Direct bounds on Left-Right gauge boson masses

Luiz VALE SILVA U. Valencia, IFIC – CSIC

for further details and references, see JHEP02(2024)027, with Sergio Ferrando Solera and Antonio Pich (UV, IFIC-CSIC)

EW Interactions and Unified Theories, Moriond - 26/03/2024

LRMs: gauge boson sector

- Enlarged gauge group; X = (B-L)/2
- A discrete symmetry (e.g. parity) can in principle be restored at energies >> K_R
- LR-SSB: SM at low energies; hypercharge: Y = T³_R + (B-L)/2
- New massive gauge bosons, $W_R \& Z_R$; LR corrections to the SM: $\epsilon \sim \kappa_{EW}/\kappa_R << 1$
- Additional weak coupling constants; perturbative region g_R , $g_X \sim < 1$

[Pati, Salam, Mohapatra, Senjanovic '70s ...]

Luiz VALE SILVA – WR, ZR searches

 $LRM = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_X$ q_R g_X LR-SSB @ scale κ_R, γ :) mixing W_R^3 and W_X $SM = SU(3)_C \times SU(2)_L \times U(1)_Y$ EW-SSB @ scale κ_{EW} , θ_W : mixing W_L^3 and W_Y $SU(3)_C \times U(1)_{EM}$ 1.2 1.0 $e = g_R \sin \gamma \cos \theta_W = g_X \cos \gamma \cos \theta_W$ 0.8 0.6 0.4 30 50 60 70

LRMs: scalar sector

Multiple ways of implementing LR-SSB: (T) triplet, or
 (D) doublet under SU(2)_R are the most studied cases

Triplets: $\Delta_R \sim (\mathbf{1}, \mathbf{1}, \mathbf{3})_1$, $\Delta_L \sim (\mathbf{1}, \mathbf{3}, \mathbf{1})_1$ Doublets: $\chi_R \sim (\mathbf{1}, \mathbf{1}, \mathbf{2})_{1/2}$, $\chi_L \sim (\mathbf{1}, \mathbf{2}, \mathbf{1})_{1/2}$ [In (T), doubly charged scalars are present]

- In (D), the EW-SSB can be triggered by the SU(2)_L doublet VEV κ_L; in (T), EWPOs limit the size of the SU(2)_L triplet VEV
- Additional scalar representations are considered for various reasons, e.g. EW-SSB in (T) scenario

LRMs: fermionic sector

- A bi-doublet $\Phi \sim (\mathbf{1}, \mathbf{2}, \mathbf{2})_0$ also participates in the SSB, needed in the triplet case; Yukawa interactions: Dirac masses for ($Q_L, \Phi Q_R$) and ($L_L, \Phi L_R$)
- (Eff) Non-ren. dim.-5 interactions with SU(2)_L and SU(2)_R doublets, e.g. $(Q_L, \chi_L \chi_R^{\dagger} Q_R)/\Lambda$ or $(L_R^c, \sigma_2 \chi_R \chi_R^{\intercal} \sigma_2 L_R)/\Lambda$
- RH neutrinos are introduced (B-L is anomaly free); no additional fermion in the simplest version
- In (D), Dirac masses only; in (T), also Majorana masses $(L_R^c, \sigma_2 \Delta_R L_R)$ and $(L_L^c, \sigma_2 \Delta_L L_L)$: see-saw mechanism
- Extension of the PMNS matrix; RH unitary counterpart V^{R} of the CKM-like matrix V^{L} in the quark sector
- P: $V^{R} \sim V^{L}$ (manifest); C: $V^{R} \sim V^{L*}$ (pseudo-manifest)

 $SU(2)_L$

 $SU(2)_R$

quarks :

B = 1/3

leptons :

L = -1

EWPOs & quark flavor physics

- LRM parameters largely unconstrained
- Beyond tree level: many parameters from the scalar potential intervene

- Z' (typically) does not introduce FCNCs at tree level, part of the scalar sector typically does
- **RH charged weak currents**, possibly new sources of CP violation; observables: meson-mixing, etc.
- Bounds strongly depend on RH mixings, e.g. when $V^{R} \sim V^{L*}$: no constraint from ϵ_{κ} (indirect CPV in kaons)

Collider limits on LRMs

Various strategies used to look for W', Z'; for instance (LHC only):

- Z' to *ll* [1709.07242, 1903.06248, 2103.02708, etc.]
- Di-jet searches [1910.08447, 1911.03947, etc.]
- W': production and decay of massive RH neutrinos (includes LLPs) [$1809.11105 (M(N_R) < 2*M(W_R))$, 1811.00806, 1904.12679, 2112.03949, 2304.09553, etc.]
- Leptonic decay of the W' with light (RH) neutrinos
 [1807.11421, 1906.05609, 2202.06075, 2402.16576, etc.]
- Search for W', Z' decaying to heavy quark flavors
 [tb unsuppressed for V^R ~ V^{L(*)}; 1801.07893, 1807.10473, 2104.04831, 2308.08521, 2310.19893, etc.]
- Decays to gauge bosons (W' to WZ, W' to Wh, Z' to WW, Z' to Zh) [1906.08589, 2004.14636, 2102.08198, 2109.06055, etc.]

