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Are the boson couplings the same for all charged leptons?

Higgs boson coupling to leptons: depends on the lepton mass

W/Z couplings assumed to be independent of mass

↪→ lepton flavour universality, fundamental axiom in the Standard Model

How can we test this assumption?

Measure ratio R of boson decay rates:
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How can we use top-quark events for this measurement?
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top-quark pair production: large cross-section at the LHC
↪→ 116 million events produced in Run 2 dataset in ATLAS alone !

top quarks decay to almost 100% into W boson and b quark

decay with two leptons: very clean source with two W bosons:
↪→ still 12 million events before selection

↪→ small background contamination
↪→ small systematic uncertainties



This measurement: focus on W decays into muons and electrons

ã most precise single measurement so far: also uses tt̄ events Phys. Rev. D 105 (2022)

ã relative precision of that measurement: 0.9%

ã will now present ATLAS analysis with full Run 2 dataset! arXiv:2403.02133
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https://arxiv.org/abs/2201.07861
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-28/
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We are interested in:

R
µ/e
W =

B(W → µνµ)

B(W → eνe)

↪→ advantage: many uncertainties already cancel in the ratio
↪→ but: measurement limited by lepton identification uncertainties

Solution: measure ratio of Rµ/eW and
√
R
µµ/ee
Z

R
µ/e
WZ =

R
µ/e
W√

R
µµ/ee
Z

↪→ have one power of e�ciencies: better cancellation of uncertainties

Get final value by utilising precise LEP/SLD result for Rµµ/eeZ :

R
µ/e
W (ATLAS) = R

µ/e
WZ(ATLAS) ·

√
R
µµ/ee
Z (LEP+SLD)
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Use well-tested method that allowed for very precise tt̄ cross-section (and tt̄/Z)
measurement at 5, 13 and 13.6 TeV: JHEP 06 (2023) 138 JHEP 07 (2023) 141 PLB 848 (2024) 138376

First step: select events in 3 analysis regions

Opposite flavour tt:
● 1e with 27.3 GeV
● 1μ with 27.3 GeV
● opposite charge
● 1 or 2 b-tagged jets 

(30 GeV, 70% eff.)

Same flavour tt:
● 2e or 2μ
● opposite charge
● 1 or 2 b-tagged jets 

(30 GeV, 70% eff.)

Same flavour Z events:
● 2e or 2μ
● opposite charge
● Invariant dilepton 

mass between 
66 and 116 GeV 

Number of b-tagged jets Invariant dilepton mass,
 split for 1 and 2 b-tags

Number of ee/μμ events

ã use data-driven estimates for non-prompt lepton background

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-40/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2018-26/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-21/


Measurement of isolation e�ciencies
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usually assume scale-factors can be applied universally

for a precision measurement like this:

↪→ want to reduce uncertainties as much as possible

↪→ di�erence between the tt̄ and inclusive Z environment does matter

↪→ solution: derive dedicated lepton isolation scale-factors
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Reduce the impact of physics modelling uncertainties from the start:

lepton e�ciencies are di�erent between electrons and muons
↪→ also have di�erent pT and η dependence
↪→ signal modelling uncertainties larger if kinematics di�erent

idea: calculate weight per muon as function of pT and η:

wµ(pT , η) = w0
Nee
tt̄ (pT , |η|)

Nµµ
tt̄ (pT , |η|)

ã all following plots have these weights applied per muon
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Opposite-flavour tt̄ events:
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Opposite-flavour tt̄ events:

Number of selected eµ events
with one/two b-tagged jets
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Opposite-flavour tt̄ events:

Selection e�ciency for tt̄ events
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Opposite-flavour tt̄ events:

Deviations of W branching ratios
from simulated values
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Opposite-flavour tt̄ events:

E�ciency to reconstruct and tag b-jet from top decay
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Opposite-flavour tt̄ events:

Correlation coe�cient for tagging
probabilities of b quark jets
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Opposite-flavour tt̄ events:

Number of events in background source k
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Opposite-flavour tt̄ events:

Scaling factors for each background
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Opposite-flavour tt̄ events:

changes in W or Z branching ratios
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Same-flavour tt̄ events:

Number of same-flavour
events per mass bin

fraction of events per mass bin



Now lets look at the finer details:

W branching ratios to e/µ are allowed to di�er using parameter ∆W :

R
µ/e
W =

B(W → µνµ)

B(W → eνe)
=
W (1 + ∆W )

W (1−∆W )

↪→W is the value used in the simulation

We can re-arrange this as:
∆W =

R
µ/e
W − 1

R
µ/e
W + 1

For tW and WW : g`` values are set to gtt̄``: considered as signal
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Same-flavour Z events:

↪→ no jet multiplicity cut

↪→ use Powheg to simulate Z production

↪→ reweighting of p`` spectrum to data

Z branching ratios to ee/µµ are allowed to di�er using parameter ∆Z :

R
µµ/ee
Z =

B(Z → µµ)

B(Z → ee)
=
Z(1 + ∆Z)

Z(1−∆Z)

