

Search for flavour-changing neutral current couplings between the top quark and the Higgs boson in multilepton final states with the ATLAS detector

Marvin Emin Geyik, University of Wuppertal on behalf of the ATLAS collaboration

58th Rencontres de Moriond - EW 2024

26. March 2024

BERGISCHE UNIVERSITÄT WUPPERTAL

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

26.03.2023

tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States

- FCNC processes forbidden at tree-level in the SM, higher orders suppressed by GIM mechanism
 → Any observation at the LHC indication of new physics
- Model-independent search using an Effective Field Theory (EFT) with the full ATLAS Run 2 dataset taken at $\sqrt{s} = 13$ TeV:

$$\mathcal{L}_{EFT} = \sum_{q=u,c} \frac{C_{u\phi}^{tq}}{\Lambda^2} \mathcal{O}_{u\phi}^{tq} + \frac{C_{u\phi}^{qt}}{\Lambda^2} \mathcal{O}_{u\phi}^{qt}; \qquad C_{u\phi}^{qt}, C_{u\phi}^{tq}: \text{Wilson coeff}$$

- Considering $t\bar{t}(t \rightarrow Hq)$ decay and $gq \rightarrow Ht$ production processes
- Search conducted in $2\ell SS$ and 3ℓ final states
 - Small number of events, but high signal purity

Search for *tHq* FCNC Couplings in 2*ℓ*SS and 3*ℓ* Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

26.03.2023

Event Selection + Background Estimation

HF-dec. e

HF-dec. u

tīW

Others

Signal Regions (SRs)

- 2 SRs per final state (4 in total)
- Each SR focused on either production or decay process
- $N_{b-tags} \ge 1$ based on signal signature

Q-misID Electrons (2ℓ SS)

- Data-driven estimation ۲
- Comparison of same-charge and opposite-charge *ee* ٠ events on $Z \rightarrow ee$ mass peak

Leptons from B-hadron decay (HF-decay e/μ)

- Free-floating normalisation
- 4 CRs defined (2 per final state)

$t\bar{t}W/t\bar{t}Z$ production

- $t\bar{t}W$ cross-section measured 1.4 σ above prediction [arXiv:2401.05299⁻
- $t\bar{t}Z$ only measured for high N_{jets} while this analysis considers $N_{\text{iets}} \ge 1$ [arXiv:2312.04450]
- Free-floating normalisation for both processes with 3 CRs

VV + HF production

- VV samples produced without additional b-quark • \rightarrow poor modelling in regions with $N_{b-\text{tags}} \geq 1$
- Splitting VV samples by number of leptons and jet flavour
- Largest template $VV3\ell + b/c$ left free-floating •

3

non-prompt

leptor

Parton level

Energy deposition

Reconstruction and Neural Networks (NNs) in SRs

Reconstruction Algorithms

- Multiple algorithms developed to separate signal and background
- Recursive Jigsaw Reconstruction

NICE-Reconstruction

Variable preprocessing and NN training

- Separation power of all variables combined using NNs
- Training one NN per signal process (*tHu*/*tHc*) and per SR
- Extensive preprocessing
 - Variable selection based on added significance
 - Normalisation (μ = 0, σ = 1)
 and *decorrelation* of input
 variables
 - Transformation to signal purity S/B with spline fit to reduce statistical fluctuations
- → Allows for NNs of very small size (1 hidden layer)

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

4

Results of the Profile-Likelihood Fit

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

5

Upper Exclusion Limits and Combination

Backup

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

26.03.2023

LHC Top working group FCNC summary Plot

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

8

Results of the Profile-Likelihood Fit – CRs

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

Background Composition of all Signal Regions

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

26.03.2023

10

Basics on the Profile-Likelihood Fit

Search for *tHq* FCNC Couplings in 2*ℓ*SS and 3*ℓ* Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

11

Ranking of Systematic Uncertainties

tHu Fit

tHc Fit

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

UNIVERSITÄT

WUPPERTAL

12

Comparison of 2_lSS and 3_l Final State Sensitivity

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

13

Combination Correlation Scheme

- **Signal modelling:** Treated differently by each analysis → *uncorrelated*
- JES, JER: The same treatment by all analyses → correlated
- Electron, muon, photon, MET: All related NPs (ID, isolation, calibration, ...) are correlated
- Luminosity, PRW: The same treatment by all analyses → correlated
- **b-tagging:** Simplified scheme by $\gamma\gamma$ analysis \rightarrow only $b\bar{b}$, $\tau^+\tau^-$, VV^* correlated
- Background modelling: Different processes and schemes by each analysis → uncorrelated

Search for tHq FCNC Couplings in 2ℓ SS and 3ℓ Final States Marvin Emin Geyik | marvin.emin.geyik@cern.ch