SUMMARY PLOTS EXOTICS: CMS, ATLAS

Model-independent strategy

 Available bounds on W', Z' masses may correspond to different models (e.g. Sequential SM), or specific realizations of LRMs (e.g. having heavy RH neutrinos)

• HERE:

- Consider general g_R, g_X (perturbative); move beyond the (pseudo-)manifest case V^R ~ V^{L(*)} in the quark sector
- Focus on **fermionic decay modes**: more restrictive bounds
- Impact of the scalar sector: total width, neutrino sector

[see e.g. Langacker, Uma Sankar '89; Frank, Ozdal, Poulose '18]

Total widths of the W_R , Z_R

- Usually, only fermion sector considered when calculating $\ensuremath{\mathsf{\Gamma}}$
- Non-fermionic width depends on specific scenario (scalar potential)
- To be conservative, maximize the total width ($g_{R,X}$ fixed) => minimize BR; consider limit where the full scalar sector is accessible in decays, and exploit equivalence theorem to simplify the expression of Γ
- $\Gamma(W_R)/M(W_R)$ [below ~10%] prop to g_R^2 , decreases with $\gamma(g_R)$
- Collider searches available for different total widths

 $W_R^{\pm} \to f\bar{f}', W_L^{\pm}Z_L, W_L^{\pm}h^0, W_L^{\pm}H^0, H^{\pm}Z_L, H^{\pm}h^0, W_L^{\mp}H^{\pm\pm}, H_1H_2$

 $Z_R \to f\bar{f}, W_L^+ W_L^-, Z_L h^0, Z_L H^0, W_L^\pm H^\mp, h^0 H^0, W_L^\pm W_R^\mp, H_1 H_2, W_R^\pm H^\mp, W_R^+ W_R^-$

RH sector parameters: $\gamma(g_R)$

- "Effective couplings" (c_q) also functions of $\gamma(g_R)$ only
- Z_R to \mathcal{U} : **M**(Z_R)>4.2 TeV (for the $\gamma(g_R)$ that minimizes σ)

>4.8 TeV for $g_R=g_L \& \Gamma$ (fermions)

RH sector parameters: V^R

• Production of W_R affected by V^R texture: relax by ~1 TeV bounds on $M(W_R)$

Neutrino sector

- Typical bounds for heavy RH neutrinos: M(W_R)>O(5) TeV [for M(N_R)<M(W_R)]
- Searches of W_R based on massive RH neutrinos depend on leptonic RH mixings
- Light RH neutrino case applies in the doublet LR scenario; it can also apply in the other cases
- Sum over neutrino species: $\Sigma_i |U^{R_{i\ell}}|^2 = 1$

[e, μ : ATLAS \sqrt{s} =13 TeV, 139/fb, CMS \sqrt{s} =13 TeV, 138/fb] [tau: ATLAS \sqrt{s} =13 TeV, 139/fb, CMS \sqrt{s} =13 TeV, 36/fb]

Summary of bounds

Bounds can be relaxed by about ~1 TeV

gnificant impact of the ^a texture, decay mode, and neutrino sector	Channel		$\Phi + \chi_{L,R} (\mathrm{D})$	$\Phi + \Delta_{L,R} (\mathrm{T})$	$\chi_{L,R}$ (Eff)
	$Z_R \to \ell_i \bar{\ell}_i$	M_{Z_R}	4.3	4.2	4.3
	$W_R \rightarrow jj$, anti-diag.	M_{W_R}	2.1	2.0	2.1
	$W_R \rightarrow \ell_i \bar{\nu}_R$, anti-diag.		4.3	4.2	4.3
	$W_R \to jj$, diag.	M_{W_R}	2.9	2.7	3.0
	$W_R \to \ell_i \bar{\nu}_R$, diag.		5.1	5.0	5.1
< si	v_{R} : light RH neutrino		not significant in	npact of the scale	ar realization

Synergy of W_R , Z_R searches

- In typical LRMs, M(W_R) and M(Z_R) are deeply connected
- From doublet to triplet, √2 due to LR-SSM
- For higher $\gamma [\cos(\gamma) \rightarrow 0]$, bound on M(W_R) tends to dominate; for lower γ , the inverse happens

[see also Araz, Frank, Fuks, Moretti, Ozdal '21 (in the limit $g_R=g_L$, etc.)]

