

Conformal Symmetry at Finite Temperature

Volker Schomerus Saclay, Sep 12, 2024

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

CRC 1624 HIGHER STRUCTURES, MODULI SPACES AND INTEGRABILITY

Based on work with

Francesco Russo

Alessandro Vichi

Ilija Buric

Sylvain Lacroix

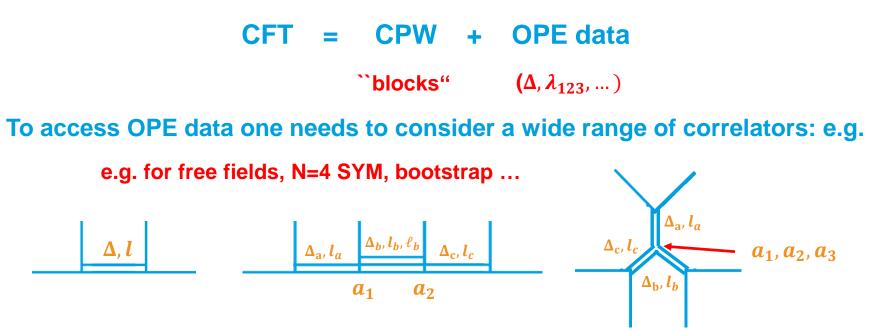
Jeremy Mann

Lorenzo Quintavalle

Apratim Kaviraj

Sebastian Harris

Toward an Introduction



Or consider correlators in other geometries, with boundaries, defects etc Conformal partial waves are wave functions of quantum integrable systems Multi-point, defects Gaudin → Calogero-Sutherland

In this talk I will address thermal correlation functions

Introduction: Thermal Correlators

Definition and some features

Consider multi-point correlators of local fields in thermal geometry $S^1_{\beta} \times S^{d-1}$

$$\langle \phi_1(x_1)\dots\phi_n(x_n)
angle_{q,y_a} = rac{1}{\mathcal{Z}(q,y)}\mathrm{tr}_{\mathcal{H}}\left(\phi_1(x_1)\dots\phi_n(x_n)q^Dy_2^{H_2}\dots y_r^{H_r}
ight)$$

 $\mathcal{Z}(q,y_a) = ext{tr}_{\mathcal{H}}\left(q^D y_2^{H_2} \dots y_r^{H_r}
ight) \qquad \phi(x) = e^{-\Delta_\phi au} \Phi(au,\Omega)$

<u>Remark 1</u>: For our analysis below non-vanishing fugacities y are essential <u>Remark 2</u>: Completely determined by data (Δ, λ) of the CFT in Euclidean \mathbb{R}^d

e.g. in necklace channel:

$$\langle \phi_1(x_1) \dots \phi_n(x_n) \rangle_{q,y_a} = \sum_{\{\mathcal{O}_i\}} \lambda_{1\mathcal{O}_n \mathcal{O}_1} \lambda_{2\mathcal{O}_1 \mathcal{O}_2} \dots \lambda_{n\mathcal{O}_{n-1} \mathcal{O}_n}$$

Introduction: Thermal Correlators

Comments on the definition

<u>Comment 1</u>: Our thermal correlators are closely related to the correlation functions in the geometry $S_{\beta}^{1} \times \mathbb{R}^{d-1} = \lim_{R \to \infty} S_{\beta}^{1} \times S_{R}^{d-1}$

Latter involves new CFT data b_{ϕ} in the 1-point functions of primary fields

 $\langle \boldsymbol{\phi}(\boldsymbol{x}) \rangle_{\boldsymbol{\beta}} = \langle \boldsymbol{\phi}(\boldsymbol{x}) \rangle_{S^{1}_{\boldsymbol{\beta}} \times \mathbb{R}^{d-1}} = \frac{b_{\boldsymbol{\phi}}}{\boldsymbol{\beta}^{\Delta_{\boldsymbol{\phi}}}}$ (for scalar $\boldsymbol{\phi}$)

[Iliesiu,Kologlu,Mahajan,

Perlmutter, Simmons-Duffin]

