

Introduction

Two ways to search for New Physics.

VBF

- More sensitive to specific models
- BUMP! \Rightarrow easier to interpret as NP
- Less prone to systematic effects
- Limited by LHC collision energy

- Sensitive to anything that is not SM.
- Rare decays \Rightarrow more sensitive to NP.
- Use of ratios \Rightarrow can cancel systematics.
- Less limited by LHC collision energy.

Outline

- Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$.
[LHCb-PAPER-2023-038]
- Search of $B_{c} \rightarrow \pi^{+} \mu^{+} \mu^{-}$and measurement of $\mathcal{B}\left(B_{c} \rightarrow \psi(2 S) \pi^{+}\right) / \mathcal{B}\left(B_{c} \rightarrow J / \psi \pi^{+}\right)$.
[LHCb-PAPER-2023-037]
- Search for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$. [LHCb-PAPER-2023-045] in preparation
- Amplitude analysis $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$. [LHCb-PAPER-2023-036] in preparation

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Decay allows us to understand efficiencies at low $q^{2} \equiv m^{2}(\ell, \ell)$.
Data: $5.4 \mathrm{fb}^{-1}$ from 2016, 2017 and 2018.

$$
R_{\phi \pi}^{(s)}=\beta_{\mu / e} \frac{\mathcal{B}\left(D_{(s)}^{+} \rightarrow \pi^{+} \phi\left(\mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(D_{(s)}^{+} \rightarrow \pi^{+} \phi\left(e^{+} e^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}
$$

Where $\beta_{\mu / e}$ is a phase space factor.

- Low q^{2} : Tracks with $p_{T}>300 \mathrm{MeV} / \mathrm{c}$ and $p>2000 \mathrm{MeV} / \mathrm{c}$.
- Triggered by: Signal e, μ, π or object not associated to candidate.
- Electron bremsstrahlung recovery: Find photons by extrapolating electron track.

- Kinematical constraints: Unlike R_{K} or $R_{K}^{*}, m(\ell, \ell)$ is constrained also in signal channel \Rightarrow better resolution.

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

$D_{s}^{+} \rightarrow \pi^{+} \phi\left(\rightarrow e^{+} e^{-}\right)$backgrounds:
Misidentified:

- $D^{+} \rightarrow K_{\rightarrow e^{+}}^{+} \pi_{\rightarrow e^{-}}^{-} \pi^{+}$: Removed by vetoing mass around D^{+}.
- $D^{+} \rightarrow \pi_{\rightarrow e^{+}}^{+} \pi_{\rightarrow e^{-}}^{-} \pi^{+}$: Reduced with PID requirements, dominant

Combinatorial: Warped by constraint on $m\left(e^{+}, e^{-}\right)$to be around $m(\phi)$

Validation of combinatorial and mis-ID backgrounds.
$B^{+} \rightarrow K^{+} J / \psi(\rightarrow \ell \ell)$ backgrounds:

- Partially reconstructed: $B^{0,+} \rightarrow K^{+} \pi^{-, 0} J / \psi\left(\rightarrow e^{+} e^{-}\right)$
- Misidentified: $B^{+} \rightarrow \pi^{+} J / \psi(\rightarrow \ell \ell)$, small
- Combinatorial: Modelled with exponential.

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Muon

Signal

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Main systematics:

- q^{2} resolution: Normalization mode corrections do not port well to low q^{2}.
- Event multiplicity: Only partial cancellation with normalization mode.

Consistent between channels

Driven by systematics
$\begin{aligned} & R_{\phi \pi}^{d}=1.026 \pm 0.020 \text { (stat) } \pm 0.056 \text { (syst), } \\ & R_{\phi \pi}^{s}=1.017 \pm 0.013 \text { (stat) } \pm 0.051 \text { (syst). }\end{aligned} \quad R_{\phi \pi}=1.022 \pm 0.012$ (stat) ± 0.048 (syst).

$$
6 \% \Rightarrow<2 \%
$$

$$
\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right)=(3.045 \pm 0.049 \text { (stat) } \pm 0.148 \text { (syst) }) \times 10^{-4},
$$

$$
7 \text { / } 18
$$

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

First search of non-resonant $B_{c}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$, can be used to search for $B_{c}^{+} \rightarrow B_{(s)}^{* 0} \pi^{+}$.