Conclusions

- LRMs: different realizations, e.g. a LR discrete symmetry can be pushed to higher energies
- Mostly impacted by $g_R \neq g_L$, $V^R \neq V^{L(*)}$ parametric LR asymmetries
- After relaxing bounds, still **sensitive to multi-TeV** gauge bosons
- Complementarity of W_R and Z_R searches
- Collider constraints provide a powerful way to constrain LRMs; very competitive w.r.t. flavor physics

BACK UP

Di-jet searches

- W_R to jj: independent of the neutrino sector
- jj: top-quark considered as a possible final state flavor (i.e. inclusive in the flavor)
- Similar bounds achieved with $W_{\mbox{\tiny R}}$ to tb

[WR: ATLAS \sqrt{s} =13 TeV, 139/fb; CMS \sqrt{s} =13 TeV, 139/fb, with different Γ/M available, also ZR; ZR: ATLAS \sqrt{s} =13 TeV, 139/fb; CMS \sqrt{s} =13 TeV, 35.9/fb]

[tb, had: ATLAS \sqrt{s} =13 TeV, 139/fb; CMS \sqrt{s} =13 TeV, 137/fb][tb, lept: ATLAS \sqrt{s} =13 TeV, 139/fb; CMS \sqrt{s} =13 TeV, 138/fb, with different Γ /M available]

Synergy of W_R , Z_R searches

Effective: Z_R to $\ell \ell$, W_R to jj (avoid $U^R(v_R)$)

LR-SSB scale

 $|v_R|_D \gtrsim 10 \text{ TeV}, \quad |v_R|_T \gtrsim 4.9 \text{ TeV}, \quad |v_R|_{\text{Eff}} \gtrsim 10 \text{ TeV}.$

The $\chi_L + \chi_R$ Effective LR Model

 The scalar sector is very simple. We only have two physical degrees of freedom:

$$\chi_{L,R} \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{L,R} + \chi_{L,R}^{0r} \end{pmatrix} \qquad \begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \chi_{R}^{0r} \\ \chi_{L}^{0r} \end{pmatrix}$$
(Unitary Gauge)
$$v_{R} \gg v_{L} = v_{EW}$$

Only 5 free parameters in the scalar potential

$$M_{H}^{2} \approx 2\lambda_{R}v_{R}^{2}, \qquad M_{h}^{2} \approx \frac{4\lambda_{L}\lambda_{R} - \lambda_{LR}^{2}}{2\lambda_{R}}v_{L}^{2}$$

$$V = -\mu_{L}^{2}\chi_{L}^{\dagger}\chi_{L} - \mu_{R}^{2}\chi_{R}^{\dagger}\chi_{R} + \lambda_{L}\left(\chi_{L}^{\dagger}\chi_{L}\right)^{2} + \lambda_{R}\left(\chi_{R}^{\dagger}\chi_{R}\right)^{2} + \lambda_{LR}\left(\chi_{L}^{\dagger}\chi_{L}\right)\left(\chi_{R}^{\dagger}\chi_{R}\right). \qquad \tan\theta = \frac{\lambda_{LR}v_{L}v_{R}}{\lambda_{L}v_{L}^{2} - \lambda_{R}v_{R}^{2}}$$

S. Ferrando Solera @ SUSY 2023

The $\chi_L + \chi_R$ Effective LR Model

• No $W_L - W_R$ Mixing $M_{W_L} = \frac{1}{2}g_L v_L, \qquad M_{W_R} = \frac{1}{2}g_R v_R, \qquad M_{Z_L} \approx \frac{M_{W_L}}{\cos \theta_W}, \qquad M_{Z_R} \approx \frac{M_{W_R}}{\cos \gamma}$

(Majorana Masses)