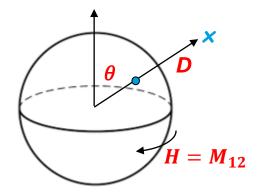
<u>Comment 2</u>: Our thermal correlators satisfy Ward identities wrt D, H_i only

$$\sum_{J=1} \mathcal{D}^{(J)} \langle \phi_1(x_1) \dots \phi_n(x_n) \rangle_{\beta,y} = \mathbf{0} = \sum_{J=1} \mathcal{H}_i^{(J)} \langle \phi_1(x_1) \dots \phi_n(x_n) \rangle_{\beta,y}$$
$$\mathbf{D}^{(J)} = x_J \partial_{x_J} - \Delta_J$$

Introduction: Example of Thermal Correlator

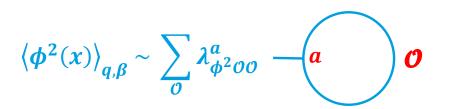
Thermal 1-point function of free boson in 3D

$$\langle \phi^2(x)
angle_{q,y} = rac{\sqrt{2}}{r} \sum_{l,m} rac{(l-m)!}{(l+m)!} rac{q^{l+1/2} y^m}{1-q^{l+1/2} y^m} P_l^m (\cos \theta)^2$$



scalar field of weight $\Delta = 1$

Its partial wave expansion gives access to the OPE coefficients $\lambda^a_{\phi^2 \rho \rho}$



for all operators O

& tensor structures a

But what is the basis of partial waves $g_{\Phi}^{0,a}(\theta; q, y)$ to expand into ?

Introduction: Main Results and Plan

<u>Claim</u>: Thermal partial waves are obtained from wave functions of elliptic Hitchin integrable system through rational degeneration

Eigenvalue equations for Hitchin Hamiltonian = Casimir equation provide enough control to harvest OPE data $\lambda_{\Phi O O}$ from thermal 1-point functions. here for free field theory

PLAN

- I. Thermal Partial Waves and Casimir equations
- **II.** Hitchin integrable systems and thermal PWs
- III. Conclusions and Outlook

Thermal Partial Waves and Casimir Equations

Thermal Correlations and Partial Waves

A simple but useful observation

$$G_n(x, y) \equiv tr \ (\phi_1(x_1) \dots \phi_n(x_n) q^D y_2^{H_2} \dots y_r^{H_r}) \qquad \begin{array}{l} y_1 = q \\ H_1 = D \end{array}$$

Upon insertion of conformal generators thermal correlators G_n behave as

$$tr\left(\phi_{1}(x_{1})\dots\phi_{m}(x_{m})H_{j}\phi_{m+1}(x_{m+1})\dots\phi_{n}(x_{n})y_{1}^{H_{1}}y_{2}^{H_{2}}\cdots y_{r}^{H_{r}}\right) = \\ = \left[\Sigma_{J=m+1}^{n}\mathcal{H}_{j}^{(J)}+y_{j}\partial_{y_{j}}\right]G_{n}(x,y)$$

$$tr \left(\phi_{1}(x_{1}) \dots \phi_{m}(x_{m}) E_{\alpha} \phi_{m+1}(x_{m+1}) \dots \phi_{n}(x_{n}) y_{1}^{H_{1}} y_{2}^{H_{2}} \dots y_{r}^{H_{r}} \right) =$$

$$a \in R_{*} \text{ is a root} = \frac{1}{1 - e^{-\alpha(\mu)}} \left[\sum_{J=1}^{m} e^{-\alpha(\mu)} \mathcal{E}_{\alpha}^{(J)} + \sum_{J=m+1}^{n} \mathcal{E}_{\alpha}^{(J)} \right] G_{n}(x, y)$$

$$y_{1} = e^{i\mu_{1}}, y_{2} = e^{\mu_{2}} \dots$$

$$E_{\alpha} \prod y_{j}^{H_{j}} = \prod y_{j}^{H_{j}} e^{-\alpha(\mu)} E_{\alpha}$$

$$=: \mathcal{E}_{\alpha|\mu}^{(1,\dots,m;m+1\dots,n)}$$

DESY. Conformal Symmetry at Finite Temperature | Volker Schomerus | Sep 10, 2024

Thermal Casimir Equations

CFT approach

$$G_{n}^{0}(x,y) = tr_{\mathcal{H}}(P_{0}\phi_{1}(x_{1})\cdots\phi_{m}(x_{m})\phi_{m+1}(x_{m+1})\dots\phi_{n}(x_{n})q^{D}y_{2}^{H_{2}}\cdots y_{r}^{H_{r}})$$