- Data: $9 \mathrm{fb}^{-1}$, full LHCb dataset.
- Strategy:
- Use $B_{c}^{+} \rightarrow \pi^{+} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)$as normalization and control channel to measure:

$$
R_{\psi(2 S) / J / \psi} \equiv \frac{\mathcal{B}\left(B_{c}^{+} \rightarrow \psi(2 S) \pi^{+}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J \psi \pi^{+}\right)} \quad R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi} \equiv \frac{\mathcal{B}\left(B_{c}^{+} \rightarrow \mu^{+} \mu^{-} \pi^{+}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J \psi \pi^{+}\right)}
$$

- Analysis done in bins of q^{2} and constraining $m\left(\mu^{+}, \mu^{-}\right)$to charmonium mass for measurement of $R_{\psi(2 S) / \mathrm{J} / \psi}$.

$$
\begin{aligned}
& B_{c}^{+} \rightarrow J / \psi \pi^{+} \\
& \left|m\left(\mu^{+}, \mu^{-}\right)-m_{J / \psi}\right|<50 \mathrm{MeV} \\
& \\
& B_{c}^{+} \rightarrow \psi(2 S) \pi^{+} \\
& \left|m\left(\mu^{+}, \mu^{-}\right)-m_{\psi(2 S)}\right|<50 \mathrm{MeV}
\end{aligned}
$$

- Trigger on muons.

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

Unconstrained

Non-resonant

Fits for $R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$
Different MVA cuts

Constrained

Fits for $R_{\psi(2 S) / J / \psi}$
Mass scales and resolutions:

- Rare mode: Constrained to value from $B_{c}^{+} \rightarrow J / \psi \pi^{+}$fits.
- Resonant modes: Floating but shared among components.

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

No signal observed in non-resonant mode \Rightarrow Set upper limits.

First upper limit

$$
\frac{\mathcal{B}\left(B_{c}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}<2.1 \times 10^{-4} .
$$

$$
\frac{\mathcal{B}\left(B_{c}^{+} \rightarrow \psi(2 S) \pi^{+}\right)}{\mathcal{B}\left(B_{c}^{+} \rightarrow J / \psi \pi^{+}\right)}=0.254 \pm 0.018(\text { stat }) \pm 0.003(\text { syst }) \pm 0.005(\mathrm{BF}) .
$$

Most precise to date

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

- Presence of photon lifts chiral suppression and sets its BR at the same order of magnitude as $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$.
- Upper limit of $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)<2 \cdot 10^{-9}$ set @ $95 \% \mathrm{CL}$ by PhysRevD.105.012010
$\mathcal{O}_{7}^{\left({ }^{\prime}\right)}{ }^{(a)}$

$\mathcal{O}_{9,10}^{\left({ }^{\prime}\right)}{ }^{(\mathrm{c})}$

$\mathcal{O}_{1,2}$

$\mathcal{O}_{9,10}^{(')}$
(d)

Sensitive to more operators than $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

Measurement carried out in 4 bins in q^{2} and studying low- q^{2} bin with ϕ veto.

Control channel
$B_{s} \rightarrow \phi\left(\rightarrow K^{+} K^{-}\right) \gamma$ Large statistics

Normalization channel
$B_{s} \rightarrow J / \psi(\rightarrow \mu \mu) \eta$ $\eta \rightarrow \gamma \gamma$
Well known $\mathcal{B R}$

Trigger on:
Muons and photon

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

Normalization

Control

Normalization: Used to extract $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)$

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)=\frac{\mathcal{B}_{\text {norm }}}{N_{\text {norm }}} \times f_{\text {norm }} \times N_{\text {sig }}
$$

Control: Used to calibrate efficiencies.

$$
f_{\mathrm{norm}}=\frac{\epsilon_{\mathrm{norm}}^{\text {Acceptance }}}{\epsilon_{\mathrm{sig}}^{\mathrm{Acceptance}}} \times \frac{\epsilon_{\mathrm{norm}}^{\text {Preselection }}}{\epsilon_{\mathrm{sig}}^{\mathrm{Preselection}}} \times \frac{\epsilon_{\mathrm{norm}}^{\mathrm{PID}}}{\epsilon_{\mathrm{sig}}^{\mathrm{PID}}} \times \frac{\epsilon_{\mathrm{norm}}^{\text {Trigger }}}{\epsilon_{\mathrm{sig}}^{\text {Trigger }}} \times \frac{\epsilon_{\mathrm{norm}}^{\mathrm{MLP}}}{\epsilon_{\mathrm{sig}}^{\mathrm{MLP}}}
$$

$$
\begin{aligned}
f_{\text {norm }}^{\text {bin }} & =0.85 \pm 0.07 \\
f_{\text {norm }}^{\text {bin }} & =0.95 \pm 0.08 \\
f_{\text {norm }}^{\text {bin III }} & =2.20 \pm 0.07
\end{aligned}
$$

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

No excess \Rightarrow set upper limits

[LHCb-PAPER-2023-045] in preparation

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

- Data: $9 \mathrm{fb}^{-1}$, entire LHCb dataset.
- Theory predictions only available for decays through $\Lambda(1520)$
- Complementary analysis to $\Lambda_{b}^{0} \rightarrow p K^{-} J / \psi$ that can access $p K^{-}$masses up to 2.5 GeV .