We need Effective Operators to produce Fermion Masses

$$\mathcal{L}_{Y} = -\frac{1}{\Lambda} \begin{cases} C_{d}^{ij} \bar{q}_{L}^{i} \chi_{L} \chi_{R}^{\dagger} q_{R}^{j} + C_{u}^{ij} \bar{q}_{L}^{i} \tilde{\chi}_{L} \tilde{\chi}_{R}^{\dagger} q_{R}^{j} + C_{e}^{ij} \bar{l}_{L}^{i} \chi_{L} \chi_{R}^{\dagger} l_{R}^{j} + C_{\nu_{D}}^{ij} \bar{l}_{L}^{i} \tilde{\chi}_{L} \tilde{\chi}_{R}^{\dagger} l_{R}^{j} \\ + C_{\nu_{L,M}}^{ij} \bar{l}_{L}^{i} \tilde{\chi}_{L} \tilde{\chi}_{L}^{\dagger} l_{L}^{jc} + C_{\nu_{R,M}}^{ij} \bar{l}_{R}^{ci} \tilde{\chi}_{R}^{*} \tilde{\chi}_{R}^{\dagger} l_{R}^{j} \end{cases}$$

$$\tilde{\chi}_{L,R} \coloneqq i\sigma^{2} \chi_{L,R}^{*}$$

S. Ferrando Solera @ SUSY 2023

The $\chi_L + \chi_R$ Effective LR Model

 Dirac Masses for Quarks and Charged Leptons and Majorana Masses for Neutrinos

$$m_{q,l^{\pm}} \propto \frac{v_L v_R}{\Lambda}$$
, $m_{v_h} \propto \frac{v_R^2}{\Lambda}$, $m_{v_l} \propto \frac{v_L^2}{\Lambda}$

No FCNCs in the Hadronic Sector

$$\mathcal{L}_{u,d,e}^{Y} = -\left(1 + \frac{\chi_{L}^{0r}}{v_{L}}\right)\left(1 + \frac{\chi_{R}^{0r}}{v_{R}}\right)\sum_{f=u,d,e}\bar{f}\mathcal{M}_{f}f.$$

S. Ferrando Solera @ SUSY 2023

Sources of **CP** violation in the quark sector

 $\rightarrow \Phi$ is included for a mass generation mechanism for fermions:

$$\overline{Q}_{L}Y\Phi Q_{R} + \overline{Q}_{L}\tilde{Y}\tilde{\Phi}Q_{R} + h.c.$$

$$\Rightarrow M_{u} = \kappa_{1}Y + \kappa_{2}\tilde{Y} \text{ and } M_{d} = \kappa_{1}\tilde{Y} + \kappa_{2}Y$$

 \rightarrow Bi-diagonalization: mixing matrices V^L and V^R

Light SM-like Higgs

$$h^{0} = \frac{1}{\sqrt{\kappa_{1}^{2} + \kappa_{2}^{2} + \kappa_{L}^{2}}} \left(\underbrace{\kappa_{1} \varphi_{1}^{0r} + \kappa_{2} \varphi_{2}^{0r}}_{bi-doublet} \underbrace{+ \kappa_{L} \chi_{L}^{0r}}_{SU(2)_{L}-doublet} \right) + \underbrace{\mathcal{O}(\epsilon) \chi_{R}^{0r}}_{SU(2)_{R}-doublet}$$

Couplings to fermions similar to the SM:

$$-\left(\frac{m_d^i}{\sqrt{\kappa_1^2+\kappa_2^2+\kappa_L^2}}\overline{d_L^i}d_R^i+\frac{m_u^j}{\sqrt{\kappa_1^2+\kappa_2^2+\kappa_L^2}}\overline{u_L^j}u_R^j\right)h^0+\mathcal{O}(\epsilon^2)+h.c. \qquad \frac{h^0}{c_{SM}^{qq}}\left(1+\mathcal{O}(\epsilon^2)\right)\left(\begin{array}{c}q\\q\\q\\q\end{array}\right)$$

and in particular h^0 is flavour diagonal up to $\mathcal{O}(\epsilon^2)$

Couplings to gauge
$$h^0 \stackrel{\swarrow}{} V \stackrel{W}{} h^0 \stackrel{\swarrow}{} Z$$

bosons corrected at $\mathcal{O}(\epsilon^2) \stackrel{g_L M_W}{} (1 + \mathcal{O}(\epsilon^2)) \stackrel{\swarrow}{} W \stackrel{g_L \frac{M_Z}{\cos \theta_W}}{} (1 + \mathcal{O}(\epsilon^2)) \stackrel{\swarrow}{} Z$

Physical scalars and FCNC

Scalar 1× light SM-like Higgs h^0 content: 3× CP-even $H_{1,2,3}^0$, 2× CP-odd $A_{1,2}^0$, of mass ~ κ_R 2× singly charged $H_{1,2}^{\pm}$, of mass ~ κ_R 2× doubly charged $H_{1,2}^{\pm\pm}$, of mass ~ κ_R (triplet only)

Flavour Changing Neutral Currents (FCNC) at tree level $\overline{Q}_L Y \Phi Q_R + \overline{Q}_L \tilde{Y} \tilde{\Phi} Q_R + h.c. \Rightarrow M_u = \kappa_1 Y + \kappa_2 \tilde{Y}$ and $M_d = \kappa_1 \tilde{Y} + \kappa_2 Y$, since couplings are not diagonalized simultaneously: FCN couplings