 $P_{\mathcal{O}}$ projects to global conformal family of operator \mathcal{O}

The functions $G_n^{\mathcal{O}}(x, y)$ can be shown to satisfy following second order Casimir equations $g_n^{\mathcal{O}} = \delta(\mu)G_n^{\mathcal{O}}$

$$\sum_{j=1} \partial_{\mu_j}^2 - \sum_{\alpha \in R_*} \frac{\varepsilon_{\alpha|\mu}^{(1\dots n)} \varepsilon_{-\alpha|\mu}^{(1\dots n)}}{4 \sinh^2\left(\frac{1}{2}\alpha(\mu)\right)} \quad \left] g_n^{\mathcal{O}_m}(x,\mu) = \mathcal{C}_2(\mathcal{O}) g_n^{\mathcal{O}}(x,\mu)$$

Follows from formulas on previous slide using that

$$Cas_{(2)} = \sum_{j} H_{j}^{2} + \sum_{\alpha \in R_{*}} E_{\alpha} E_{-\alpha}$$

 $Cas_{(2)}P_{\mathcal{O}} = C_2(\mathcal{O})P_{\mathcal{O}}$

Solving the Casimir equations

Thermal 1-point blocks

The most direct way to construct thermal partial waves is through recursion relations obtained from acting with the Casimir operators on the following Ansatz for low-temperature expansion: [here for scalar ϕ]

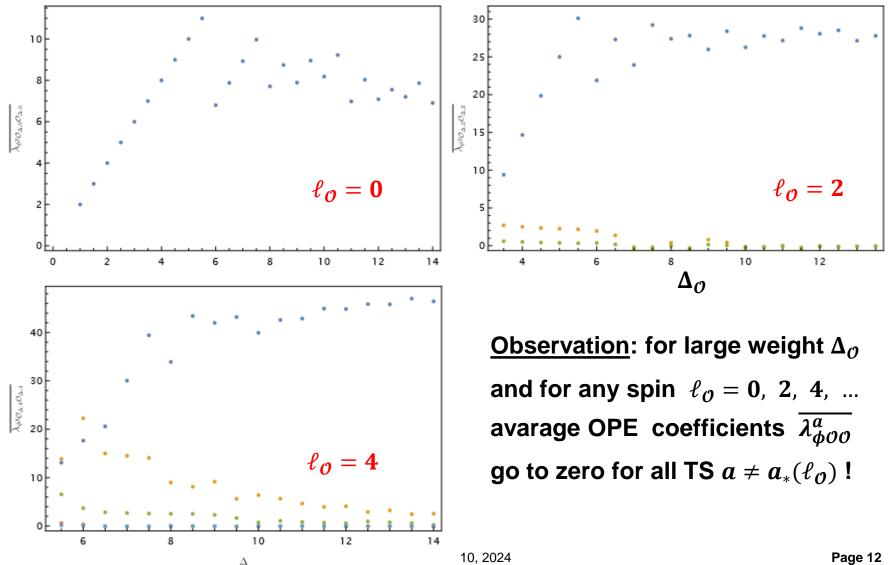
$$g_{\theta}^{\Delta_{\phi},a}(q,y,\theta) = q^{\Delta_{\theta}} \sum_{n_{i};\epsilon=0,1} A_{n_{1}n_{2}n_{3}}^{\epsilon} q^{n_{1}}y^{n_{2}} \sin^{n_{3}}(\theta) \cos^{\epsilon}(\theta)$$

$$n_1 = 0, 1, 2, ..., \infty$$
 $-n_1 - \ell_0 \le n_2 \le n_1 + \ell_0$ $0 \le n_3 \le 2(n_1 + \ell_0)$

- The extension to spinning external fields ϕ has also been worked out. involves one more variable z for polarization & finite summation variable n_4 , ϵ'
- Codes to compute $A_{n_1n_2n_3,(n_4)}^{\epsilon,(\epsilon')}$ @ gitlab.com/russofrancesco1995/thermalblocks
- Extends earlier work by [Gobeil, Maloney, Seng Ng, Wu] ϕ and σ scalar

Application: OPE coefficients of 3D Free Field

From thermal one-point function



Integrability Approach to Thermal Partial Waves

Gaudin models and Conformal Partial Waves

Review at zero temperature

[Buric,Lacroix,Mann,Quintavalle,VS]

