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despite the amount of knowledge we have of 2d CFTs, a class of 2d CFTs describing physical systems remains almost intractable
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physical observables: probability type quantities concerning geometrical configurations

e.g. Potts/O(n) spin: order parameter o =P /2,0

co Xxx--- /‘ 2‘ 1 —_— (g0...0)

CFT correlator of spin operator

more complicated types of observables characterized by correlation functions of other operators

fractional Kac indices: correlation functions not from BPZ



Recent development @ generic c: bootstrap

four-point functions, probe the non-trivial CFT data, e.g. @ O O @

bootstrap approach [Picco, Ribault, Santachiara, 2016]
spectrum [Jacobsen, Saleur, 2018] & bootstrap [YH, Jacobsen, Saleur, 2020] cluster connectivities
bootstrap O(n) loop model four-point functions

[Grans-Samuelsson, Nivesvivat, Jacobsen, Ribault, Saleur, 2021] [Nivesvivat, Ribault, Jacobsen, 2023]



Recent development @ generic c: bootstrap

four-point functions, probe the non-trivial CFT data, e.g. @ O O g

° bootstrap approach [Picco, Ribault, Santachiara, 2016]
e Spectrum [Jacobsen, Saleur, 2018] & bootstrap [YH, Jacobsen, Saleur, 2020] cluster connectivities
e bootstrap O(n) loop model four-point functions
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despite lack of BPZ-type approach, crucial role played again by Kac operator

Kac operators with Virasoro degeneracy exist &5 ; or ®; o but not both

o e Loy
cluster dilute loop (unlike in c<1 Liouville)

analytic bootstrap (using the BPZ from inserting Kac operators) interchiral blocks
[Teschner, 1995][Zamolodchikov*2, 1995][Estienne, Iklef, 2015][Migliaccio, Ribault, 2017] [YH, Jacobsen, Saleur, 2020]
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Recent development @ generic c: logarithmic CFT

Kac operators with Virasoro degeneracy exist (1)2,1 or (1)1’2

another consequence: bulk cluster/loop CFTs at generic ¢ are logarithmic

[Gorbenko, Zan, 2020][Nivesvivat, Ribault, 2020][Grans-Samuelsson, Liu, YH, Jacobsen, Saleur, 2020]

e.g. spin-2 four-leg operator X : (hy _2(c), hi 2(c))

—9by 5(c) In(22) + 01.2(c)
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with these developments, tackle the bulk c=0 CFTs, time-honored strategy: taking c—0 limit
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three resolutions: [Cardy, 2001] diverge at c=0
|. ... contains another operator )X whose contribution cancels the divergence

percolation/SAW spin OPE, appearance of rank-2 & rank-3 Jordan block [YH, Saleur, 2021]

Il. dimension he(c) vanishes at c=0
dense loop spin (inserting percolation hull) )/

[ . Bo(c) vanishes at c=0 }

all Kac operators, vanishing norm ~c, all correlation functions vanish at c=0

not exactly



Resolution I: spin OPE in cluster model

dilute loop model similar
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dilute loop model similar

generic ¢ OPE:
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(h1,—2(c =0),h12(c =0)) = (2,0) coincidental dimension [YH, Saleur, 2021]
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Three-point functions with percolation spin

¢=0 logarithmic operators written in terms of generic c operators

rank-2 Jordan block (t,T) with top field rank-3 Jordan block (Wy, Wy, W) with top field
b 5 a — A a ~
_ U, = TT + & o
t C/Q(Jj%_)() 2 02/4( u SJ)-+-bL26/2