↪→ Z is the average Z → `` branching ratio



Perform simultaneous likelihood fit to data

Include all three analysis regions:

Consider 10 free parameters in the fit:

cross-sections and ratios: σtt̄, σZ→``, Rµ/eWZ , Rµµ/eeZ

3 b-jet e�ciencies ε``b

scale factors sZ+jets
1 , sZ+jets

2

Z isolation e�ciency parameter

↪→ all other values: taken from simulation
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Looking at largest uncertainties on R
µ/e
WZ
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RWZ : PDF, fake leptons, lepton uncertainties and Z modelling
leading uncertainties on RZ reduced in ratio
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Now: can calculate the final value via:

R
µ/e
W (ATLAS) = R

µ/e
WZ(ATLAS) ·

√
R
µµ/ee
Z (LEP+SLD)
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R
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W (ATLAS) = R

µ/e
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√
R
µµ/ee
Z (LEP+SLD)

Value obtained from likelihood fit:

R
µ/e
WZ(ATLAS) = 0.9990± 0.0022 (stat.)± 0.0036 (syst.)
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R
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√
R
µµ/ee
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Value obtained from likelihood fit:

R
µ/e
WZ(ATLAS) = 0.9990± 0.0022 (stat.)± 0.0036 (syst.)

Value from LEP+SLD Phys.Rept.427:257-454,2006 :

R
µµ/ee
Z (LEP+SLD) = 1.0009± 0.0028(stat.+syst.)

https://arxiv.org/abs/hep-ex/0509008
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Now: can calculate the final value via:

R
µ/e
W (ATLAS) = R

µ/e
WZ(ATLAS) ·

√
R
µµ/ee
Z (LEP+SLD)

Value obtained from likelihood fit:

R
µ/e
WZ(ATLAS) = 0.9990± 0.0022 (stat.)± 0.0036 (syst.)

Value from LEP+SLD Phys.Rept.427:257-454,2006 :

R
µµ/ee
Z (LEP+SLD) = 1.0009± 0.0028(stat.+syst.)

Final result arXiv:2403.02133 :

R
µ/e
W (ATLAS) = 0.9995± 0.0022 (stat.)± 0.0036 (syst.)± 0.0014 (LEP+SLD)

↪→ agrees with assumption of lepton-flavour universality!

https://arxiv.org/abs/hep-ex/0509008
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-28/
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How does this compare to the previous results?

arXiv:2403.02133

relative uncertainty of 0.45 %

most precise single measurement to date!

also more precise than previous PDG average

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2023-28/


Do you want to know more? We have also prepared a new briefing! Link
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https://atlas.cern/Updates/Briefing/LFU-Wdecays


– Backup –
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Overview of recent results in di�erent channels
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ã in tt̄: transverse momenta softer in data than simulation: uncertainty

ã vary events with 3 b at generator level by an additional 50%
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ã p``T reweighted to data to correct for mismodelling



Why are the lepton e�ciencies di�erent?

ECAL stops at |𝜂| < 2.47

Only one bin in central region due 
to muon loss at 𝜂≅ 0 (services)

Lower muon trigger efficiency at 
large transverse momentum

Transition 
region 
ECAL

lowest p lepton trigger: stronger isolation for electrons than muons
electron e�ciency has stronger drop in forward region
if signal simulation predicts more/less events in certain η or pT region
↪→ di�erent acceptance e�ects, less cancellation
could have weighted electrons, but then would have weighted more events up
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Summary of extracted values

σtt̄ = 809.5± 1.1± 20.1± 7.5± 1.9 pb

σZ→`` = 2019.4± 0.2± 20.7± 16.8± 1.8 pb

Scaling parameters for Z+jets:

sZ+jets
1 = 0.89± 0.09

sZ+jets
2 = 1.12± 0.32

Z+jets lepton isolation e�ciency di�erence:

R
µµ/ee
Z+b = 0.990± 0.003

Ratios:

R
µ/e
WZ = 0.9990± 0.0022± 0.0036

R
µµ/ee
Z = 0.9913± 0.0002± 0.0045

↪→ potential bias in lepton e�ciency, but RWZ protected by ratio
23



How is the non-prompt lepton background estimated?

In tt̄ events:
fake lepton background rate varies with b-tag multiplicity and m`` bin
↪→ low m``: originate more from heavy-flavour decays
↪→ at high values: more photon conversions
select events where leptons have the same charge (same-sign, SS)
↪→ use this to normalise the fake rate:

N fake
j =

N fake, OS
j

N fake, SS
j

· (Ndata, SS
j −Nprompt, SS

j )

In Z events:
simulation is missing multijet production: use data-driven ABCD method
define A, B, C, D regions enriched in fake leptons based on:
↪→ same/opposite charge, isolation and ID...

NA,Signal =
N fake
B N fake

C

N fake
D

↪→ less than 0.1% contribution
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removing of first m`` bin changed RWZ by less than 0.01%

mismodelling in ee and µµ cancels in the ratio

found consistent results between three data-taking periods

RWZ stable against pT cut (increased up to 40 GeV)

RWZ stable against cut on |η| < 1.5


