(New) Global bounds on heavy neutrino mixing

Based on:
M. Blennow, E. Fernández Martínez, J. Hernández-García, J. López-Pavón, X. Marcano, DN [2306.0 I 040]

UÁM
Universidad Autónoma de Madrid

ift
Instituto de Teórísica UAM-CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Searches for heavy neutrinos

Plethora of searches for heavy neutrinos

O Above EW scale, precision global bounds dominate

Why update the global fit?

Not included, you canUpdates on key observables:
\star New measurements of $M_{W}(\overline{\mathrm{CDF}-\mathrm{II}}, \mathrm{ATLAS})$
\star Anomaly $(\sim 2-3 \sigma)$ in $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$
\star LEP anomaly ($\sim 2 \sigma$) in N_{ν} goneImprovement of the analysis:

* Correlations between observables
* Better statistics: Bootstrapping

Heavy neutrinos and non-unitarity

\bigcirc © In general: $\quad N=(1-\eta) \frac{U,}{\square} \quad \eta^{\dagger}=\eta$
Diagonalises m_{ν}

Heavy neutrinos and non-unitarity

O In general: $\quad N=(1-\eta) \frac{U,}{\downarrow} \quad \eta^{\dagger}=\eta$

O In the context of heavy neutrinos:

$$
-\mathscr{L} \supset Y_{\nu} \bar{L}_{L} \tilde{H} N+\frac{1}{2} M_{M}{\overline{N^{c}}} N
$$

$$
\underbrace{\eta=\frac{1}{2} \Theta \Theta^{\dagger}}_{\text {Mass-independent }} \quad \Theta \equiv \frac{v}{\sqrt{2}} Y_{\nu} M_{M}^{-1}
$$

Heavy neutrinos and non-unitarity

© In general:

$$
N=(1-\eta) \underset{\text { Diagonalises } m_{\nu}}{U, \quad \eta^{\dagger}=\eta}
$$

© In the context of heavy neutrinos:
$-\mathscr{L} \supset Y_{\nu} \bar{L}_{L} \tilde{H} N+\frac{1}{2} M_{M} \overline{N^{c}} N$

$$
\underbrace{\eta=\frac{1}{2} \Theta \Theta^{\dagger}}_{\text {Mass-independent }} \quad \Theta \equiv \frac{v}{\sqrt{2}} Y_{\nu} M_{M}^{-1}
$$

\bigcirc η is positive-definite $\left\{\begin{array}{l}\eta_{\alpha \alpha} \geq 0 \\ \left|\eta_{\alpha \beta}\right| \leq \sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}} \text { (Schwarz inequality) }\end{array}\right.$

Observables

© We consider only tree-level η-dependence and loop-level SM correctionsWe consider the following observables:
$\star M_{W}$ and $s_{\text {eff }}^{2}$

* Z-pole observables
* LFU ratios
$\star\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ measurements
* Charged lepton flavor violation (cLFV) constraintsWe consider onWe consider the fc
$\star M_{W}$ and $s_{e f f}^{2}$
\star Z-pole observable
* LFU ratios
$\star\left|V_{u d}\right|$ and $\left|V_{u s}\right| \mathrm{me}$
\star Charged lepton flavoı

Cases under study

Minimal scenario with 2 heavy neutrinos: 2 N -SS(Previously missing in the literature)
(Next-to-minimal scenario with 3 heavy neutrinos: $3 \mathrm{~N}-\mathrm{SS}$General scenario with arbitrary number of heavy neutrinos: G-SS

Cases under study

Minimal scenario with 2 heavy neutrinos: $2 \mathrm{~N}-\mathrm{SS}$(Previously missing in the literature)
\star Correlations from m_{ν}
$\star\left|\eta_{\alpha \beta}\right|=\sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$
\star LFV with LFC
(Next-to-minimal scenario with 3 heavy neutrinos: 3 N -SSGeneral scenario with arbitrary number of heavy neutrinos: G-SS

Cases under study

Minimal scenario with 2 heavy neutrinos: $2 \mathrm{~N}-\mathrm{SS}$(Previously missing in the literature)
\star Correlations from m_{ν}
$\star\left|\eta_{\alpha \beta}\right|=\sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$
\star LFV with LFC
(Next-to-minimal scenario with 3 heavy neutrinos: $3 \mathrm{~N}-\mathrm{SS}$General scenario with arbitrary number of heavy neutrinos: G-SS
$\star \eta_{e e}, \eta_{\mu \mu}$ and $\eta_{\tau \tau}$ independent
$\star\left|\eta_{\alpha \beta}\right| \leq \sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$