Lax connection: Introduce following family of matrix valued 1st order DOs

spectral parameter

$$v_1^{\otimes}$$
 w_n^{\otimes}
spectral parameter
 $\mathcal{L}(w; w_J) \equiv \sum_{J, \alpha} \frac{T^{\alpha} \mathcal{T}_{\alpha}^{(J)}}{w - w_J} = \mathcal{L}_{\alpha} T^{\alpha}$
generators of
complex parameters

Note: *L* is right hand side of Ward identities for currents in 2D WZW model

$$\mathcal{H}_{(p)}^{Gaudin}(w;w_J) = \kappa_{(p)}^{\alpha_1\dots\alpha_p} \mathcal{L}_{\alpha_1} \cdots \mathcal{L}_{\alpha_p} + lot$$

Hamiltonians commute among each other & generate commutant of the generators $\mathcal{T}_{\alpha} = \Sigma \mathcal{T}_{\alpha}^{(J)}$ of conf Ward identities [Feigin,Frenkel,Reshetikhin] \rightarrow Quantum integrable system depends on parameters ω_{I}

OPE Channels and Gaudin Limits

Recovering Casimir operators

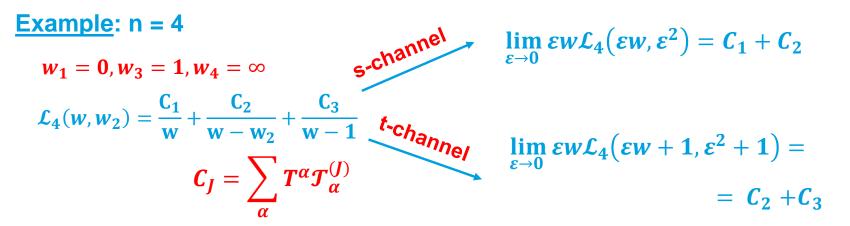
[Buric, Lacroix, Mann, Quintavalle, VS]

Choice of an OPE channel C determines a set Cas_c of Casimir operators Measure weight and spin of intermediate fields

Demanding $Cas_{\mathcal{C}} \subset Ham(w_I)$ fixes w_I to approach a limit w. $w_I^{\mathcal{C}} \in \{0, 1, \infty\}$

$$\mathcal{H}_{(p)}^{[\rho]}(w) = \lim_{\varepsilon \to 0} \varepsilon^{pn_{\rho}} \mathcal{H}_{(p)} \left(w = \varepsilon^{n_{\rho}} w + g_{\rho}(\varepsilon), w_{J} = f_{J}(\varepsilon) \right) \qquad \begin{array}{l} n_{\rho} = n_{\rho}^{\mathcal{C}} \in \mathbb{N} \\ g_{\rho}(w) = g_{\rho}^{\mathcal{C}}(w) \\ f_{J}(w) = f_{J}^{\mathcal{C}}(w) \end{array} \qquad \begin{array}{l} \text{Poly-} \\ \text{nomial} \end{array}$$

Functions $\mathcal{H}_{(p)}^{[\rho]}(w)$, $\rho \in$ vertices of \mathcal{C} , give *complete* set of Hamiltonians.

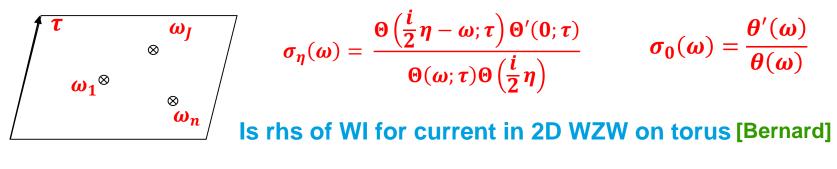


Hitchin systems and Thermal Partial Waves

Going back to finite temperature

Lax connection: Introduce following family of matrix valued 1st order DOs

$$\mathcal{L}(\boldsymbol{\omega};\boldsymbol{\omega}_{J},\boldsymbol{\tau}) = \sum_{i=1} H_{i}\partial_{\mu_{i}} + \sum_{J,\alpha}\sigma_{\alpha(\mu)}(\boldsymbol{\omega}-\boldsymbol{\omega}_{J};\boldsymbol{\tau}) T^{\alpha}\mathcal{T}_{\alpha}^{(J)}$$



$$\mathcal{H}_{(p)}^{Hitchin}(\omega,\omega_{J};\tau) = \kappa_{(p)}^{\alpha_{1}\cdots\alpha_{p}}\mathcal{L}_{\alpha_{1}}\cdots\mathcal{L}_{\alpha_{p}} + lot$$

