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Schramm Loewner Evolution (SLE)

Schramm (1999)

Random interfaces in many 2D statistical physics models should converge
to SLEκ with κ > 0.

A few scaling limit results, many more conjectures.

Percolation → SLE6, Ising model → SLE3 (Smirnov et. al.)
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Critical Bernoulli percolation

Bernoulli site percolation on the triangular lattice; Color each
hexagon either black or white with equal probability independently.

Full understanding of the scaling limit:

Conformal invariance of the quadrangle crossing probability
and scaling limit of one interface to SLE6 (Smirnov ’01).

Full scaling limit of interfaces as CLE6 (Camia-Newman ’06).
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Polychromatic arm crossing events and exponents

CR : circle of radius R centered at 0.

Polychromatic j-arm event:

Aj(r ,R) := {∃j disjoint black/white paths connecting Cr to CR ,

and not all of the same color for j > 1}.

CR

Cr

Polychromatic 2-arm event A2(r ,R).

Smirnov-Werner ’01, Lawler-Schramm-Werner ’02

∀j ≥ 1,

P[Aj(r ,R)] = (
r

R
)−αj+o(1) as r/R → 0

with αj =
j2−1
12 for all j ≥ 2; α1 =

5
48 .
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Monochromatic arm events and exponents

Monochromatic j-arm event (j ≥ 2):

Bj(r ,R) := {∃j disjoint black paths connecting Cr to CR}.

CR

Cr

Monochromatic 2-arm event B2(r ,R).

Beffara-Nolin ’11

There exists βj > 0 such that

P[Bj(r ,R)] = (
r

R
)−βj+o(1) as r/R → 0.

β2: today’s topic; βj (j ≥ 3): still unsolved.
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Backbone exponent β2

Monochromatic two-arm exponent β2 is
also called the backbone exponent.

Introduced in physics more than 40
years ago to study electric flow within a
critical percolation cluster.

With high probability, there are
R2−β2+o(1) points on the support of
electric current.

Support of electric current.
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Explicit value of the backbone exponent β2

Nolin-Qian-S.-Zhuang (2023)

β2 is the unique solution in the interval (14 ,
2
3) to the equation

√
36x + 3

4
+ sin

(
2π

√
12x + 1

3

)
= 0.

β2 is a transcendental number. β2 = 0.35666683671288 · · ·

β2 = 0.35661± 0.00005;
Match most recent numerical result, Fang-Ke-Zhong-Deng ’22.

β2 ̸= α1 + α2 =
5
48 + 1

4 = 17
48 = 0.354...;

Disprove conjecture by Beffera-Nolin based on earlier numerical work.

Xin Sun (PKU) Backbone Exponent 7 / 28



Annulus crossing formulae

Cardy has a famous formula for the left-right crossing probability for
percolation on a rectangle.
Smirnov proved it for site percolation on the triangular lattice.

What about the exact probabilities for the annulus crossing?

S.-Xu-Zhuang (2024+)

Let τ = 1
2π log(Rr ) and η(z) = e

iπz
12

∏∞
n=1(1− e2niπz).

P[A1(r ,R)] =

√
3

2
·
η(6iτ)η

(
3
2 iτ

)
η(2iτ)η(3iτ)

;

P[A2(r ,R)] =
√
3 · η(iτ)η(6iτ)2

η(3iτ)η(2iτ)2
.

Predicted by Cardy (’02, ’06) using (non-rigorous) Coulomb gas approach.
Hard to derive via Ito’s calculus, in contrast to the rectangle crossing.
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CFT style expressions for annulus crossing probabilities

Closed channel expansion: let τ = 1
2π

log(R
r
) and q = e−2πτ .

P[A1(r ,R)] =
√

3
2 ·

∑
k∈Z(q

2h
4k− 1

2 ,0−q
2h

4k+3
2 ,0 )∏∞

n=1(1−q2n)
.

P[A2(r ,R)] =
√
3 ·

∑
k∈Z(q

2h0,6k+1−q
2h0,6k+2 )∏∞

n=1(1−q2n)
.

hr ,s =
(3r−2s)2−1

24 ; Kac table for central charge c = 0.

Open channel expansion: let q̃ = e−π/τ .

P[A1(r ,R)] =
∑

k∈Z(q̃
h1,4k+1−q̃

h1,4k+3 )∏∞
n=1(1−q̃n) .

P[A2(r ,R)] =
∑

k∈Z(q̃
h1,6k+2+q̃

h1,6k+4−2q̃
h1,6k+3 )∏∞

n=1(1−q̃n) .