 $H_{1}^{0}, A_{1}^{0} \not\begin{pmatrix} d \\ H_{1}^{0}, A_{1}^{0} \\ f_{1}^{0}, A_{2}^{0} \end{pmatrix} \begin{pmatrix} d \\ H_{1}^{0}, A_{1}^{0} \\ H_{2}^{0}, A_{2}^{0} \end{pmatrix} \begin{pmatrix} f_{1} \phi + g_{1} \chi_{L} \\ f_{2} \chi_{L} + g_{2} \phi \\ f_{2} \chi_{L} + g_{2} \phi \end{pmatrix} \begin{pmatrix} FCNC \text{ for } sd \\ f_{C} \sum_{a} m_{u}^{a} V_{L}^{as*} V_{R}^{ad} \\ g_{C} \sum_{a} m_{u}^{a} V_{L}^{as*} V_{R}^{ad} \\ f_{1,2,C} \rightarrow 1, g_{1,2,C} \rightarrow 0, \text{ when } \kappa_{L} \rightarrow 0 \end{pmatrix}$ FCNC: *triplets* $\{H_{1}^{0}, A_{1}^{0}\}$, and *doublets* $\{H_{1}^{0}, A_{1}^{0}, H_{2}^{0}, A_{2}^{0}\}$

Higgs potential, differences triplet and doublet

P symmetric case (parameters in total: 15 + 1 complex phase):

$$V = -\mu_{1}^{2} \operatorname{tr}(\Phi^{\dagger}\Phi) - \mu_{2}^{2} \operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi + \tilde{\Phi}\Phi^{\dagger}) - \mu_{3}^{2}(\chi_{L}^{\dagger}\chi_{L} + \chi_{R}^{\dagger}\chi_{R}) + \mu_{1}'(\chi_{L}^{\dagger}\Phi\chi_{R} + \chi_{R}^{\dagger}\Phi^{\dagger}\chi_{L}) + \mu_{2}'(\chi_{L}^{\dagger}\tilde{\Phi}\chi_{R} + \chi_{R}^{\dagger}\tilde{\Phi}^{\dagger}\chi_{L}) + \lambda_{1}[\operatorname{tr}(\Phi^{\dagger}\Phi)]^{2} + \lambda_{2}\left([\operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi)]^{2} + [\operatorname{tr}(\tilde{\Phi}\Phi^{\dagger})]^{2}\right) + \lambda_{3}\operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi)\operatorname{tr}(\tilde{\Phi}\Phi^{\dagger}) + \lambda_{4}\operatorname{tr}(\Phi^{\dagger}\Phi)\operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi + \tilde{\Phi}\Phi^{\dagger}) + \rho_{1}[(\chi_{L}^{\dagger}\chi_{L})^{2} + (\chi_{R}^{\dagger}\chi_{R})^{2}] + \rho_{3}(\chi_{L}^{\dagger}\chi_{L})(\chi_{R}^{\dagger}\chi_{R}) + \alpha_{1}(\chi_{L}^{\dagger}\chi_{L} + \chi_{R}^{\dagger}\chi_{R})\operatorname{tr}(\Phi^{\dagger}\Phi) + \frac{\alpha_{2}}{2}\{\operatorname{e}^{i\delta_{2}}[\chi_{L}^{\dagger}\chi_{L}\operatorname{tr}(\tilde{\Phi}\Phi^{\dagger}) + \chi_{R}^{\dagger}\chi_{R}\operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi)] + \operatorname{e}^{-i\delta_{2}}[\chi_{L}^{\dagger}\chi_{L}\operatorname{tr}(\tilde{\Phi}^{\dagger}\Phi) + \chi_{R}^{\dagger}\chi_{R}\operatorname{tr}(\tilde{\Phi}\Phi^{\dagger})]\} + \alpha_{3}(\chi_{L}^{\dagger}\Phi\Phi^{\dagger}\chi_{L} + \chi_{R}^{\dagger}\Phi^{\dagger}\Phi\chi_{R}) + \alpha_{4}(\chi_{L}^{\dagger}\tilde{\Phi}\tilde{\Phi}^{\dagger}\chi_{L} + \chi_{R}^{\dagger}\tilde{\Phi}^{\dagger}\tilde{\Phi}\chi_{R}),$$
Triplet case: no μ_{1}', μ_{2}' , but other terms are present (parameters in total: 17 + 1 complex phase)
C symmetric case: further phases are present beyond $\delta_{2} \ll 2$