Selection \Rightarrow mass fit \Rightarrow background subtraction \Rightarrow Amplitude analysis

Backgrounds:

- Combinatorial: Reduced with MVA using kinematic quantities and isolation
- Mis-ID: Found to be negligible.
- Partially reconstructed: Modelled.

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Photon resolution worsens Dalitz plane resolution \Rightarrow Apply mass constraint on Λ_{b}^{0} fit to get $m_{\Lambda_{b}^{0}}(p \gamma)$ and $m_{\Lambda_{b}^{0}}(p K)$

Model of amplitude taken from JHEP06(2020)116

$$
\mathrm{NLL} \equiv-\log (\mathcal{L})=-\sum_{\text {Run } 1} \log \left(f_{1}(\mathcal{D})\right) w_{s}-\sum_{\text {Run } 2} \log \left(f_{2}(\mathcal{D})\right) w_{s}
$$

Parameter of Interest: Couplings between Λ_{b}^{0} and daughter Λ resonances.

- w_{s} : sPlot weights used to background subtract.
- D: 2 coordinates in Dalitz plane.

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Systematics:

- Leading: Lineshapes of Λ resonances (external)

[LHCb-PAPER-2023-036] in preparation

- Subleading: Amplitude model, acceptance, sample size, mass fits, etc (internal)

Summary

- Rare B meson decays offer an alternative way to search for new physics.
- The first two analyses shown have provided:
- A measurement of $R_{\phi \pi}^{(d, s)}$ and the most precise measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right)$.
- The most precise measurement of $R_{\psi(2 S) / J / \psi}$ and the first upper limit for the non-resonant mode $B_{c}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$.
- The other two have confirmed and strengthened upper bounds on $\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)$ and explored decays of Λ_{b} not well known.
- LHCb will start collecting data again this year with its software only trigger.
- Many results will be updated and we expect tighter constrains, specially for the statistically limited measurements.

Backup

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Both signal and normalization mode use maximum likelihood fits with constraints on the dilepton mass

Channel	$\phi(1020)\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	$J / \psi\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$
Electrons	$870-1110$	$2450-3600$
Muons	$990-1050$	$2946-3176$

Table: Mass cuts for ϕ and J / ψ.

Decay mode	$m_{\phi}\left(\pi^{+} \ell^{+} \ell^{-}\right)$ $\left[\mathrm{MeV} / c^{2}\right]$	$m_{J / \psi}\left(K^{+} \ell^{+} \ell^{-}\right)$ $\left[\mathrm{MeV} / c^{2}\right]$
$e^{+} e^{-}$	$\notin[1810,2040]$	>5580
$\mu^{+} \mu^{-}$	$\notin[1840,2000]$	>5480

Decay mode	Yield	
$D^{+} \rightarrow \pi^{+} \phi\left(\rightarrow e^{+} e^{-}\right)$	$7460 \pm$	140
$D^{+} \rightarrow \pi^{+} \phi\left(\rightarrow \mu^{+} \mu^{-}\right)$	$43512 \pm$	220
$D_{s}^{+} \rightarrow \pi^{+} \phi\left(\rightarrow e^{+} e^{-}\right)$	$16740 \pm$	210
$D_{s}^{+} \rightarrow \pi^{+} \phi\left(\rightarrow \mu^{+} \mu^{-}\right)$	$87022 \pm$	300
$B^{+} \rightarrow K^{+} J / \psi\left(\rightarrow e^{+} e^{-}\right)$	638600 ± 900	
$B^{+} \rightarrow K^{+} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)$	$2187000 \pm$	1500

Figure: Mass ranges for mass sidebands and fit yields

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Data driven corrections are applied to simulation before extracting efficiencies.

- Quark kinematics
- Particle identification
- Trigger efficiencies
- Tracking efficiency
- q^{2} resolution.

Total efficiency is obtained by:

- Adding between trigger categories.
- Performing luminosity weighted average between run periods.

