

Electroweak Precision Running of $\hat{\alpha}$ and $\sin^2 \hat{\theta}$

Rodolfo Ferro Hernandez

Moriond 2024

rferrohe@uni-mainz.de

Quick

The vacuum p

basics
polarization function is defined as
$$(-q^2 \eta^{\mu\nu} + q^{\mu}q^{\nu}) \hat{\Pi}(q^2, \mu^2) = i \int d^4x e^{iqx} \langle 0 | TJ^{\mu}_{em}(x) J^{\nu}_{em}(0) | 0 \rangle$$

The running coupling $\hat{\alpha}(\mu^2)$ is constructed to absorb the large logarithms that appear in this expression. It is given by:

$$\hat{\alpha}(\mu^2) = \frac{\alpha}{1 - \Delta \hat{\alpha}(\mu^2)} \qquad \Delta \hat{\alpha}(\mu^2) \equiv 4\pi \alpha \hat{\Pi}(0, \mu^2)$$

$$(1 - \Delta \hat{\alpha}(\mu^2)) = 4\pi \alpha \hat{\Pi}(0, \mu^2) + (1 - \Delta \hat{\alpha}(\mu^2)) + (1 - \Delta \hat{\alpha}(\mu^$$

• • •

Rel error $\sim 10^{-10}$

$\hat{\alpha}(0)$

Rel error $\sim 10^{-10}$

$\hat{\alpha}(0)$

 $e^+e^- \rightarrow had$ o lattice + pQCD

Rel error $\sim 10^{-10}$

 $\hat{\alpha}(0)$

$e^+e^- \rightarrow had$ o lattice + pQCD

Rel error $\sim 10^{-4}$

Rel error $\sim 10^{-10}$

 $e^+e^- \rightarrow had$ o lattice + pQCD

Rel error $\sim 10^{-4}$

Rel error $\sim 10^{-10}$

 $e^+e^- \rightarrow had$ o lattice + pQCD

Rel error $\sim 10^{-4}$

 $\hat{\alpha}(M_Z^2)$

enters in EW relations

 $\pi \hat{\alpha}(M_Z^2)$

Running $\hat{\alpha}$ comparison

Erler, Ferro-Hernandez, <u>10.1007/JHEP12(2023)131</u>

Running $\hat{\alpha}$ comparison

Erler, Ferro-Hernandez, <u>10.1007/JHEP12(2023)131</u>

Low energy Parity Violation

 $\sigma_L - \sigma_R$ A_{PV} $\sigma_L + \sigma_R$

Parity Conserving

 $\sigma_L - \sigma_R$ A_{PV} $\sigma_L + \sigma_R$

Parity Conserving

Suppressed

 σ_L σ_R A_{PV} $\sigma_L + \sigma_R$

Parity Conserving

Suppressed

 σ_L σ_R A_{PV} $\sigma_L + \sigma_R$

Parity Conserving

Suppressed

Form factors

 σ_L σ_R A_{PV} σ_R

Conserving

At higher orders....

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0})\frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})}\right] + \frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_{2}}{3}\ln\frac{\mu^{2}}{\mu_{0}^{2}} + \frac{3\lambda_{3}}{4}\ln\frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \tilde{\sigma}(\mu_{0}) - \tilde{\sigma}(\mu)\right]$

Erler, *Phys. Rev.D* 72 (2005) 073003

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right]$

 $\hat{\alpha}(M_Z)$ from α

Erler, *Phys. Rev.D* 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Requirements

 $\sin^2 \hat{\theta}(0)$ from $\sin^2 \hat{\theta}(M_z)$

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right]$

$\hat{\alpha}(M_Z)$ from α

pQCD

Erler, *Phys. Rev.D* 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Requirements

 $\sin^2 \hat{\theta}(0)$ from $\sin^2 \hat{\theta}(M_z)$

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right]$

$\hat{\alpha}(M_Z)$ from α

pQCD

Total HVP

Erler, *Phys. Rev.D* 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Requirements