take the c—0 limit of three-point functions

(021, 21)0(22, 22)T(23))P"° = hgercopg pperco _ hcluster(c =0) = S5
(0(21, 21)0 (22, Z2)t(23, 23))P° = (CBorp°ms + Choy ) P§ %0
logarithmic 3-point  (5(z,, )0 (22, 20)Wo (23, 23)) P = CPPY, gPerco _ (jpereo)?
functions at c=0 <0_(le 51)0'(22, ZQ)qfl(Zg, 53)>perco _ (C(I:gl\;(; s 055,1\1(137'3)]?93 oo¥ o
. o 1 reo :
(0(21,21)0 (22, 22) W2 (23, Z3))P° = (Coou, + Coou,Ts + QCE?\ISOT.%)P%

consistent with conformal Ward identities T3 =1In %
213713423223



Resolution | [YH, Saleur, 2021]

leading log OPE of percolation spin operator:
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leading log OPE of percolation spin operator:
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leading log OPE of percolation spin operator:

erco perco perco
P, NP 0) = (22225 {1 +.+ 2 [t (2T + SR T | + et
(o

perco perco perco

=2 "o Iy 2" Y =\2 27 02
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will include contribution from ®o1, ®g 2 later

zero-norm state appears at ¢=0 in a continuous family of CFTs

y

study the “proper normalization” of operators
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Continuous family of non-unitary CFTs

to study normalization operators, going back to generic c, consider the family of non-unitary CFTs
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Conformal data in unitary CFTs

recall how the amplitude arise from conformal data:

(0000) AQFO A9(c) = Co0s(¢)
Z P b C) = B@(C)

reflection positive CFTs: Bg > 0

isolated unitary CFTs, usually choose unit normalization
B =1

unitarity: CC%(’)(P > () = positive amplitude —> positive bootstrap



Real non-unitary CFTs

in real CFTs, exist real operators, correlations satisfying  [Gorbenko, Rychkov, Zan, 2018]
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in real CFTs, exist real operators, correlations satisfying  [Gorbenko, Rychkov, Zan, 2018]
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Real non-unitary CFTs

in real CFTs, exist real operators, correlations satisfying  [Gorbenko, Rychkov, Zan, 2018]

<01 (1’1)02(562) S5 % On(fbn)>* = <01 (xl)Og(xg) i 5 On(xn)>

three-point function: (01 (1) (x2)O3(x23))* = (O1(21)O2(22)O3(x3))

Co,0,0, = C0,0,05 Co, 0,0, >0
critical geometrical models: 0<Q<4 Potts cluster model, O(-2<n<2) loop model

manifestly real: random objects with real positive measure

reflection positivity violated [Biskup, 1998]

cluster/loop models are described by real non-unitary CFTs
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Operator normalization

real CFT 3-point functions describing

to understand the operator normalizations geometrical observables

Aa,cluster(c) — Cga@ (C)
A%,Cluster ® B(b (C)
2,1
1.0r
0.5¢

negativity: negative norm states

2

singularity: zero norm states
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focus on Kac operators in four-spin correlator using analytic bootstrap
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Kac operators in cluster model simitr in loop models

o,cluster
cluster __ ~ Pit1,1
degenerate 3 ; — analytic Ry =
D
[YH, Jacobsen, Saleur, 2020] .
amplitudes of Kac operators fully a cluster _ H Rcluster c—93
determined up to an overall constants T <0000 cluster
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L1 consistent with three-point constant from [Delfino, Viti, 2010]
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Kac operators in cluster model

similar in loop models

o,cluster
1 — T®iq,
degenerate ®;; — analytic Ry} a— ﬁ
[YH, Jacobsen, Saleur, 2020] o .
amplitudes of Kac operators fully a cluster _ H Rcluster e =93
determined up to an overall constants T <0000 cluster
c? . (c) Ao cluster (g —1 tested in bootstrap
Ag’du“er = ;L‘“E) (@1.1) consistent with three-point constant from [Delfino, Viti, 2010]
e,l e C
CI>e,1
_ 442 ) )
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r
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examine the poles and zeros of the recursion Rdubﬁer in 52 (equivalently central charge)