Total yield is sum of yields from each run period fit. They are then put together in:

$$
R_{\phi \pi}^{(d, s)}=\frac{N^{(d, s)}\left(\pi^{+} \phi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)}{N^{(d, s)}\left(\pi^{+} \phi\left(\rightarrow e^{+} e^{-}\right)\right)} \frac{\varepsilon^{(d, s)}\left(\pi^{+} \phi\left(\rightarrow e^{+} e^{-}\right)\right)}{\varepsilon^{(d, s)}\left(\pi^{+} \phi\left(\rightarrow \mu^{+} \mu^{-}\right)\right)} / r_{J / \psi}
$$

Can also be written as:

$$
R_{\phi \pi}^{(s)}=\beta_{\mu / e} \frac{\mathcal{B}\left(D_{(s)}^{+} \rightarrow \pi^{+} \phi\left(\mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(D_{(s)}^{+} \rightarrow \pi^{+} \phi\left(e^{+} e^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}
$$

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

To correct mismodelling due to q^{2} differences, smearing factors are measured in $B^{+} \rightarrow K^{+} J / \psi\left(\rightarrow e^{+} e^{-}\right)$in data.

Signal MC is smeared and shape is used to fit $m(e, e)$ in signal events:

Fit quality validates smearing

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$
No significant trend is seen when $R_{\phi \pi}^{(0, s)}$ is measured in function of different variables.

Measurement of $\mathcal{B}\left(\phi \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(\phi \rightarrow e^{+} e^{-}\right)$

Source	$R_{\phi \pi}^{d}[\%]$	$R_{\phi \pi}^{s} \quad[\%]$
Resolution on q^{2}	4.0	3.9
Event multiplicity	2.7	2.7
Simulation reweighting	1.5	1.2
Combinatorial background shape parametrisation	1.5	1.0
PID	0.8	0.8
Finite size of control samples	0.8	0.6
Trigger	0.3	0.3
Tracking	0.1	0.1
Background from doubly misidentified electrons	1.1	0.1
Total	5.5	5.1

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

Component	$\pi^{+} \mu^{+} \mu^{-}$WP	$\psi(2 S) \pi^{+}$WP
$B_{c}^{+} \rightarrow J / \psi \pi^{+}$	3508 ± 82	6887 ± 93
$B_{c}^{+} \rightarrow J / \psi K^{+}$	-81 ± 58	90 ± 43
$B_{c}^{+} \rightarrow J / \psi \rho^{+}$	41 ± 11	56 ± 22
Comb. bkg.	101 ± 25	1254 ± 60

(a) J / ψ yields

Component	Yield
$B_{c}^{+} \rightarrow \psi(2 S) \pi^{+}$	256 ± 18
$B_{c}^{+} \rightarrow \psi(2 S) K^{+}$	13 ± 10
$B_{c}^{+} \rightarrow \psi(2 S) \rho^{+}$	-4 ± 5
Comb. bkg.	197 ± 19

(b) $\psi(2 S)$ yields

Simulation corrected for:

- Particle identification
- Track reconstruction efficiency.
- Trigger efficiency.
- B_{c}^{+}lifetime, kinematics.
- Track multiplicity.

q^{2} interval	$N_{\pi^{+} \mu^{+} \mu^{-}}$	$N_{\text {comb }}$
$0.1<q^{2}<1.1 \mathrm{GeV}^{2}$	0 ± 2	25_{-5}^{+6}
$1.1<q^{2}<8.0 \mathrm{GeV}^{2}$	1_{-3}^{+4}	39 ± 7
$11.0<q^{2}<12.5 \mathrm{GeV}^{2}$	-18_{-10}^{+7}	30_{-9}^{+13}
$15.0<q^{2}<35.0 \mathrm{GeV}^{2}$	0_{-7}^{+8}	232 ± 17
All	-2_{-8}^{+9}	311_{-19}^{+20}

(a) Rare mode yields

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

Mass scales are shared between

$R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi}$ and $R_{\psi(2 S) / J / \psi}$

Backgrounds:

- Partially reco: $B_{c}^{+} \rightarrow \rho \mu^{+} \mu^{-}, B_{c}^{+} \rightarrow J / \psi \rho^{+}$and $B_{c}^{+} \rightarrow \psi(2 S) \rho^{+}$with $\rho \rightarrow \pi^{+} \pi^{0}$. Included only for resonant fits .
- Single Mis-ID: Decays with Kaons reconstructed as pions in final state are Cabibbo suppresed and further suppressed by particle ID requirements .
- Double Mis-ID: E.g. $B_{c}^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$or $B_{c}^{+} \rightarrow c \bar{c}\left(\rightarrow \mu_{\rightarrow \pi^{+}}^{+}, \mu^{-}\right) \pi_{\rightarrow \mu^{+}}^{+}$are suppressed by particle ID .