 $\sin^2 \hat{\theta}(0)$ from $\sin^2 \hat{\theta}(M_z)$

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right]$

$\hat{\alpha}(M_Z)$ from α

pQCD

Total HVP

Flavor Separation

Erler, Phys. Rev. D 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Requirements

 $\sin^2 \hat{\theta}(0)$ from $\sin^2 \hat{\theta}(M_Z)$

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left[1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right] + \lambda_{1}$

Г

Erler, *Phys. Rev.D* 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Use $\hat{\alpha}$ to compute $\sin^2 \hat{\theta}_W \equiv \hat{s}^2$ (MS scheme)

 $\hat{s}^{2}(\mu) = \hat{s}^{2}(\mu_{0}) \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} + \lambda_{1} \left| 1 - \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_{0})} \right| +$

pQCD

Total HVP

Flavor Separation

Using cross section data

Using Lattice

$\hat{\alpha}(M_Z)$ from α

Erler, Ferro-Hernandez,<u>10.1007/</u> JHEP03(2018)196

Erler, Ferro-Hernandez, <u>10.1007/</u> JHEP12(2023)131 Erler, Phys. Rev. D 72 (2005) 073003

$$\frac{\hat{\alpha}(\mu)}{\pi} \left[\frac{\lambda_2}{3} \ln \frac{\mu^2}{\mu_0^2} + \frac{3\lambda_3}{4} \ln \frac{\hat{\alpha}(\mu)}{\hat{\alpha}(\mu_0)} + \tilde{\sigma}(\mu_0) - \tilde{\sigma}(\mu_0) \right]$$

Requirements

Г

 $\sin^2 \hat{\theta}(0)$ from $\sin^2 \hat{\theta}(M_Z)$

To be published soon

Lattice flavor separation

	T 7 1
Parameter	Value a
Π_{disc}	(-3.7 ± 1)
Π_s	(83.0 ± 1)
Π_{ud}	(587.8 ± 8)

Ce et al <u>10.1007/JHEP08(2022)220</u>

 $\hat{\Pi}_f(-Q^2,Q^2) =$

$$\Pi_{f}(-Q^{2}) = \hat{\Pi}_{f}(0,\mu^{2}) - \hat{\Pi}_{f}(-Q^{2},\mu^{2})$$

$$\hat{\Pi}_{f}(-Q^{2},Q^{2}) = \frac{Q_{f}^{2}}{4\pi^{2}} \sum_{n=0}^{3} c_{n} \left(\frac{\hat{\alpha}_{s}(Q^{2})}{\pi}\right)^{n} \text{pQCD}$$

We obtain

$\Delta \hat{\alpha}_s \equiv \hat{\alpha}_s(M_Z) - 0.1185 \,\mathrm{GeV}$

 $\hat{\kappa}(0) = \frac{\sin^2 \hat{\theta}_W(0)}{\sin^2 \hat{\theta}_W(M_Z)}$

$\hat{\kappa}(0)_{\text{lat}} = 1.03233 - 0.42\Delta \hat{s}_Z^2 + 0.030\Delta \hat{\alpha}_s - 0.0012\Delta \hat{m}_c - 0.0003\Delta \hat{m}_b \pm 0.00010$

 $\Delta \hat{m}_c \equiv \hat{m}_c(\hat{m}_c) - 1.274 \,\text{GeV}$ $\Delta \hat{m}_b \equiv \hat{m}_b(\hat{m}_b) - 4.18 \,\text{GeV}$

We obtain

$$\Delta \hat{\alpha}_s \equiv \hat{\alpha}_s(M_Z) - 0.1185 \,\text{GeV} \qquad \Delta \hat{m}_b \equiv$$