Kac operators in cluster model simiarin ioop models

o,cluster
cluster __ ~ Pit1,1
degenerate 3 ; — analytic Ry =
D
[YH, Jacobsen, Saleur, 2020] .
amplitudes of Kac operators fully a cluster _ H Rcluster c—93
determined up to an overall constants T <0000 cluster

c? . (c) Ao cluster (g —1 tested in bootstrap
Ag’d“ter = ;Le’z) ( 1’1) consistent with three-point constant from [Delfino, Viti, 2010] @
e,1 = C
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| Ageuster  Z5 BT (5 ~ 282 )
Rc ubtor - i+1,1 -

r
,cluster — ; j ) J
AG T (1= 55T (G +4) T (1- 83T (35 - §)

to guarantee real and finite 3-point constants for % < 8% < 1 take the norm B:
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Higher Kac operators
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Higher Kac operators

bis B (7DD DY) rompoes

’ 3 5 5 7 4
<i>5,1 By,  ~ ([52—%)2(52_2)2@2_3)2(62_%2(52_%)@2_g) from zeros

2\ 2 3\ 2 5} 5
2 2 2 2
X (ﬁ B §) (5 a Z) (ﬁ - g) (5 a 6) " this pattern repeats to higher Kac operators

(¢)

a pair of pole and zero could be removed together, keeping non-negative C?

co®. 1

norm of &, ; at c=0: triple zero or single zero?

norm of ci>5 1 at c=0: quadruple zero or double zero?

should examine their amplitudes in other four-point functions

——> compare with c<1 Liouville CFT operator normalizations
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two Kac operators ®;; and ®; 2— two sets of recursive amplitudes
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Comparison with c<1 Liouville CFT

a family of CFTs closely related to conformal loop ensemble (CLE)

many works from recent probabilistic constructions

analytic solution from bootstrap [Teschner, 1995][Zamolodchikov*2, 1995]

two Kac operators ®;; and ®; 2— two sets of recursive amplitudes

different from loop model CFTs
e Liouville: two sets of recursive amplitudes, continuous diagonal spectrum

e Loop model: one set of recursive amplitudes, discrete diagonal/non-diagonal spectrum
conformal data of loop model diagonal fields formally coincide with c<1 Liouville [Ribault, 2022]

compare the Kac operator normalizations with c<1 Liouville CFT normalization of operator with the same momentum

1/ T 1
P.s= §(B—Sﬁ> BP_HFB(Bilj:2P)
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if indeed the normalization of Kac operators in cluster/loop coincide with c<1 Liouville CFT
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higher Kac operators have arbitrarily higher order zeros at ¢=0 in their norms



if indeed the normalization of Kac operators in cluster/loop coincide with c<1 Liouville CFT
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higher Kac operators have arbitrarily higher order zeros at ¢=0 in their norms
interesting implications:

e arbitrarily higher rank Jordan blocks in the c=0 bulk CFTs — Kac operators sit at the bottom

suggested by lattice algebraic representation studies [Gainutdinov, Read, Saleur, Vasseur, 2014]
such higher rank Jordan blocks do not appear in four-spin correlator, probed by other operators
what are the physical interpretations of these arbitrarily higher powers of logarithm in correlation functions?



if indeed the normalization of Kac operators in cluster/loop coincide with c<1 Liouville CFT

B~ (-3 (- (- D -9 (#- D)
B~ (F-3) (#-3) (#-5) (#-3) (P-2) (P -5) (- 2) (P -2 - 3)
higher Kac operators have arbitrarily higher order zeros at c=0 in their norms

interesting implications:

e arbitrarily higher rank Jordan blocks in the c=0 bulk CFTs — Kac operators sit at the bottom

suggested by lattice algebraic representation studies [Gainutdinov, Read, Saleur, Vasseur, 2014]
such higher rank Jordan blocks do not appear in four-spin correlator, probed by other operators
what are the physical interpretations of these arbitrarily higher powers of logarithm in correlation functions?