Selection uses BDT

- Signal: Simulated $B_{c}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}, B_{c}^{+} \rightarrow \pi^{+} J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right)$, $B_{c}^{+} \rightarrow \pi^{+} B^{* 0}\left(\rightarrow \mu^{+} \mu^{-}\right)$and $B_{c}^{+} \rightarrow \pi^{+} B_{s}^{* 0}\left(\rightarrow \mu^{+} \mu^{-}\right)$
- Background: Data sidebands in $m\left(\pi^{+} \mu^{+} \mu^{-}\right)$, excluding charmonium from $m\left(\mu^{+} \mu^{-}\right)$distribution.

MVA optimization FOM is different for each measurement

- $R_{\pi^{+} \mu^{+} \mu^{-} / J / \psi} \Rightarrow \varepsilon /\left(5 / 2+\sqrt{N_{B}}\right)$
- $R_{\psi(2 S) / J / \psi} \Rightarrow N_{S} / \sqrt{N_{S}+N_{B}}$

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

Photons:

- $p_{T}>1000 \mathrm{MeV}$
- MVA based photon identification.
- For $p_{T}>2000 \mathrm{MeV}$ MVA to separate them from merged photons in $\pi^{0} \rightarrow \gamma \gamma$
Muons:
- $p_{T}>250 \mathrm{MeV}$
- Good quality and particle identification requirements
B_{s}
- $p_{T}>500 \mathrm{MeV}$
- Good vertex quality

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

Differences with respect to $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \rightarrow$ PhysRevD.105.012010

$$
B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma
$$

- This reconstructs the photon.
- Mesures $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ as signal
- Thanks to the photon can explore also lower regions in q^{2}

$$
B_{s}^{0} \rightarrow \mu^{+} \mu^{-}
$$

- Reconstructs only the muons
- Measures $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ as part of the partially reconstructed background
- Can only have access to high q^{2} regions $>4.9 \mathrm{GeV}^{2}$

Both have set upper limits.

Search for the $B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma$ decay

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{\text {bin I }} & =(1.34 \pm 1.60 \pm 0.28) \times 10^{-8} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{\text {bin II }} & =(0.76 \pm 3.55 \pm 0.30) \times 10^{-8} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{\text {bin III }} & =(-2.55 \pm 2.25 \pm 0.41) \times 10^{-8} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{\text {bin I } \phi \text { veto }} & =(0.72 \pm 1.56 \pm 0.29) \times 10^{-8}
\end{aligned}
$$

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Preselection:

- Λ_{b}^{0} : Good vertex quality, momentum pointing to PV
- $p, K^{-}: I P>0.1 m m, p_{T}>1 \mathrm{GeV}, p>5 \mathrm{GeV}$.
- $\gamma: E_{T}>3 \mathrm{GeV}$

MVA:

- Uses kinematic variables and isolation
- Background: Upper sideband in data $m(p K \gamma)>m\left(\Lambda_{b}^{0}\right)+300 \mathrm{MeV}$
- FOM: $S / \sqrt{S+B}$

$$
I_{p_{\mathrm{T}}}=\frac{p_{\mathrm{T}}\left(\Lambda_{b}^{0}\right)-\sum p_{\mathrm{T}}}{p_{\mathrm{T}}\left(\Lambda_{b}^{0}\right)+\sum p_{\mathrm{T}}}
$$

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Mis-ID backgrounds:

- $B_{s}^{0} \rightarrow \phi(\rightarrow K K) \gamma$: Veto $m\left(p_{\rightarrow K}, K\right)$ mass around m_{ϕ}.
- $B_{s}^{0} \rightarrow K K \gamma, B_{d} \rightarrow K \pi \gamma$: Less than 0.5%.
- $\Lambda_{b}^{0} \rightarrow p K \eta, \Lambda_{b}^{0} \rightarrow p K \pi^{0}$: Less than 1-2\%, limited by staying below $2.5 \mathrm{GeVin} m(p, K)$.
- $\Xi_{b}^{0} \rightarrow p K \gamma$: Negligible

Mis-ID and Combinatorial:

- $D^{0} \rightarrow K K$ and $D^{0} \rightarrow K \pi$ combined with random γ : Veto distorts signal acceptance \Rightarrow included in fit.

Partially reconstructed:

- $\Lambda_{b}^{0} \rightarrow p K^{*-}\left(\rightarrow K^{-} \pi 0\right) \gamma$ Included in fit.