While from cross section data the result is: $\hat{\kappa}(0)_{e^+e^-} = 1.03200 \pm 0.00008$, Erler, Ferro-Hernandez, <u>10.1007/JHEP03(2018)196</u>

 $\hat{\kappa}(0) = \frac{\sin^2 \hat{\theta}_W(0)}{\sin^2 \hat{\theta}_W(M_Z)}$

 $\hat{\kappa}(0)_{\text{lat}} = 1.03233 - 0.42\Delta \hat{s}_z^2 + 0.030\Delta \hat{\alpha}_s - 0.0012\Delta \hat{m}_c - 0.0003\Delta \hat{m}_b \pm 0.00010$

 $\Delta \hat{m}_c \equiv \hat{m}_c(\hat{m}_c) - 1.274 \,\text{GeV}$ $\hat{m}_b(\hat{m}_b) - 4.18 \, \text{GeV}$

We obtain

$$\Delta \hat{\alpha}_s \equiv \hat{\alpha}_s(M_Z) - 0.1185 \,\text{GeV} \qquad \Delta \hat{m}_b \equiv$$

While from cross section data the result is: $\hat{\kappa}(0)_{e^+e^-} = 1.03200 \pm 0.00008$, Erler, Ferro-Hernandez, <u>10.1007/JHEP03(2018)196</u>

$$\hat{\kappa}(0)_{\text{lat}} - \hat{\kappa}(0)_{e^+e^-}$$

 $\hat{\kappa}(0) = \frac{\sin^2 \hat{\theta}_W(0)}{\sin^2 \hat{\theta}_W(M_Z)}$

 $\hat{\kappa}(0)_{\text{lat}} = 1.03233 - 0.42\Delta \hat{s}_z^2 + 0.030\Delta \hat{\alpha}_s - 0.0012\Delta \hat{m}_c - 0.0003\Delta \hat{m}_b \pm 0.00010,$

 $\Delta \hat{m}_c \equiv \hat{m}_c(\hat{m}_c) - 1.274 \,\text{GeV}$ $\hat{m}_b(\hat{m}_b) - 4.18 \, \text{GeV}$

 $= 0.00033 \pm 0.00013$

Results

Results

 $f(K^{2}) = \frac{m_{\mu}^{2}K^{2}Z^{3}(1-K^{2}Z)}{1+m_{\mu}^{2}K^{2}Z^{2}}$ $a_{\mu}^{hvp} = \left(\frac{\alpha}{\pi}\right)^{2}\int_{0}^{\infty} dK^{2}f(K^{2})\Pi(K^{2})$

$$Z = -[K^2 - (K^4 + 4m_{\mu}^2 K^2)^{1/2}]/2m_{\mu}^2 K^2$$

Summary

- 1. We computed $\sin^2 \hat{\theta}_W(0)$ using lattice QCD as input.
- 3. As expected the tension is in the same direction as the tension in α .
- 4. Tension smaller than the precision expected in future PV experiments.
- 5. We computed the correlation of a_{μ}^{hvp} with both $\hat{\alpha}$ and $\sin^2 \hat{\theta}_W(0)$.

2. We found a $\sim 3\sigma$ tension when compared to the result using e^+e^- cross section data.

6. There is consistency between the SM prediction and the experimental average of M_W .

Thank you

$\sin^2 \hat{\theta}$ is analogous to α

The weak mixing angle is also a key parameter in the Standard Model.