e cluster and dense loop model spectra: higher rank Jordan blocks requires more operators with
coincidental dimensions at c=0 for mixing — a bigger CFT of both percolation cluster and hull
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operators normalization

dimensions coincide

- (¢(2,2)9(0,0)) = By(c)Ps ~ B(’i,(c — ¢.)P5 + o(c —¢,) horms acquire first order zero
rank-

(2, 2)$(0,0)) = By(c)Ps ~ B(c — c.)P5 + ofc — c.) By =-B,
P = —1
2 = _2h(c)32h(c) _ ) 0 . _ .
z Z L (2;2) _ (2;2) (2;1) — ~P*
top field: O 7<B¢(c) + B¢(c)) (O (2,2)0 (0,0)) =P

bottom field: O = ¢ or 1 logarithmic
coupling



Constructing Jordan blocks

analyzed the need of

. consider a generic construction of Jordan blocks two operators, at c,
operators normalization

dimensions coincide
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rank-
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Constructing Jordan blocks

analyzed the need of

o i i i lock
operators normalization consider a generic construction of Jordan blocks two operators, at c,

dimensions coincide

- (¢(2,2)9(0,0)) = By(c)Ps ~ Bés(c — ¢.)P5 + o(c —¢,) horms acquire first order zero
rank-

((2,2)1(0,0)) = By (c)P§ = By (c — c.)P5 + o(c — c.) B), = -B,
Ps = -
2 = _2h(c) 52h(c) é . . '
< < - (2:2) _ (2:2) (. =\ (2;1) -
top field: O\ = < + ) O z2,2)0 0,0)) =~P
op fie Y By(0) By ( 4 (2, 2) (0,0)) ’7| 2
bottom field: O = ¢ or 1 B logarithmic
. é coupling
mY = h. — h
two point function of top field: conformal Ward identities ¢ Y

h. — R
(0(2;2)(z, 2)0(2;2)(0, 0)) = ( _ 272% In(z2) + const.)IP”Q‘ :/( — 2v1In(z2) + const.)]P’z
¢

very similar construction for higher rank Jordan blocks

(2)
B

. . . . . . b
logarithmic couplings computed with norms and dimensions, e.g. rank-3 a=- (@R, =, — R (R, — L)
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Energy density logarithmic pair
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Energy density logarithmic pair

energy density operator €= ?2’1’ cluster , norms: single zero at c=0 also in dilute loop
®, 3, dilute loop .
5 5 two-hull t
percolation: (hg1,ho1) = (ho2,ho2) = (g7 g) wo-hull operator
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Energy density logarithmic pair

energy density operator & = { 21 cluster norms: single zero at c=0 also in dilute loop
®, 3, dilute loop .
9 9 two-hull t
percolation: (hg 1,h21) = (ho,2, ho2) = (g, g) wo-hull operator
at c=0 e
SAW: (hy3,h13) = (h1o,h :(_,_)
(M, ) = (0, o) 33 \ hull operator
ci)2 1 (i)o 2 : erco 1 5
= + : , ercolation perco — S
top field: &= T\ By @ T By, @ b ! 2(hyy —ho) 4
' ‘i)l,g + (i)l,O SAW SAW 1 . 5
"\ Bs,,@ T By, @ ) o °

TRy M) 3
three-point functions with spin from c—0 limit
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Four-spin correlator in percolation

(perco perco

contribute to spin OPE: (27) 2ot %‘5 (éperco + In(2Z)ePe™e° + C%riogpe“ﬁ S

ooe
four-spin correlator in percolation:
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Four-spin correlator in percolation

perco

. ) B gperco «
contribute to spin OPE: (27) 2ot %‘5 (gpefco + In(23)ePere C%rscogperco> 4o
ooE

four-spin correlator in percolation:

{o(ea)o(l)a (2, 2)a(0) )P
= <1 +e % (0, +71n(z2)) + (22 + 22 29T (9 1 bln(ez)) + ...