A CFT derivation is missing.
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Monochromatic two-arm crossing formulae

S.-Zhuang (2024+)

Let τ = 1
2π log(Rr ) and q = e−2πτ .

P[B2(r ,R)] =
q−

1
12∏∞

n=1(1−q2n)

∑
s∈S

−
√
3 sin( 2π

3

√
3s) sin(π

√
3s)

cos( 4π
3

√
3s)+ 3

√
3

8π

qs ,

S = {0.440, 2.194± 0.601i , 5.522± 1.269i , 10.361± 2.020i , . . .}.
all (complex) solutions to sin(4π

√
x
3 ) +

3
2

√
x = 0, except 0 and 1

3 .

Relation to a CFT with complex and transcendental spectrum?

Open channel expansion: let q̃ = e−π/τ .

P[B2(r ,R)] = 1− (1 + 3
√
3

4 τ−1)q̃
1
3+ remaining terms of similar form.

Logarithmic structure. Relation to a log CFT?
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Quantum gravity derivation of one-arm exponent

P[one arm event] ∼ n−
5
48 is equivalent to:

If we have n2 vertices on the lattice region, the size of the boundary

connecting cluster is ∼ n91/48. (n2 × n−
5
48 = n

91
48 .)

A vertex v is in the boundary
connecting cluster if the one
arm event occurs at v .
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Knizhnik-Polyakov-Zamolodchikov (KPZ) Relation

A KPZ derivation of the one-arm exponent

1 On random triangulation, the answer is nquantum exponent.

2 91/48 = KPZ(quantum exponent)

Enumeration on RHS is simpler; KPZ(·) is explicit quadratic.
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History of KPZ

Derived from the CFT description of LQG. (KPZ ’88).

“Verified” by enumeration of planar maps. (around ’90)

David, Douglas, Gross, Kazakov, Kostov, Migdal, Shenker ...

Provide a powerful framework to study fractals.

Conjecture Mandelbrot ’82

Frontier of planar Brownian motion
has fractal dimension 4/3.

physics “proof” by KPZ. Duplantier ’98.

rigorous proof via SLE6.
Lawler-Schramm-Werner ’00.

Duplantier-Sheffield (2011): First rigorous KPZ relation.
Starting point of Liouville quantum gravity in probability
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Quantum gravity approach beyond KPZ

The quantum exponent corresponds to β2 is still a transcendental number.
A standard application of KPZ is hard for evaluating β2.

Two crucial tools in our approach:

Conformal radius encoding of arm-exponent;

integrability of Liouville CFT that governs LQG surfaces.

Conformal radius: for a loop η and a point z , CR(z , η) := |f ′(0)|.

f

D

0

η
z

Dη
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Example: One-arm exponent

0
L

d(0,L)

L: outermost CLE6 loop.

P[d(0,L) ≤ ϵ] = P[A1(ϵ, 1)] ≈ ϵα1 .

α1 = inf{x : ECLE6 [d(0,L)−x ] = ∞}.

Koebe 1/4 theorem:
1
4CR(0,L) ≤ d(0,L) ≤ CR(0,L).

α1 = inf{x : ECLE6 [CR(0,L)−x ] = ∞}.

Schramm-Sheffield-Wilson ’09

ECLE6 [CR(0,L)−x ] = 1
2 cos(π

3

√
12x+1)

, hence α1 =
5
48 .
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Conformal Radius Encoding for the Backbone exponent

Consider the outer boundaries of CLE6 loops: a collection of simple loops.
η: outermost one surrounding 0; locally looks like an SLE8/3 curve.

Exist two monochromatic arms in the annulus bounded by η and ∂D.
P[CR(0, η) ≤ ϵ] ≈ pBB(ϵ, 1) ≈ ϵβ2 .

0

η

β2 = inf{x : E[CR(0, η)−x ] = ∞}.
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Nolin-Qian-S.-Zhuang ’23

E[CR(0, η)−x ] = 3
√
3

4 sin(π2
√
12x + 1)

(√
36x+3
4 + sin(2π

√
12x+1
3 )

)−1
.

Derivation of E[CR(0, η)−x ] via Liouville quantum gravity on the disk,
applying method from Ang-Holden-S. (2021).

S.-Zhuang (2024+)

Let τ = 1
2π log(Rr ) and q = e−2πτ .

P[B2(r ,R)] =
q−

1
12∏∞

n=1(1− q2n)

∑
s∈S

−
√
3 sin(2π3

√
3s) sin(π

√
3s)

cos(4π3
√
3s) + 3

√
3

8π

qs .

