghrU2DelODORp4n9dOie1E8vzsrlK+zOnJgHxyAY+CCS1AGt6ACagCDB/AEXsCr9Wg9W2/W+3R0wcp29sAfWB/fjMibOg==</latexit>

⇢� / a�3 / T 3Afterwards:
<latexit sha1_base64="URyLcprnkLEaahWAVWTbs0yme/Q="></latexit>

⌦� = 5⇥ 1010
✓

F

1017 GeV

◆2 ⇣ m

1 eV

⌘1/2

<latexit sha1_base64="cBHgqKUQmqSmCfA2WKyXDtvbrCM=">AAACD3icbVDLSgMxFM34rPU16tJNsCgupMyIL3BTFMRlBfuAzlAyaaYNTTJjkhHK0D9w46+4caGIW7fu/Bsz7SDaekLgcM69N7kniBlV2nG+rJnZufmFxcJScXlldW3d3tisqyiRmNRwxCLZDJAijApS01Qz0owlQTxgpBH0LzO/cU+kopG41YOY+Bx1BQ0pRtpIbXvPi3sUeopyeAUPoHeeHeh1Iv1jkDvotO2SU3ZGgNPEzUkJ5Ki27U8zAyecCI0ZUqrlOrH2UyQ1xYwMi16iSIxwH3VJy1CBOFF+OtpnCHeN0oFhJM0VGo7U3x0p4koNeGAqOdI9Nell4n9eK9HhmZ9SESeaCDx+KEwY1BHMwoEdKgnWbGAIwpKav0LcQxJhbSIsmhDcyZWnSf2w7J6Uj2+OSpWLPI4C2AY7YB+44BRUwDWoghrA4AE8gRfwaj1az9ab9T4unbHyni3wB9bHN4DRmnU=</latexit>

� ⇠ F, �̇ ' 0

Approximate shift symmetry, broken by a periodic term



If:
<latexit sha1_base64="ZiZXvxoe2LzlctMfPrI+XyDfnaA=">AAAB/3icbVDJSgNBEO1xjXEbFbx4aQyCp2HG/Rj04s0IZoFMGHo6laRJd8/Y3SOEmIO/4sWDIl79DW/+jZ3loIkPCh7vVVFVL04508b3v525+YXFpeXcSn51bX1j093arugkUxTKNOGJqsVEA2cSyoYZDrVUARExh2rcvRr61QdQmiXyzvRSaAjSlqzFKDFWitzd8EZAm0RhqcNwqJmAe+x7x5Fb8D1/BDxLggkpoAlKkfsVNhOaCZCGcqJ1PfBT0+gTZRjlMMiHmYaU0C5pQ91SSQToRn90/wAfWKWJW4myJQ0eqb8n+kRo3ROx7RTEdPS0NxT/8+qZaV00+kymmQFJx4taGccmwcMwcJMpoIb3LCFUMXsrph2iCDU2srwNIZh+eZZUjrzgzDu9PSkULydx5NAe2keHKEDnqIiuUQmVEUWP6Bm9ojfnyXlx3p2PceucM5nZQX/gfP4ASpyU/g==</latexit>

⌦� ' 0.3
<latexit sha1_base64="wEXnMkXjMlC9BQvsjG3Qbe8+uYY=">AAAB+3icbVDLSgMxFM3UV62vsS7dBIvgxjoj9bEsCuKygn1AO5ZMmmlDk0xIMmIZ5lfcuFDErT/izr8xfSy09cCFwzn3cu89oWRUG8/7dnJLyyura/n1wsbm1vaOu1ts6DhRmNRxzGLVCpEmjApSN9Qw0pKKIB4y0gyH12O/+UiUprG4NyNJAo76gkYUI2Olrlu8gR2pYmliyB/SY/+kknXdklf2JoCLxJ+REpih1nW/Or0YJ5wIgxnSuu170gQpUoZiRrJCJ9FEIjxEfdK2VCBOdJBObs/goVV6MIqVLWHgRP09kSKu9YiHtpMjM9Dz3lj8z2snJroMUipkYojA00VRwqD9dBwE7FFFsGEjSxBW1N4K8QAphI2Nq2BD8OdfXiSN07J/Xj67q5SqV7M48mAfHIAj4IMLUAW3oAbqAIMn8AxewZuTOS/Ou/Mxbc05s5k98AfO5w98kZNz</latexit>

F / m�1/4then:

<latexit sha1_base64="LPgJy7KiYM7XASte0s0p6W/TrQI="></latexit>

m = 1 eV, F = 2.5⇥ 1011 GeV, µ = 16GeV, �4 = �3⇥ 10�42

<latexit sha1_base64="O1aIzkcsGGV2vkcquCZWkz45QOY="></latexit>

m = 10�15 eV, F = 1.4⇥ 1015 GeV, µ = 3.7⇥ 10�5 GeV, �4 = �9⇥ 10�80

Same order of magnitude as the couplings that we consider.

<latexit sha1_base64="K6gglC1FAT6J8Q7bdgxgtQ0DDFo=">AAACEXicbZC7TsMwFIadcivlFmBksaiQulAlVbmMFSwMIBVBL1KTRo7rtlbtJLIdpCrKK7DwKiwMIMTKxsbb4LYZoOWXLH36zzm2z+9HjEplWd9Gbml5ZXUtv17Y2Nza3jF395oyjAUmDRyyULR9JAmjAWkoqhhpR4Ig7jPS8keXk3rrgQhJw+BejSPicjQIaJ9ipLTlmSWHx90qdCTl8MZLHMFhnaXdCnSu9SU9pIl0k+O71DOLVtmaCi6CnUERZKp75pfTC3HMSaAwQ1J2bCtSboKEopiRtODEkkQIj9CAdDQGiBPpJtONUniknR7sh0KfQMGp+3siQVzKMfd1J0dqKOdrE/O/WidW/XM3oUEUKxLg2UP9mEEVwkk8sEcFwYqNNSAsqP4rxEMkEFY6xIIOwZ5feRGalbJ9Wj65rRZrF1kceXAADkEJ2OAM1MAVqIMGwOARPINX8GY8GS/Gu/Exa80Z2cw++CPj8wcTO5vt</latexit>

µ4 ⇠ M2
Pl⇤

2e�S

<latexit sha1_base64="4llpxBst7tlMyTgfB1DJaiSDyts="></latexit>

m = 10�15 eV, ⇤ = 1018 GeV, S = 208

<latexit sha1_base64="mpA7LA3KL3zLL1KNL6RdZrR+D1k="></latexit>

m = 1 eV, ⇤ = 1018 GeV, S = 157

Non-perturbative instanton effects

instanton action



Near the BH horizon:
<latexit sha1_base64="7hqbEphYb5xHcXTElcnbh7PvtwA="></latexit>

� ⇠ mp
�4

, ⇢� ⇠ ⇢a ⇠ m4

�4

<latexit sha1_base64="/WbojI3e6d3v8WZCUnXWB6Y0YFM="></latexit>

⇢a ⇠ µ4, � ⇠ mp
�4

⇠ F OK: perturbative regime down to the BH horizon.