b2

02
+ (zz)Q%‘I’O (ag + a1 In(22) + e 1n2(z,§)> + .. >
ag 2

consistent with taking the c— 0 limit of four-spin correlator [YH, Saleur, 2021]



Four-spin correlator in percolation

(/perco PErco

contribute to spin OPE: (27) 2ot %‘5 <gpef°‘0 + In(23)ePere C%ZTECO 8perco) 4o

ooe

four-spin correlator in percolation:

<O’(OO)(T(1)0’(Z7 2)0—(0)>perco

=(28) 2" <1 +§(z2)h€% (61 +v1n(22)) + (2% 4+ 2°) C‘b’gT 6 + bln(zZ2)

RURTE 02 RS N
W (25)2%(@ X9y In{22) - %1n2(22)> 4+ .. >
consistent with taking the c— 0 limit of four-spin correlator [YH, Saleur, 2021]

..‘very interesting recent probabilistic construction [Camia, Feng, 2024]:

a physical interpretation of the logarithm: summing over the probabilities of independent events of the
same order at different scales contributing to a certain geometrical configuration
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now examine the OPE of the energy density operator itself
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Kac operators: Virasoro degeneracy constrains the fusion rules, no X to cancel the singularity
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now examine the OPE of the energy density operator itself

ho(c)
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Resolution Il

now examine the OPE of the energy density operator itself

ho(c)

back to c—0 catastrophe:  O(z,2)0(0,0) = (2z) 2" By(c) <1 + o/
&

(z2T+Z2T)+...>

h%,1(c)
c?/4
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®y.1(2,2)®5,1(0,0) = (22)~2h21(e) <1 + %;C) (2°T + 2°T) +

(22)*TT + ... + Doy 3y 135, (¢)(22)22 O3 + ... )

Kac operators: Virasoro degeneracy constrains the fusion rules, no X to cancel the singularity

A iohi R ~ indeed what we see
only resolution: vanishing norm Bg  (¢) ~ ¢ e s
B‘i’z_l
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consider the properly normalized energy density operator
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at generic c, satisfy BPZ

Fi(z) = (1—2)1‘%,21‘%1:(2_ Sl- 52— 5z) Bl =(1-2)

Four-energy correlator from BPZ

(@1 Do Do, 1D21) = |Fi(2)|” + R(c)|F31(2)]?
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Four-energy correlator from BPZ

at generic c, satisfy BPZ (Bg 1 Po 1P 1Po1) = |Fu(2)]? + R(c)|Fz1(2)]?

_ s q_s 1 2
Filz) = (1 —2) 757 2§2F(2—3 1 2—@,z>

__3_ _1_ 1 1 2
627 _@7 FB,l(z):(l—Z)l 2522232F<1————Z>

for the properly normalized (i)g’l

B (e)h3,(c) C: & pr©
B, B . B i — (57)2h2,1(0) ) g2 ®2,1 ’ By B $2,192,1TT A2
(@2,1P2,1P2,1P2,1) = (22) 5.+ /2 (27 +27%) + Br(0) (22)
+ (%2'1&2']&3’](6 (zz)t2n(0) 4 } vanish as ¢c—0
DY H
B&DS’](C)

correlation functions of Kac operators vanish at c=0 [Cardy, 2001]



Three-point functions of energy operator

using the results from previous analysis, consider cluster decomposition directly at c=0
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using the results from previous analysis, consider cluster decomposition directly at c=0

generic ¢ three-point functions (®g1(21,21)Po 1 (22, Z2) (23, 23))
<@2,1(Z'17 21)‘1)271(227 22)X(337 23)> =0 <q)271 (Zl, 21)@271 (22, ZQ)TT(Z{;, 23)>
(@a,1(21,21)P2,1(22, 22)T (23, 23)) = ha,1(c)P5 (@2,1(21, 21) P21 (22, 22)P3,1(23, 23))

0,
= h%l(c)Pg )