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Maximum likelihood fit uses:

- Reduced model: Well-established resonances and interferences.
- Non resonant: Seen to improve fit quality

Projections of 2D fit on $m_{\Lambda_{b}}\left(p K^{-}\right)$

$\begin{array}{ll}\square & \text { interf. }(1 / 2)^{+} \\ \square & -\Lambda(1520) \\ \text { interf. }(1 / 2)^{-} & -\Lambda(1600) \\ \square \text { interf. }(3 / 2)^{-} & -\Lambda(1670) \\ - & \text { interf. }(5 / 2)^{+} \\ -\Lambda(1405) & -\Lambda(1690) \\ & -\Lambda(1800)\end{array}$

- $\Lambda(1810)$
- $\Lambda(2110)$
- $\Lambda(1820)-\Lambda(2350)$
- $\Lambda(1830) \quad$ - $\mathrm{NR}\left((3 / 2)^{-}\right)$
- $\Lambda(1890) \quad+$ Model
$-\Lambda(2100)+$ Data

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Mass fits:

- Combinatorial: Exponential
- Signal: Double sided Crystall Ball, tails from simulation
- Partially reconstructed: From Kernel density estimation on simulated $\Lambda_{b}^{0} \rightarrow p K^{*-}\left(\rightarrow K^{-} \pi 0\right) \gamma$.

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Resonance	J^{P}	m_{0}	Γ_{0}	Δm_{0}	$\Delta \Gamma_{0}$	$\sigma_{m_{0}}$	$\sigma_{\Gamma_{0}}$	l	L
$\Lambda(1405)$	$1 / 2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0,1
$\Lambda(1520)$	$3 / 2^{-}$	1519	16	$1518-1520$	$15-17$	1	1	2	$0,1,2$
$\Lambda(1600)$	$1 / 2^{+}$	1600	200	$1570-1630$	$150-250$	30	50	1	0,1
$\Lambda(1670)$	$1 / 2^{-}$	1674	30	$1670-1678$	$25-35$	4	5	0	0,1
$\Lambda(1690)$	$3 / 2^{-}$	1690	70	$1685-1695$	$50-70$	5	10	2	$0,1,2$
$\Lambda(1800)$	$1 / 2^{-}$	1800	200	$1750-1850$	$150-250$	50	50	0	0,1
$\Lambda(1810)$	$1 / 2^{+}$	1790	110	$1740-1840$	$50-170$	50	60	1	0,1
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	$1815-1825$	$70-90$	5	10	3	$1,2,3$
$\Lambda(1830)$	$5 / 2^{-}$	1825	90	$1820-1830$	$60-120$	5	30	2	$1,2,3$
$\Lambda(1890)$	$3 / 2^{+}$	1890	120	$1870-1910$	$80-160$	20	40	1	$0,1,2$
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	$2090-2110$	$100-250$	10	100	4	$2,3,4$
$\Lambda(2110)$	$5 / 2^{+}$	2090	250	$2050-2130$	$200-300$	40	50	3	$1,2,3$
$\Lambda(2350)$	$9 / 2^{+}$	2350	150	$2340-2370$	$100-250$	20	100	5	$3,4,5$

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Amplitude fit contains many parameters \Rightarrow unstable.

- Local minima:
- Fit ten times with different starting points.
- Pick fit with lowest NLL.
- Parameter variations: Couplings vary between minima, but same values for
- Fit fractions
- Interference amplitudes
\Rightarrow treat couplings as nuisance parameters and fit fractions and interference amplitudes as parameters of interest.

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Resonances used in reduced model

Resonance	J^{P}	m_{0}	Γ_{0}	Δm_{0}	$\Delta \Gamma_{0}$	$\sigma_{m_{0}}$	$\sigma_{\Gamma_{0}}$	l	L
$\Lambda(1405)$	$1 / 2^{-}$	1405	50.5	± 1.3	± 2	1.3	2	0	0,1
$\Lambda(1520)$	$3 / 2^{-}$	1519	16	$1518-1520$	$15-17$	1	1	2	$0,1,2$
$\Lambda(1600)$	$1 / 2^{+}$	1600	200	$1570-1630$	$150-250$	30	50	1	0,1
$\Lambda(1670)$	$1 / 2^{-}$	1674	30	$1670-1678$	$25-35$	4	5	0	0,1
$\Lambda(1690)$	$3 / 2^{-}$	1690	70	$1685-1695$	$50-70$	5	10	2	$0,1,2$
$\Lambda(1800)$	$1 / 2^{-}$	1800	200	$1750-1850$	$150-250$	50	50	0	0,1
$\Lambda(1810)$	$1 / 2^{+}$	1790	110	$1740-1840$	$50-170$	50	60	1	0,1
$\Lambda(1820)$	$5 / 2^{+}$	1820	80	$1815-1825$	$70-90$	5	10	3	$1,2,3$
$\Lambda(1830)$	52^{-}	1825	90	$1820-1830$	$60-120$	5	30	2	$1,2,3$
$\Lambda(1890)$	$3 / 2^{+}$	1890	120	$1870-1910$	$80-160$	20	40	1	$0,1,2$
$\Lambda(2100)$	$7 / 2^{-}$	2100	200	$2090-2110$	$100-250$	10	100	4	$2,3,4$
$\Lambda(2110)$	$5 / 2^{+}$	2090	250	$2050-2130$	$200-300$	40	50	3	$1,2,3$
$\Lambda(2350)$	$9 / 2^{+}$	2350	150	$2340-2370$	$100-250$	20	100	5	$3,4,5$