* LFV decoupled from LFC

Results: 2 heavy neutrino case

© Stringent bounds $\sim 10^{-5}-10^{-4}$

2N-SS	Normal Ordering		Inverted Ordering	
	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$
$\eta_{e e}=\frac{\left\|\theta_{e}\right\|^{2}}{2}$	$6.4 \cdot 10^{-6}$	$9.4 \cdot 10^{-6}$	$[0.98,4.4] \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$
$\eta_{\mu \mu}=\frac{\left\|\theta_{\mu}\right\|^{2}}{2}$	$6.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-4}$	$[0.20,1.0] \cdot 10^{-6}$	$3.2 \cdot 10^{-5}$
$\eta_{\tau \tau}=\frac{\left\|\theta_{\tau}\right\|^{2}}{2}$	$8.6 \cdot 10^{-5}$	$2.1 \cdot 10^{-4}$	$[0.94,2.8] \cdot 10^{-5}$	$4.5 \cdot 10^{-5}$
$\operatorname{Tr}[\eta]=\frac{\|\theta\|^{2}}{2}$	$1.6 \cdot 10^{-4}$	$2.9 \cdot 10^{-4}$	$[1.1,4.8] \cdot 10^{-4}$	$6.0 \cdot 10^{-4}$
$\left\|\eta_{e \mu}\right\|=\frac{\left\|\theta_{e} \theta_{\mu}^{*}\right\|}{2}$	$8.3 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$	$[0.37,1.0] \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$
$\left\|\eta_{e \tau}\right\|=\frac{\left\|\theta_{e} \theta_{\tau}^{*}\right\|}{2}$	$1.5 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$	$[0.25,1.2] \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$
$\left\|\eta_{\mu \tau}\right\|=\frac{\left\|\theta_{\mu} \theta_{\tau}^{*}\right\|}{2}$	$7.2 \cdot 10^{-5}$	$1.3 \cdot 10^{-4}$	$[0.38,3.0] \cdot 10^{-6}$	$3.5 \cdot 10^{-5}$

Restrictive flavor structure + cLFV: tight constraints

Results: 3 heavy neutrino case

$\sim 10^{-3}$ bounds on $\eta_{e e}, \eta_{\tau \tau}$ and $\sim 10^{-5}$ bound on $\eta_{\mu \mu}$| 3N-SS | Normal Ordering | | Inverted Ordering | |
| :---: | :---: | :---: | :---: | :---: |
| | $68 \% \mathrm{CL}$ | 95\%CL | 68\%CL | 95\%CL |
| $\eta_{e e}=\frac{\left\|\theta_{e}\right\|^{2}}{2}$ | [0.28, 0.99$] \cdot 10^{-3}$ | $1.3 \cdot 10^{-3}$ | [0.31, 1.0] $\cdot 10^{-3}$ | $1.4 \cdot 10^{-3}$ |
| $\eta_{\mu \mu}=\frac{\left\|\theta_{\mu}\right\|^{2}}{2}$ | $1.3 \cdot 10^{-7}$ | $1.1 \cdot 10^{-5}$ | $1.2 \cdot 10^{-7}$ | $1.0 \cdot 10^{-5}$ |
| $\eta_{\tau \tau}=\frac{\left\|\theta_{\tau}\right\|^{2}}{2}$ | [0.3, 3.9] $\cdot 10^{-4}$ | $1.0 \cdot 10^{-3}$ | $1.7 \cdot 10^{-4}$ | $8.1 \cdot 10^{-4}$ |
| $\operatorname{Tr}[\eta]=\frac{\|\theta\|^{2}}{2}$ | $[0.35,1.3] \cdot 10^{-3}$ | $1.9 \cdot 10^{-3}$ | $[0.33,1.0] \cdot 10^{-3}$ | $1.5 \cdot 10^{-3}$ |
| $\left\|\eta_{e \mu}\right\|=\frac{\left\|\theta_{e} \theta_{\mu}^{*}\right\|}{2}$ | $8.5 \cdot 10^{-6}$ | $1.2 \cdot 10^{-5}$ | $8.5 \cdot 10^{-6}$ | $1.2 \cdot 10^{-5}$ |
| $\left\|\eta_{e \tau}\right\|=\frac{\left\|\theta_{e} \theta_{\tau}^{*}\right\|}{2}$ | [1.3, 5.1] 10^{-4} | $9.0 \cdot 10^{-4}$ | $3.3 \cdot 10^{-4}$ | $8.0 \cdot 10^{-4}$ |
| $\left\|\eta_{\mu \tau}\right\|=\frac{\left\|\theta_{\mu} \theta_{\tau}^{*}\right\|}{2}$ | $5.0 \cdot 10^{-6}$ | $5.7 \cdot 10^{-5}$ | $3.8 \cdot 10^{-6}$ | $1.8 \cdot 10^{-5}$ |More flexible flavor structurecLFV in $\mu-e$ sector strongly constrains $\eta_{\mu \mu}$

Results: arbitrary number of heavies

($\sim 10^{-3}$ bounds on $\eta_{e e}, \eta_{\tau \tau}$ and $\sim 10^{-4}$ bound on $\eta_{\mu \mu}$

© Physical boundary $\eta_{\alpha \alpha} \geq 0$ induces deviations from Wilks' theorem

Conclusions

Precision bounds on heavy neutrinos start dominating above EW scaleFirst global bounds on 2 neutrino caseBounds substantially change between setups ($2 \mathrm{~N}-\mathrm{SS}, 3 \mathrm{~N}-\mathrm{SS}, \mathrm{G}-\mathrm{SS}$)Quantified deviations from Wilks' theorem
Thanks for your attention!