Derivation of P[B2(r ,R)] via Liouville quantum gravity on the annulus,
applying method from Ang-Remy-S. (2022).
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2D Quantum Gravity coupled with percolation

0

Sample random triangulation of the disk
decorated with a percolation.

Conformally embed the random surface
on the unit disk D.

Continuum limit: LQG on D with γ =
√

8/3 decorated with CLE6.

A random geometry on D with area measure eγϕd2x on D;
length measure e

γ
2
ϕdx on ∂D. (Gaussian multiplicative chaos)

ϕ: a random generalized function, locally looks like a Gaussian free field.

(Convergence proved by Holden-S. under a certain conformal embedding.)
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Liouville field description of the law of the canonical ϕ

The law of the field ϕ is “e−SL[ϕ]Dϕ”; SL[ϕ]: Liouville action on D.

SL[ϕ] =
∫
D(

1
4π |∇ϕ|2 + µeγϕ)d2x +

∫
∂D(

Qϕ
2π + νe

γ
2
ϕ)dl .

Q = 2
γ + γ

2 , µ and ν: cosmological constants.

“e−Liouville actionDϕ” defines a quantum field theory called Liouville theory,
made rigorous by David-Kupiainen-Rhodes-Vargas and follow-up.

Liouville theory is a conformal field theory, with rich integrability:

DOZZ formula: Kupiainen-Rhodes-Vargas.

Conformal bootstrap on closed surface: Guillarmou-KRV.

We need the disk analog of DOZZ (with µ = 0) solved by Remy-Zhu.

We need the annulus conformal bootstrap by B. Wu.
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Cut and glue random surfaces: discrete

η: the outermost outer boundary surrounding a marked interior point.
η cuts the triangulation decorated by percolation into:

+

Sample random triangulation according to Boltzmann weight anbL;
n: number of triangles L: number of boundary edges.∑

ℓ Zoutside(L, ℓ)×ℓ×Zinside(ℓ) = Zwhole(L).

ℓ: the length of η. Zoutside,Zinside,Zwhole: surface partition functions.
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Cut and glue random surfaces: continuum

Zwhole(L) ∝ L−3/2 in the continuum limit for critical weights a and b.
Partition function for the most canonical random disk in

√
8/3-LQG

with one interior marked point and boundary length L.

0

η

0

= +

√
8/3-LQG disk

√
8/3-LQG diskZoutside

Using SLE/LQG coupling (Sheffield’s quantum zipper):
The inside of η is another copy of

√
8/3-LQG disk; Zinside(ℓ) ∝ ℓ−3/2.∫∞

0 Zoutside(L, ℓ)× ℓ× ℓ−3/2dℓ = L−3/2. (proved purely from continuum)
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Conformal Radius from Deforming the Bulk Insertion

∫∞
0 Zoutside(L, ℓ)× ℓ× ℓ−

3
2
+adℓ = L−

3
2
+a · E[CR(0, η)−

1
3
a(a−1)], for all a.

From L−
3
2 to L−

3
2
+a using the field description of the LQG disk.∫

ϕ:D→R F (
∫
∂D e

γ
2
ϕdx)eγϕ(0)e−SL[ϕ]Dϕ ∝

∫∞
0 F (L)e−νLL−

3
2 dL.

ν: boundary cosmological constant in the Liouville action SL[ϕ]
eγϕ(0) is inserted since 0 is the marked point on the

√
8/3-LQG disk.∫

ϕ:D→R F (
∫
∂D e

γ
2
ϕdx)eαϕ(0)e−SL[ϕ]Dϕ ∝

∫∞
0 F (L)e−νLL−

3
2
+a(α)dL.

Same reason for ℓ−
3
2 to ℓ−

3
2
+a, except the smaller disk is bounded by η

instead of ∂D. This difference is compensated by a power of conformal

derivative at 0, which is CR(0, η)−
1
3
a(a−1).
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Solving the conformal radius and the backbone exponent

Equations like (⋆) relating boundary length partition function and
conformal radius were systematically derived in Ang-Holden-S. (2021).∫∞
0 Zoutside(L, ℓ)× ℓ× ℓ−

3
2
+adℓ = L−

3
2
+aE[CR(0, η)−

1
3
a(a−1)]. (⋆)

No formula for Zoutside(L, ℓ) is available for Nolin-Qian-S.-Zhuang (2023)

to solve E[CR(0, η)−
1
3
a(a−1)] using (⋆).