Hamiltonians commute among each other & with generators $\mathcal{H}_i = \Sigma \mathcal{H}_i^{(J)}$ of Ward identities for dilaton $D = H_1$ & Cartan elements $H_2, H_3, ...$

 \rightarrow (elliptic) quantum integrable system

depends on parameters ω_I, τ .

Hitchin limits and thermal Casimir equations

Example: 1-point thermal partial waves

$${\cal D}^{(1)}$$
, ${\cal H}^{(1)}_i=0$

For N = 1 and after reduction by Ward identities the Lax connection reads

$$\mathcal{L}(\omega;\omega_{1}=0,\tau) = \sum_{i=1}^{\infty} H_{i}\partial_{\mu_{i}} + \sum_{\alpha\in R_{*}} \sigma_{\alpha(\mu)}(\omega;\tau) E_{\alpha}\mathcal{E}_{-\alpha}^{(1)}$$
$$\lim_{\tau\to\infty}\sigma_{\alpha(\mu)}(\omega;\tau) = \frac{\sin\left(\frac{i}{2}\alpha(\mu)+\omega\right)}{\sin\left(\frac{i}{2}\alpha(\mu)\right)\sin\omega} \xrightarrow{\omega=\pm i\varepsilon^{-1}}{\varepsilon\to 0} \frac{i\,e^{\pm\frac{1}{2}\alpha(\mu)}}{\sinh\frac{1}{2}\alpha(\mu)}$$

In limit $\tau \rightarrow i \infty$ we recover Casimir operator for 1-point thermal partial wave

$$\lim_{\substack{\tau \to i \infty \\ \omega \to -i \infty}} H^{Hitchin}_{(2)}(\omega, \omega_1 = 0, \tau) \sim \sum_{i=1}^{\infty} \partial^2_{\mu_i} - \sum_{\alpha \in R_*} \frac{\mathcal{E}^{(1)}_{\alpha} \mathcal{E}^{(1)}_{-\alpha}}{4 \sinh^2\left(\frac{1}{2}\alpha(\mu)\right)} = \delta(\mu) \Delta^{(2)}_{Cas} \,\delta^{-1}(\mu)$$

<u>Remark 1</u>: The results holds for fields ϕ , \mathcal{O} of arbitrary spin and for any d<u>Remark 2</u>: Embedding of thermal Casimir equation into Hitchin systems comes with many new tools from integrability and gauge theory.

Conclusions and Open Questions

Thermal partial waves on $S_{\beta}^{1} \times S^{d-1}$ emerge from wave functions of multiparticle elliptic Hitchin integrable system upon trigonometric degeneration

Given the relation with elliptic Hitchin, can one levarage insights from study of surface defects in N=2^{*} to better understand the thermal 1-point waves ? ↔ Nekrasov-Shatashvili cp. e.g. [Hatsuda,Sciarappa,Zakany] [Bourget,Troost] ...

Can we obtain precise results on OPE coefficients $\lambda^a_{\Phi O O}$ in free field theory ? asymptotics for $\Delta_O \to \infty$, but resolved in a, ℓ_O

Would be interesting to compute thermal partial wave expansion for 1-point function of stress tensor in CFT dual of thermal AdS or AdS-Kerr black hole. AdS-Kerr: not enough to know power series expansion of partial waves in *q*

Conclusions and Open Questions

Is the behavior of (averaged) OPE coefficients $\overline{\lambda_{\phi O O}^a}$ for large Δ_O universal ? .. and if so what does it look like ? for example $\overline{\lambda_{\phi O O}^a}^{(\ell_O, a)} \sim C_{\phi} \Delta_O^{\Delta_{\phi}/3}$

Is also seems likely the relation with Hitchin integrable systems extends to the higher dimensional ``genus-2" conformal blocks that [Benjamin, Lee, Ooguri,Simmons-Duffin] introduced to study asymptotics of HHH OPE.