= CCI>2,1<I>2,1<I>34,1 <C>P§ ’

. T X
c=0 operators ePIC = Py 4 t = b(c/2 + BX(C)) Uy = CL(
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Three-point functions of energy operator

using the results from previous analysis, consider cluster decomposition directly at c=0

generic ¢ three-point functions (®21(21,21)P21(22,22)¥(23,23)) = O,
(P2,1(21,21) P21 (22, 22) X (23, 23)) =0 (®g1(21,21)Pa 1 (20, 22)TT(23,23)) = hg’l(c)Pg ,
(@a,1(21,21)P2,1(22, 22)T (23, 23)) = ha,1(c)P5 (@2,1(21,21)P2,1(22,22)P3.1(23,23)) = Cay18,,85,(c)P3,

. T X d T ]
c=0 operators PO =Py t= b( + ) Uy = a(B LI + ))

o2 " B0 5., (© A (e
0 (e(21,21)e(22, 22)T(23))°"° = 0 (e(z1, 21)e(22, 22) Wa(23, 23) )P = (CEy, + Clyy ms)Ps
c—0: ~ -~  er
(e(21, 21)e(22, Z2)t (23, 23))P"° = CPOPY  (e(21, Z1)e(22, 22)Wo (23, 23))P" = 0,
(perco _ ppperco _ _2_5 (wereo _ (hgefCO)Q 125 vanishing three-point constants:
eet — Ol - cel, bzl)e2rco ~ 519 reduced logarithm
simple OPE:
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Four-point function of energy operator

four-point function (g(00,00)e(1,1)e(z, 2)e(0, 0))Pere

= lim (z212)%" (e(z1,71)e(1, 1)e(z, 2)e(0, 0))Pere°

Z1,21—>00
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Four-point function of energy operator

four-point function (e(00,00)e(1,1)e(z, 2)e(0, 0))Pere
= lm (27)%7 (e(21, 21)e(1, 1)e(z, 2)e(0, 0)yPer°
Z1,21—>00
_ Z<6perc0|€perco(17 1)|¢>Gy—1<¢‘€perco(z7 2)|€perco>
{v}
non-vanishing contribution (ePCre0|gPereo(1, 1) W) 1 (W [P (2, 2)|ePe)
a
perco 2
= perco —N=—=DpReree (055‘1/1 ) X9
(e(00)e(1)e(z, 2)e(0))Pr® =(22) """ ——(22)"+ . e non-vanishing
4 . .
perco hgerco ® n n-l ar’thm’c
=(2z) "2k 2 , )2 (5B + & s on-fog
(012°)

. iy = SAW = — B A (Os?ﬁlfw)z _
similarly for energy density in SAW (e(00)e(1)e(z, 2)e(0)) = (BB) "= ——L—(22)° +...
a
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a puzzle to solve:

e assumed: two- and three-point functions at c=0 are obtained by taking the c—0 limit of
generic ¢ — reasonable and consistent
e four-spin correlator at c=0 can be constructed using these conformal data

e energy operator — zero norm state:

cluster decomposition of Kac operators at c=0 (bottom of Jordan blocks) are not obtained by

taking c—0 limit of generic ¢

e need alternative construction to check: lattice? probabilistic?

e algebraic aspect: what happens to the Virasoro degeneracy of energy density at c=07?
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Conclusions

“c—0 catastrophe” and resolutions

OPE of spin operator probes rank-2 and rank-3 Jordan blocks, logarithmic four-spin correlators
[YH, Saleur, 2021]

normalization of Kac operators in cluster/loop CFTs

analytic bootstrap  real non-unitary CFTs  Kac operators acquire zero norm at c=0

simplest Kac operator — energy density in percolation & SAW >< \

first order zero in the norm, mix into logarithmic multiplets

2- and 3-point functions of energy density 8

non-vanishing four-energy correlator

to understand: cluster decomposition of zero-norm operators & Virasoro degeneracy at c=0



Thank you |



