The Laser Und XFEL Experiment at DESY: Physics opportunities and recent prospects

P. Grutta (University of Padua, INFN) on behalf of LUXE Collaboration

MoriondEW24. La Thuile, 28/03/24

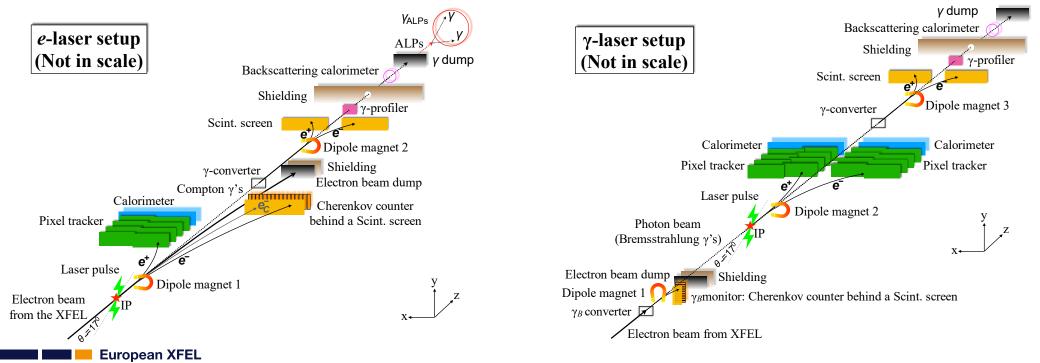
TDR: https://arxiv.org/abs/2308.00515 CDR: https://arxiv.org/abs/2102.02032


HELMHOLTZ

2

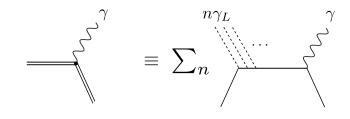
LUXE in a nutshell

LUXE is an experiment at DESY to perform precision measurements of the transition into the non-linear regime of strong field quantum electrodynamics (SFQED), and to search for new particles beyond the Standard Model coupling to photons.

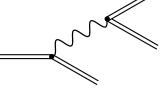

58th Rencontres de Moriond 2024

3

LUXE in a nutshell

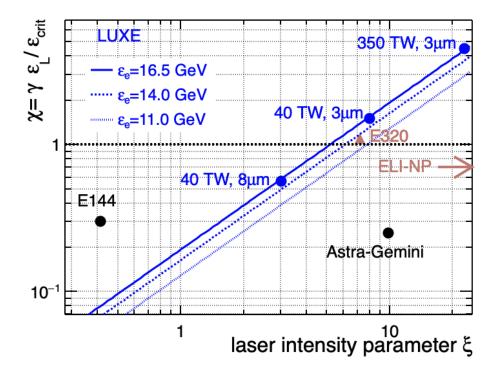

- LUXE is an experiment at DESY to perform precision measurements of the transition into the non-linear regime of strong field quantum electrodynamics (SFQED), and to search for new particles beyond the Standard Model coupling to photons. It is achieved by:
 - 16.5GeV e⁻ from Eu.XFEL collisions with a 40-350TW laser beam,

(collaboration of HEP and laser physics communities)



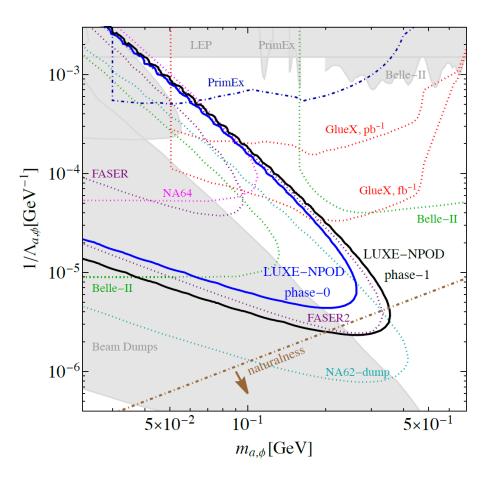
LUXE physics opportunities

- LUXE is an experiment at DESY to perform precision measurements of the transition into the non-linear regime of strong field quantum electrodynamics (SFQED), and to search for new particles beyond the Standard Model coupling to photons. It is achieved by:
 - 16.5GeV e⁻ from Fu XFEL collisions with a 40-350TW laser beam probing the onset of SFQED with the processes:


 $e^{\pm} + n \gamma_{I} \rightarrow e^{\pm} + \gamma$ Nonlinear inverse Compton

 $\gamma + n \gamma_L \rightarrow e^+ + e^-$ Nonlinear Breit-Wheeler

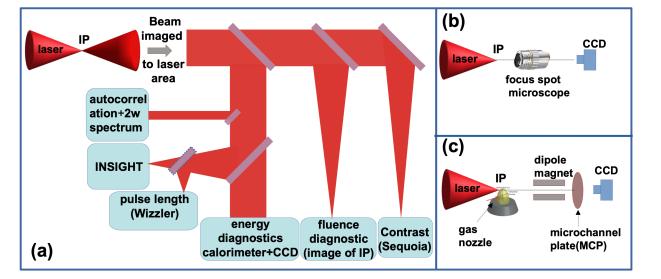
 $e^{\pm} + n \gamma_L \rightarrow e^{\pm} + \gamma$ $\gamma + n' \gamma_L \rightarrow e^+ + e^-$ Nonlinear Trident

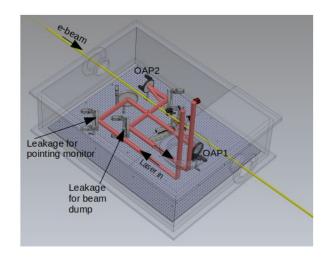

LUXE key features and challenges

- Collaboration of *particle* and *laser* physics communities
- First obs. of e⁺, e⁻ pair prod. tunnelling out of the vacuum in EM field above the Schwinger limit

LUXE key features and challenges

- Collaboration of *particle* and *laser* physics communities
- First obs. of e⁺, e⁻ pair prod. tunnelling out of the vacuum in EM field above the Schwinger limit
- High *intensity* high *energy* gamma beam (used for ALP searches coupling with γ)

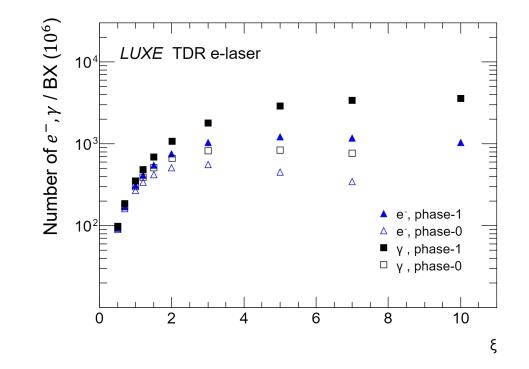



LUXE key features and challenges

- Collaboration of *particle* and *laser* physics communities
- First obs. of e⁺, e⁻ pair prod. tunnelling out of the vacuum in EM field above the Schwinger limit
- High intensity high energy gamma beam (used for ALP searches coupling with γ)

Challenges

Precise time/spatial overlap of e-laser beams, high laser stability and novel diagnostic (laser)



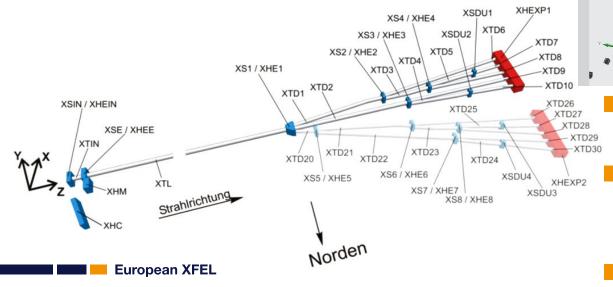
LUXE key features and challenges

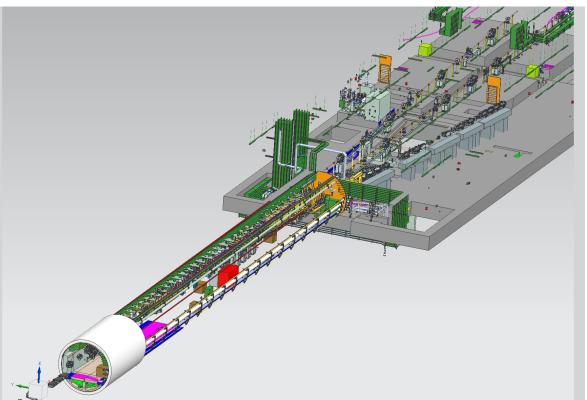
- Collaboration of *particle* and *laser* physics communities
- First obs. of e⁺, e⁻ pair prod. tunnelling out of the vacuum in EM field above the Schwinger limit
- High *intensity* high *energy* gamma beam (used for ALP searches coupling with γ)

Challenges

- Precise time/spatial overlap of e-laser beams, high laser stability and novel diagnostic (laser)
- Wide range of particle production rates (from $10^{-2}e^+$ to $10^9 \gamma$ per event), high fluxes and precision physics (detector)

Recent prospects


10


Project update. Beam-line & laser

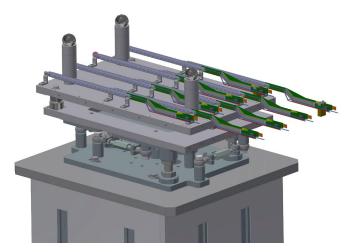
Summary

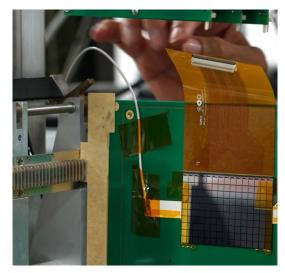
Preparation of TD20 extraction beamline critical to meet 2025 XFEL shutdown.