Relerror $\sim 10^{-3}(2)$ $\sin^2\hat{\theta}(0)$ R(s) Low energy Parity Violation **Experiments** $A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \propto 1 - 4\sin^2\hat{\theta}$

 $\sin^2 \hat{\theta}(M_{\rm Z})$

Relerror $\sim 10^{-3}$

Measured at the Z pole

$$A_{f} = 2 \frac{g_{Vf}g_{Af}}{g_{Vf}^{2} + g_{Af}^{2}} \qquad g_{Vf} = T_{f} - 2g_{S}$$

$$g_{Af} = T_{f}$$

$$A_{FB} = \frac{\sigma_{F} - \sigma_{B}}{\sigma_{F} + \sigma_{B}} = \frac{3}{4}A_{e}A_{f}$$

$$A_{LR} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = A_{e}$$

Explicit integration over R

Relation with cross section

 $\operatorname{Re}(s)$ $\hat{\Pi}_{had}(s,\mu^2)$ is analytic in the complex plane of s, except for poles and bre $\frac{2}{2}$ $\hat{\Pi}_{had}(q^2, \mu^2) = \frac{1}{2\pi i} \oint_C \frac{\hat{\Pi}_{had}(s, \mu^2)}{s - q^2} ds$ $\hat{\Pi}_{\text{had}}(q^2,\mu^2) = \frac{1}{12\pi^2} \int_{4m^2}^{\mu_0^2} \frac{R(s)}{s-q^2} ds + \frac{1}{2\pi i} \int_{|s|=\mu_0^2} \frac{\hat{\Pi}_{\text{had}}(s,\mu^2)}{s-q^2} ds$ BES **KEDR**

Explicit integral over R

Compute $\hat{\Pi}_{had}(q^2, \mu^2) - \hat{\Pi}_{had}(0, \mu^2)$ directly

$$\Delta \alpha_{\text{had}}(q^2) = -\operatorname{Re}\left[\frac{\alpha q^2}{3\pi}\int_{4m_{\pi}^2}^{\infty}\frac{R(s)}{s(s-q^2)}ds\right]$$

Very similar to the expression used to compute a Collaborations usually quote both results

(F. Jegerlehner : arXiv:1905.05078) (M. Davier, A.Hoecker, B.Malaescu, Z. Zhang: arXiv:1908.00921) (A. Keshavarzi, D.Nomura and Thomas Teubner: arXiv:1911.00367)

$$\alpha_{\mu}!$$
 $a_{\mu}^{\text{had}} = \frac{\alpha^2}{3\pi^2} \int \frac{ds}{s} K(s) R(s) \qquad K(s) \sim \frac{1}{s}$

But, sensitivity to different regions of the integral is different.....

Integral over R

Region where pQCD is used

 $R(s) = 3\sum_{n} Q_n^2 \left[1 + \frac{\alpha_s(s)}{\pi} + \dots \right] + \text{mass corrections}$

Chetyrkin et al. hep-ph/9606230 Chetyrkin et al. hep-ph/0005139, Harlander et al. hep-ph/0212294 Baikov et al. hep-ph/0801.1821 Maier et al. hep-ph/1110.5581 Baikov et al. hep-ph/1501.06739

Region data is used

(A. Keshavarzi, et al uses data up to 11 GeV (plot taken from them)

$$= \left[275.77 + 141 \,\delta \hat{\alpha}_s + 0.7 \,\delta \hat{m}_c - 1.3 \,\delta \hat{m}_b \pm 0.67_{c-thr} \pm 0.19_{trunc} \pm 0.49_{trunc} \pm 0.18_{dat<1.8 \,\text{GeV}} \pm 0.15_{J/\psi} \right] \times 10^{-4}$$
 (Timelike method, R in

Main error associated to the charm quark

 $\Delta \alpha^{(c)}(M_Z^2) = \left| 78.72 + 27 \,\delta \hat{\alpha}_s + 0.7 \,\delta \hat{m}_c \pm 0.02_{\text{trunc}} \pm 0.67_{\text{c-thr}} \right| \pm 0.13_{J/\psi} \pm 0.08_{\psi} \times 10^4 \,.$

Steps:

- 1. Determine light quark contributions to $\hat{\Pi}(0,\mu^2)$ at a low energy scale. 2. Match the charm quark contribution.
- 3. Run to bottom quark, match it and run.
- 4. Convert back to the on-shell scheme (effective coupling).