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Reduced model (only resonances)

$\begin{array}{llll}\text { interf. }(1 / 2)^{+} & -\Lambda(1520) & -\Lambda(1810) & -\Lambda(2110) \\ \text { interf. }(1 / 2)^{-} & -\Lambda(1600) & -\Lambda(1820) & -\Lambda(2350) \\ \text { interf. }(3 / 2)^{-} & -\Lambda(1670) & -\Lambda(1830) & \text { \& Model } \\ - \\ \text { interf. }(5 / 2)^{+} & -\Lambda(1690) & -\Lambda(1890) & \text { + Data } \\ -\Lambda(1405) & -\Lambda(1800) & -\Lambda(2100) & \end{array}$

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Reduced model plus non-resonant components

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Reduced model (resonances and interferences) fit plus non-resonant (constant) components

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Reduced model (resonances and interferences) fit plus non-resonant (constant) components

Amplitude analysis of the $\Lambda_{b}^{0} \rightarrow p K^{-} \gamma$ decay

Systematics on fit fractions.

Observable	Amplitude model				Acceptance model			Mass fit model		
	$\sigma_{\text {BW }}^{A}$	$\sigma_{\text {radius }}^{\Lambda}$	$\sigma_{\text {amp }}$	$\sigma_{\text {res. }}$	$\sigma_{\text {finite }}$	$\sigma_{\text {acc. }}$	$\sigma_{\text {kin. }}$	$\sigma_{p K}$	$\sigma_{p \gamma}$	$\sigma_{\text {comb }}$.
$\Lambda(1405)$	+1.2 -0.7	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.2 \end{aligned}$	${ }_{-0.4}^{+0.0}$	${ }_{-0.2}^{+0.2}$	$\begin{array}{r} +0.2 \\ { }_{-0.2} \end{array}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0}^{+} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
A(1520)	$\begin{array}{r} +1.0 \\ -1.3 \end{array}$	$\begin{aligned} & +1.1 \\ & { }_{-1.1} \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{array}{r} +0.2 \\ -0.2 \end{array}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.3 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1} \end{aligned}$
$\Lambda(1600)$	+3.6 -4.5	$\begin{aligned} & +1.8 \\ & -1.8 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.3 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$
A(1670)	$\begin{aligned} & +1.1 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	${ }_{-0.1}^{+0.1}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
A(1690)	$\begin{array}{r} +4.1 \\ -0.3 \end{array}$	$\begin{aligned} & +2.0 \\ & -2.0 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.6 \\ & -0.5 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1800)$	$\begin{array}{r} +3.0 \\ { }_{-5.9} \end{array}$	$\begin{aligned} & +1.1 \\ & { }_{-1.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.8 \end{aligned}$	$\begin{aligned} & +0.8 \\ & -1.5 \end{aligned}$	$\begin{array}{r} +0.3 \\ -0.3 \end{array}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{array}{r} +0.0 \\ { }_{-0.0} \end{array}$	$\begin{aligned} & +0.6 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.4 \\ & { }_{-0.0} \end{aligned}$
A(1810)	$\begin{aligned} & +3.7 \\ & -0.7 \end{aligned}$	$\begin{aligned} & +1.1 \\ & { }_{-1.1} \end{aligned}$	$\begin{aligned} & +1.5 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.5 \\ & { }_{-1.4} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1820)$	$\begin{array}{r} +1.8 \\ -4.9 \end{array}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & -0.0 \\ & -0.9 \end{aligned}$	$\begin{array}{r} +0.3 \\ -0.4 \end{array}$	$\begin{aligned} & +0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0}^{+} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1}^{+} \end{aligned}$
$\Lambda(1830)$	$\begin{aligned} & +1.3 \\ & { }_{-0.9} \end{aligned}$	$\begin{aligned} & +0.6 \\ & { }_{-0.6} \end{aligned}$	$\begin{aligned} & +0.3 \\ & { }_{-0.4} \end{aligned}$	$\begin{aligned} & +0.3 \\ & -0.5 \end{aligned}$	${ }_{-0.1}^{+0.1}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+} \end{aligned}$