Finalization of TD20 in shorter shutdowns.
LUXE installation staggered in shorter shutdowns ahead of 2025, after TD20.

- Beam delivered to SASE1 and quality investigated already by Stuart Walker
- LUXE laser installed at ground level always accessible in new building sharing spaces with ASPECT.

First experiment on JETI40 in 2021.


Detectors


Tracker

- Lots of progress in mechanics, hardware, daq software and track reconstruction.
- Allpix2, Geant4 (TDR) and Key4hep software frameworks (DD4hep, EDM4hep).
- Workgroup well organized and workload distributed over tasks and multiple people.
- Test beam end '23 at WIS, early '24 at DESY.

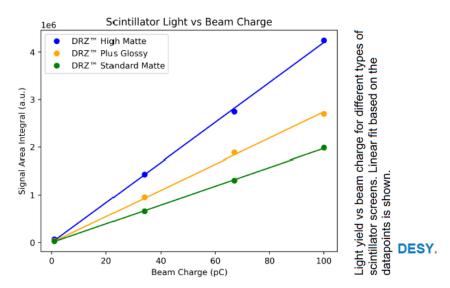
E-Calorimeter

- Large group of people: workloads spread over simulations, hardware development, reconstruction.
- From design to prototype phase now. Mechanics include geodesy survey balls for alignment.
- Stack of single ECAL-P module will be tested at DESY and CERN. From test → calibration data.
- Fully assembled ECAL-P will be tested at DESY. Key components tested. Mechanics, sensor and ASICs for the full assembled calorimeter on the way.

12

Detectors

Cherenkov detector


- Small workgroup. Minor updates in design and improved simulation efforts.
- Test beam at ARES with 150MeV 1-100pC/bunch 10Hz electron beam in July '23 with SiPM.
- Outlook: dose evaluation; calibration roadmap with led pulser; from 4 to 32 straw prototype.

Gamma spectrometer

- Calibration strategy with thin-foil.
- EMP and dose may require longer imaging distance or fibre bundle.
- Tested experimentally at Apollon with LWFA-driven bremsstrahlung source up to GeV-photons.

Bremsstrahlung and IP screens

Scintillator screen is GadOx with 545nm peak emission, radiation-hard with noticeable efficiency change at 10⁸ Gy.
Linear response (ARES TB) and 'No scint. Saturation expected up to 350pC/bunch'.

Simulation, Software, DAQ and Computing

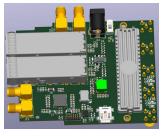
GEANT4 model, FullSim and FastSim

FLUKA simulation

EDM dd4hep migration

- Proposal to migrate the simulation to dd4hep;
- and to use a standardized data format for the various detectors (Event Data Model EDM4hep).

LUXE Control System and DAQ-related hardware


- Input for the 'LUXE Control System' LCS: two modes baseline and enhanced
- **LTU** (luxe timing unit) delivers triggers via **optical**-fibre fanout \rightarrow custom optical to electric required.
- Connection to XFEL and laser needs more work.

DAQ software

No final decision between EUDAQ2 and DOOCS.

NPOD and beyond

European XFEL

DESY

Thank you!

backup slides

DESY.

LUXE Physics. What is 'strong field'?

- LUXE main aims are
 - Measure the interaction of real photos with electrons/positrons at field-strengths where the coupling becomes non-perturbative
 - Make precision measurements of the transition between perturbative to non-perturbative regime of QED
 - Use strong-field QED processes to design a sensitive search for BSM particles coupling to the photons
- What is 'strong field'?

QED constants lead to a natural EM field one can build, called the Schwinger field

$$\mathcal{E}_{\rm cr} \equiv \frac{m^2 \ c^3}{e\hbar} \approx 1.32 \times 10^{18} \ {\rm V/cm}$$

However, in the rest frame of a boosted high-energy probe charge, the EM field strength which it is subjected is boosted by the Lorentz factor γ to $\mathcal{E}_* = \gamma \mathcal{E} (1 + \cos \theta)$ with θ the collision angle (which for LUXE is 17.5 deg)

LUXE Physics. QED in strong EM fields

- QED in intense EM fields can arise in
 - Gravitational collapse of black holes, where astrophysical pair creation can occur;
 - The propagation of cosmic rays;
 - The magnetosphere of strongly magnetised neutron stars;
 - Beam-beam collisions at future high-energy lepton colliders;
 - In heavy-ions collisions, e.g. where Coulomb field around nuclei (typically Z>137) is strong
- What separates strong-field QED from regular QED?
 - The dimensionless charge-field coupling, which in plane wave EM backgrounds is described by the classical non-linearity parameter

work of the EM field over a (reduced) Compton wavelength *in units of* the background EM field photon energy