Backup

Observable	SM prediction	Experimental value	
$\begin{gathered} M_{W} \simeq M_{W}^{\mathrm{SM}}\left(1+0.20\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ s_{\mathrm{eff}}^{2 \text { Tev }} \simeq s_{\mathrm{eff}}^{2 \mathrm{SM}}\left(1-1.40\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ s_{\mathrm{eff}}^{2 \mathrm{LHC}} \simeq s_{\mathrm{eff}}^{2 \mathrm{SM}}\left(1-1.40\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \end{gathered}$	$\begin{gathered} \hline 80.356(6) \mathrm{GeV} \\ 0.23154(4) \\ 0.23154(4) \end{gathered}$	$\begin{gathered} \hline 80.373(11) \mathrm{GeV} \\ 0.23148(33) \\ 0.23129(33) \end{gathered}$	[76] [76]
$\begin{gathered} \Gamma_{\text {inv }}^{\mathrm{LHC}} \simeq \Gamma_{\text {inv }}^{\mathrm{SM}}\left(1-0.33\left(\eta_{e e}+\eta_{\mu \mu}\right)-1.33 \eta_{\tau \tau}\right) \\ \Gamma_{Z} \simeq \Gamma_{Z}^{\mathrm{SM}}\left(1+1.08\left(\eta_{e e}+\eta_{\mu \mu}\right)-0.27 \eta_{\tau \tau}\right) \\ \sigma_{\text {had }}^{0} \simeq \sigma_{\text {had }}^{0 \mathrm{SM}}\left(1+0.50\left(\eta_{e e}+\eta_{\mu \mu}\right)+0.53 \eta_{\tau \tau}\right) \\ R_{e} \simeq R_{e}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ R_{\mu} \simeq R_{\mu}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ R_{\tau} \simeq R_{\tau}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \end{gathered}$	$\begin{gathered} 0.50145(5) \mathrm{GeV} \\ 2.4939(9) \mathrm{GeV} \\ 41.485(8) \mathrm{nb} \\ 20.733(10) \\ 20.733(10) \\ 20.780(10) \end{gathered}$	$\begin{gathered} 0.523(16) \mathrm{GeV} \\ 2.4955(23) \mathrm{GeV} \\ 41.481(33) \mathrm{nb} \\ 20.804(50) \\ 20.784(34) \\ 20.764(45) \end{gathered}$	$[77]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$
$\begin{aligned} & R_{\mu e}^{\pi} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\tau \mu}^{\pi} \simeq\left(1-\left(\eta_{\tau \tau}-\eta_{\mu \mu}\right)\right) \\ & R_{\mu e}^{K} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\mu e}^{\tau} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\tau \mu}^{\tau} \simeq\left(1-\left(\eta_{\tau \tau}-\eta_{\mu \mu}\right)\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 1.0010(9) \\ 0.9964(38) \\ 0.9978(18) \\ 1.0018(14) \\ 1.0010(14) \end{gathered}$	[78] [78] [78] [78] [78]
$\begin{aligned} &\left\|V_{u d}^{\beta}\right\| \simeq \sqrt{1-\left\|V_{u s}\right\|^{2}}\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{\tau \rightarrow K \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}+\eta_{\mu \mu}-\eta_{\tau \tau}\right) \\ &\left\|V_{u s}^{\tau \rightarrow K, \pi}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{L} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{L} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|V_{u s}^{K_{s} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{s} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|V_{u s}^{K^{ \pm} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K^{ \pm} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|\frac{V_{u s}}{V_{u d}}\right\|^{K, \pi \rightarrow \mu \nu} \simeq \frac{\left\|V_{u s}\right\|}{\sqrt{1-\left\|V_{u s}\right\|^{2}}} \end{aligned}$	$\begin{gathered} \hline \sqrt{1-\left\|V_{u s}\right\|^{2}} \\ \left\|V_{u s}\right\| \\ \sqrt{1-\left\|V_{u s}\right\|^{2}} \end{gathered}$	$\begin{gathered} 0.97373(31) \\ 0.2236(15) \\ 0.2234(15) \\ 0.2229(6) \\ 0.2234(7) \\ 0.2220(13) \\ 0.2193(48) \\ 0.2239(10) \\ 0.2238(12) \\ 0.23131(53) \end{gathered}$	$[76]$ $[79]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$

Backup

Backup

Backup

Backup