$\Lambda(1890)$	$\begin{array}{r} +4.2 \\ -5.1 \end{array}$	$\begin{aligned} & +0.8 \\ & -0.8 \end{aligned}$	$\begin{array}{r} +0.4 \\ -0.4 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1}^{+} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0}^{+} \end{aligned}$
A(2100)	$\begin{aligned} & +1.0 \\ & -2.6 \end{aligned}$	$\begin{aligned} & +0.8 \\ & -0.8 \end{aligned}$	$\begin{aligned} & +0.9 \\ & -0.7 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$
A(2110)	$\begin{aligned} & +5.0 \\ & { }_{-0.6} \end{aligned}$	$\begin{aligned} & +1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & +1.5 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.2} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(2350)$	${ }_{-0.1}^{+0.0}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.6 \\ & -0.7 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.0 \end{aligned}$
$\mathrm{NR}\left(\frac{3}{2}^{-}\right)$	$\begin{aligned} & +2.9 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +1.0 \\ & -2.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.6} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1}^{+0.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1}^{+0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.3} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1405), A(1670)$	${ }_{-0.7}^{+0.7}$	$\begin{aligned} & +0.3 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$
$\Lambda(1405), \Lambda(1800)$	$\begin{aligned} & +0.5 \\ & { }_{-3.6} \end{aligned}$	$\begin{aligned} & +0.3 \\ & { }_{-0.3} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-1.9} \end{aligned}$	$\begin{array}{r} +1.7 \\ -0.4 \end{array}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2} \end{aligned}$	$\begin{array}{r} +0.2 \\ -0.2 \end{array}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1520), \Lambda(1690)$	$\begin{aligned} & +0.3 \\ & -2.3 \end{aligned}$	$\begin{aligned} & +0.9 \\ & -0.9 \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.7 \end{aligned}$	$\begin{aligned} & +0.5 \\ & -0.4 \end{aligned}$	$\begin{array}{r} +0.1 \\ -0.1 \end{array}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1520), \mathrm{NR}\left(\frac{3}{2}^{-}\right)$	$\begin{array}{r} +1.2 \\ -2.4 \end{array}$	$\begin{aligned} & +1.5 \\ & -1.5 \end{aligned}$	$\begin{aligned} & +0.5 \\ & -0.5 \end{aligned}$	$\begin{aligned} & +0.8 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1600), A(1810)$	$\begin{aligned} & +4.1 \\ & -2.8 \end{aligned}$	$\begin{aligned} & +0.6 \\ & -0.6 \end{aligned}$	$\begin{array}{r} +1.5 \\ -0.7 \end{array}$	$\begin{array}{r} +0.9 \\ -0.4 \end{array}$	$\begin{aligned} & +0.3 \\ & { }_{-0.3} \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.2}^{+} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.4} \end{aligned}$	$\begin{array}{r} +0.0 \\ -0.4 \end{array}$
$\Lambda(1670), \Lambda(1800)$	$\begin{array}{r} +1.5 \\ -1.9 \end{array}$	$\begin{aligned} & +0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +0.3 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.4 \\ & -0.4 \end{aligned}$	${ }_{-0.1}^{+0.1}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1}^{+0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$
$\Lambda(1690), \mathrm{NR}\left(\frac{3}{2}^{-}\right)$	$\begin{array}{r} +0.9 \\ -2.2 \end{array}$	$\begin{aligned} & +1.1 \\ & { }_{-1.1} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -2.7 \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.5 \end{aligned}$	$\begin{aligned} & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.0 \\ & { }_{-0.0} \end{aligned}$
$\Lambda(1820), \Lambda(2110)$	$\begin{array}{r} +2.4 \\ -3.1 \end{array}$	$\begin{aligned} & +1.6 \\ & { }_{-1.6} \end{aligned}$	$\begin{aligned} & +0.5 \\ & { }_{-1.6} \end{aligned}$	$\begin{aligned} & +0.3 \\ & { }_{-0.5} \end{aligned}$	$\begin{aligned} & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.1 \\ & { }_{-0.1} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.0 \end{aligned}$	$\begin{aligned} & +0.2 \\ & { }_{-0.0} \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +0.0 \\ & -0.2 \end{aligned}$