The ξ quantifies how many laser photons interact with the charge in each QED process, with the probability of interaction with n background photons scaling as ξ²ⁿ
In weak-fields probabilities of QED processes scale as ~ ξ² (n=1)

LUXE Physics. Non-linearity parameters

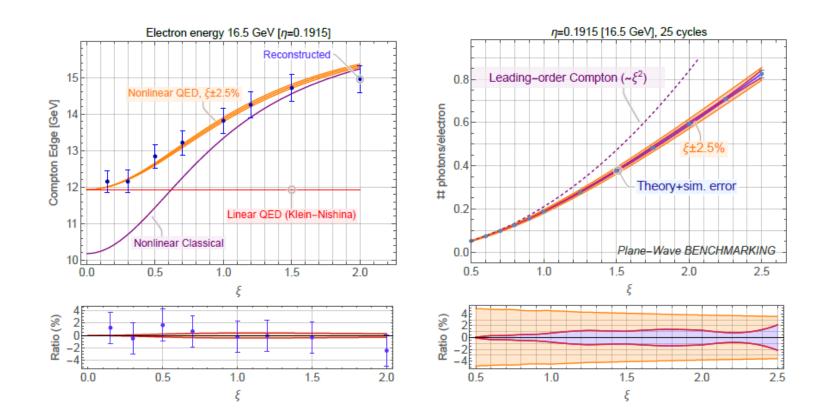
Classical non-linearity parameter

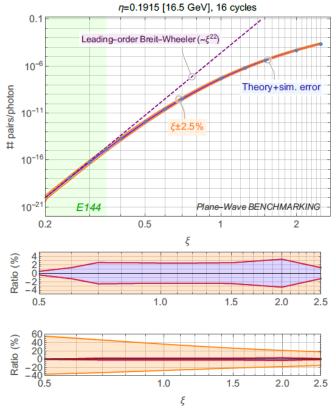
$$\xi \equiv \frac{e \, \mathcal{E}_L}{m_e \omega_L}$$

Quantum non-linearity parameter

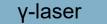
$$\chi \equiv \frac{E_*}{\mathcal{E}_{cr}} = \frac{e\hbar}{m_e^3 c^4} \sqrt{-(p_\mu F^{\mu\nu})^2}$$

 $E_* = \gamma_* \mathcal{E}_L (1 + \cos\theta)$

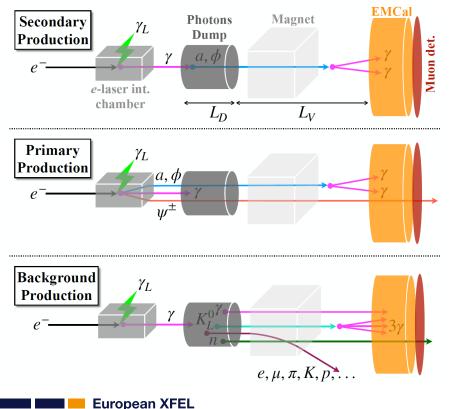

$$\mathcal{E}_{cr} = \frac{m_e^2 c^3}{e \ \hbar} \simeq 1.32 \cdot 10^{18} \ \mathrm{V/m}$$

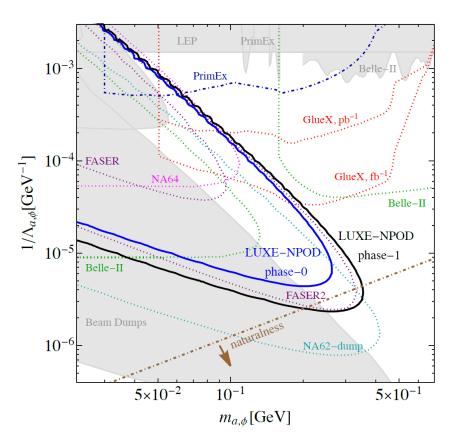

How many laser photons interact with the charge in each QED process, with the probability of interaction with n background photons scaling as ξ^{2n} . How much energy has been transferred from a classical field to a probe charge.

Energy transferred from the laser pulse to a probe electron over a reduced electron Compton wavelength, in units of the electron rest energy.
It quantifies the amount of electron recoil in the interaction.


European XFEL

LUXE Physics. Deviations from weak field QED


e-laser



18

LUXE new physics scenarios

LUXE (phase-1) is expected to reach the sensitivity required to probe the edge of the parameter space of natural models of axion-like-particles (ALPs) and scalars, by using an optical and solid beam dump and an EM calorimeter.