Steps:

1. Determine light quark contributions to $\hat{\Pi}(0,\mu^2)$ at a low energy scale. 2. Match the charm quark contribution

- 2. Match the charm quark contribution.
- 3. Run to bottom quark, match it and run.
- 4. Convert back to the on-shell scheme (effective coupling).

RGE method: light quark contribution

Steps:

- 2. Match the charm quark contribution.
- 3. Run to bottom quark, match it and run.
- 4. Convert back to the on-shell scheme (effective coupling).

1. Determine light quark contributions to $\hat{\Pi}(0, \mu^2)$ at a low energy scale.

RGE method: matching

 $\Delta \hat{\alpha}^{(n_f-1)}(\hat{m}_f^2) = \Delta \hat{\alpha}^{(n_f)}(\hat{m}_f^2) - \frac{15}{16} N_c Q_f^4 a^2 \left(1 + \Delta \hat{\alpha}^{(n_f)}(\hat{m}_f) \right) - a Q_f^2 \left\{ \hat{a}_s^{(n_f)} \frac{13}{12} \right\}$ Go from a theory with n_1 quark: $+ \hat{a}_{s}^{(n_{f})\,2} \left[rac{361}{1296} n_{f} + rac{655}{144} \zeta_{3} - rac{3847}{864}
ight]$ $+ \hat{a}_{s}^{(n_{f})\,3} \left[-\frac{85637a_{4}}{1620} - \frac{656a_{5}}{27} - \frac{928399\zeta_{2}^{2}}{129600} - \frac{1289}{135}\zeta_{2}^{2}l_{2} - \frac{164}{81}\zeta_{2}l_{2}^{3} \right]$ $\hat{\alpha}^{(n_f-1)} = \xi \hat{\alpha}^{(n_f-1)}$ $+\frac{85637\zeta_2 l_2^2}{6480}-\frac{49\zeta_5}{32}+\frac{42223463\zeta_3}{604800}-\frac{321165301}{21772800}+\frac{82l_2^5}{405}-\frac{85637 l_2^5}{38880}$ $+n_f \left(-\frac{17a_4}{27} + \frac{4487\zeta_2^2}{2160} + \frac{17}{108}\zeta_2 l_2^2 - \frac{21379\zeta(3)}{5184} - \frac{86101}{62208} - \frac{17l_2^4}{648} \right)$ \sim $+ n_f^2 \left(\frac{17897}{93312} - \frac{31}{216} \zeta_3 \right) \right] \bigg\} - a \sum_{(l \neq f)} Q_l^2 \bigg\{ \hat{a}_s^{(n_f) \, 2} \frac{295}{1296} \bigg\}$ $+ \hat{a}_{s}^{(n_{f})\,3} \left[\frac{67}{360} \zeta_{2}^{2} + \frac{1}{9} \zeta_{2} l_{2}^{2} + \frac{163}{162} \zeta_{3} - \frac{86369}{186624} - \frac{l_{2}^{4}}{54} - \frac{4a_{4}}{9} \right]$ $+ \left(\frac{6625}{46656} - \frac{11\zeta_3}{108}\right) n_f \right] \Big\} - aQ_f^2 \hat{a}_s^{(n_f)\,3} \left\{\frac{2411}{6048} - \frac{365a_4}{36}\right\}$ $+ \frac{2189\zeta_2^2}{576} + \frac{365}{144}\zeta_2 l_2^2 - \frac{25\zeta_5}{72} - \frac{6779\zeta_3}{1344} - \frac{365l_2^4}{864} \bigg\}$ Chetyrkin et al. hep-ph/9708255 Sturm hep-ph/1404.3433 $-a\sum_{l\neq f}Q_{f}Q_{l}\hat{a}_{s}^{(n_{f})3}\left\{-\frac{\zeta_{2}^{2}}{6}-\frac{25\zeta_{5}}{36}+\frac{655\zeta_{3}}{432}+\frac{515}{1296}\right\},$

Cross sections at low q^2 must be equiva $\left| \underbrace{\hat{e}^{(n_f-1)}}_{l} \underbrace{\hat{e}^{(n_f-1)}}_{l} \right|^{2} =$ The matching conditions are known to order $\hat{\alpha}_{s}^{3}$.