NQSZ found an effective variant of E[CR(0, η)−
1
3
a(a−1)] such that:

still encodes the backbone exponent;

has an equation like (⋆) with a solvable Zoutside(L, ℓ).

The NQSZ variant is defined in terms the SLE6 bubble measure.
The counterpart for Zoutside(L, ℓ) is solved
using the boundary analog of DOZZ due to Remy-Zhu.
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The ratio between E[CR(0, η)−
1
3
a(a−1)] and its NQSZ variant is another

conformal radius moment solved using the AHS method, [D. Wu ’23].

E[CR(0, η)−x ] = 3
√
3

4 sin(π2
√
12x + 1)

(√
36x+3
4 + sin(2π

√
12x+1
3 )

)−1
.

Plugging into (⋆) we get∫∞
0 Zoutside(L, ℓ)ℓ

ixdℓ = 3
√
3

4
sinh(πx)

sinh( 4πx
3

)+
√

3
2
x
Lix−1 for all x .

Zoutside(L, ℓ) = Znt(L, ℓ) + Z t(L, ℓ). Zoutside: surface between η and ∂D

Znt(L, ℓ): η does not touch ∂D. Z t(L, ℓ): η touches ∂D.∫∞
0 Z t(L, ℓ)ℓixdℓ = 3

√
3

4

sinh(πx
3
)

sinh( 2πx
3

)
Lix−1; still by Ang-Holden-S. method,

We now use Znt(L, ℓ) to solve P[B2(r ,R)].
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Quantum gravity on the annulus

or

Znt(L, ℓ): partition function of the random triangulation of the annulus
coupled with a percolation with monochromatic two-arm crossing.

Random triangulation of the annulus without any decoration converges to
the most canonical random annulus in

√
8/3-LQG (Brownian annulus).

with partition function: ZB(L, ℓ) = 1√
Lℓ(L+ℓ)

.
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Brownian annulus and random modulus

When the Brownian annulus is conformally embedded to the
flat annulus Cτ of modulus τ , we still get Liouville field on Cτ ,
but the modulus τ itself is random.

[Ang-Remy-S. ’22] Exact Law of τ : Liouville + ghost∫∫∞
0 e−ν1L−ν2ℓZB(L, ℓ)dℓdL =

∫∞
0 Z ν1,ν2

Liouville(τ) · Zghost(τ) dτ

Z ν1,ν2
Liouville(τ) =

∫
ϕ:Cτ→R e−SL(ϕ)Dϕ; solved by B. Wu (2022).

SL(ϕ) =
∫
D(

1
4π |∇ϕ|2 + µeγϕ)d2x +

∫
∂inCτ

ν1e
γ
2
ϕdl +

∫
∂outCτ

ν2e
γ
2
ϕdl

The formula for ZB(L, ℓ) gives Zghost(τ) = η(2iτ)2,
as predicted in the bosonic string theory, ghost CFT has c = −26;
math conjecture formulated by Guillarmou-Rhodes-Vargas; Remy.
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From ZB(L, ℓ) to Z nt(L, ℓ)

∫∫∞
0 e−ν1L−ν2ℓZnt(L, ℓ)dℓdL =

∫∞
0 ZL(τ) · P[B2(e

−2πτ , 1)] · Zghost(τ) dτ.

∫∞
0 P[B2(e

−2πτ , 1)]η(2iτ)e−
2πx2τ

3 dτ =
√
3
x

(
sinh( 2

3
πx) sinh(πx)

sinh( 4
3
πx)+

√
3
2
x

− sinh(13πx)
)
.

S.-Zhuang (2024+)

P[B2(e
−2πτ , 1)] = q−

1
12∏∞

n=1(1−q2n)

∑
s∈S

−
√
3 sin( 2π

3

√
3s) sin(π

√
3s)

cos( 4π
3

√
3s)+ 3

√
3

8π

qs ,

P[A1(r ,R)] and P[A2(r ,R)] are derived using the same strategy.
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Outlook

Determine βj for j ≥ 3? (NQSZ variant not found yet.)

CFT interpretations of the β2 and P[B2(r ,R)] formulas?

One-arm and dichomatic two-arm exponents naturally appear
in a percolation related CFT proposed recently in physics.

Physics: Jacobsen, Rilbault, Saluer, et.al.: bootstrap formulas for the
probability that four points are on the same cluster or the same loop

Math: Ang, Cai, S., Wu.: rigorously derive the three-point
probability formulas involving the Imaginary DOZZ formula.
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