Steps:

- 1. Determine light quark contributions to $\hat{\Pi}(0, \mu^2)$ at a low energy scale. 2. Match the charm quark contribution.
- 3. Run to bottom quark, match it and run.
- 4. Convert back to the on-shell scheme (effective coupling).

RGE method: Running

 $\mu^2 \frac{d\hat{\alpha}}{d\mu^2} = \frac{\hat{\alpha}^2}{\pi} \beta$

 β known to 5 loops

(Bikov et al. arXiv:1206.1284)

 $K_q = N_c \left[1 + \frac{\hat{\alpha}_s}{\pi} + \dots \right]$ 2 \sim

Renormalization group equation

~~~~~~(

$$\frac{d\hat{\alpha}}{d\ln\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[ \frac{1}{24} \sum_i K_i \gamma_i Q_i^2 + \sigma \left( \sum_{Q} Q_i^2 + \sigma \left($$

$$\hat{g}_{Vf} = T_f - 2Q_f^2 \sin^2 \hat{\theta}$$
$$\frac{d\hat{g}_{Vf}}{d\ln\mu^2} = \frac{\hat{\alpha}^2}{\pi} \left[ \frac{1}{24} \sum_i K_i \gamma_i \hat{g}_{Vi} Q_i + 12\sigma \right]$$

 $Q_q^2$ 500 ~~~~~ ~~~~~ 8888  $\hat{g}_{Vi}$  $\sum_{Q} Q_{q} \left| \left( \sum_{Q} \hat{g}_{Vq} \right) \right|_{Q}$ Ζ  $\hat{g}_{Vf}$ 



#### Steps:

- 1. Determine light quark contributions to  $\hat{\Pi}(0, \mu^2)$  at a low energy scale. 2. Match the charm quark contribution.
- 3. Run to bottom quark, match it and run.
- 4. Convert back to the on-shell scheme (effective coupling).

Use again

 $\Delta \alpha^{(5)}(M_Z^2) = \Delta \hat{\alpha}^{(5)}(\mu^2 =$ 

Scheme conversion From the running

$$M_Z^2$$
) - 4 $\pi \alpha \text{Re} \left[ \hat{\Pi}^{(5)}(M_Z^2, \mu^2 = M_Z^2) \right]$ 



### Some anomalies in the SM

|          |                                        | Overview of m <sub>w</sub> Me |
|----------|----------------------------------------|-------------------------------|
| с.       | LEP Combination                        | ATLAS Pr                      |
|          | <b>D0 (Run 2)</b><br>arXiv:1203.0293   | √s = 7 TeV, 4.                |
| Tevatron | CDF (Run 2)<br>FERMILAB-PUB-22-254-PPD |                               |
|          | LHCb 2022<br>arXiv:2109.01113          |                               |
|          | ATLAS 2017<br>arXiv:1701.07240         | Measuremer     Stat. Unc      |
| LHC      | ATLAS 2023<br>this work                | Total Unc.                    |
|          | 80200                                  |                               |





### More back ups

Atomic spectro

1) Extract  $R_{\infty}$  from the data  $\nu_{ii} = \varepsilon_i - \varepsilon_i$ 

2) Determine  $\stackrel{\hbar}{--}$ m<sub>e</sub> m<sub>e</sub>

 $\hbar$ 

From Robert Szafron (2019 Mainz Talk)

oscopy 
$$R_{\infty} = rac{lpha^2 m_e c}{4\pi\hbar}$$

$$\varepsilon_i = -\frac{R_{\infty}c}{n_i^2}(1+\delta_i)$$

