New measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$ and $A_{\text{FB}}(y,m)$ at 13 TeV

 $\rm CMS\text{-}PAS\text{-}SMP\text{-}22\text{-}010$

Aleko Khukhunaishvili

University of Rochester

On behalf of the CMS Collaboration

Moriond EW, March 25, 2024

INTRODUCTION

- Precision Standard Model measurements = indirect search for new physics
- Key electroweak parameters: m_W and $\sin^2 \theta_{\text{eff}}^{\ell} = (1 m_W^2/m_Z^2)\kappa^{\ell}$ can be calculated in SM using other precise experimental inputs: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23155 \pm 0.00004 \text{ (SM)}$
- Two most precise $\sin^2 \theta_{\text{eff}}^{\ell}$ results from LEP and SLD differ by $\sim 3\sigma$
- Measurements at hadron colliders are now also competitive

Latest CDF m_W measurement disagrees with previous results and SM
 Models that describe CDF m_W prefer lower (SLD) value of sin² θ^ℓ_{eff}

 $\rightarrow~{\rm New}~{\rm CMS}$ measurement of $\sin^2\theta^\ell_{\rm eff}$ at 13 TeV is the main topic of this talk

ATLAS-CONF-2018-037

Eur. Phys. J. C 83, 450 (2023)

How we measure $\sin^2 \theta_{\text{eff}}^{\ell}$ at the LHC

- Use $Z/\gamma \to \ell \ell$ events
- Asymmetry in lepton decay angle: $1 + \cos^2 \theta + 0.5A_0(1 - 3\cos^2 \theta) + A_4 \cos \theta$ $\rightarrow A_{\text{FB}} = 3/8A_4$
- $m_{\ell\ell}$ dependence from γ -Z interference
- Colins-Sopper frame reduced theoretical and experimental unc.

Eur. Phys. J. C 78, 701 (2018)

- 1) Near $m_{\rm Z}$, $A_{\rm FB}$ depends on $\sin^2 \theta_{\rm eff}^{\ell}$
- In pp, definition of positive z direction relies on ℓℓ boost (sign of y_{ℓℓ})
 → only valence quarks contribute
 - \rightarrow significant $y_{\ell\ell}\text{-dependent}$ dilution
- 2) Strong dependence on PDFs
- \rightarrow Fit $A_{\rm FB}$ floating $\sin^2 \theta_{\rm eff}^{\ell}$ and PDFs

Measurement details

- What we measure:
 - $ightarrow \sin^2 heta_{
 m eff}^{\ell}$ using $A_{
 m FB}^{
 m wgt}$ (small systematics, used in Run 1)
 - \rightarrow Unfolded $A_4(y,m)$

(can be used in future reinterpretation)

• Four $\ell\ell$ channels: $\mu\mu$, ee, eg, eh

- μ muon: $|\eta| < 2.40$
- e central electron: $|\eta|<2.50$
- g EF electron: 2.50 < $|\eta| < 2.87$
- h HF electron: 3.14 < $|\eta| < 4.36$

• Backgrounds:

- Multijet from data sidebands cross-checked in same-sign samples
- W+jets from simulation in eg & eh corrected by fake-lepton SFs
- Other EW and top bkg from simulation top and $\tau\tau$ checked in μe samples

• Signal sample:

Powheg MiNNLO + Pythia8 + Photos (with various corrections)

Systematic uncertainties

• Experimental

- MC statistical
- Efficiencies
- Momentum calibration
- Backgrounds
- Other
 - Trigger prefiring
 - $-z_{vtx}$ position
 - Charge misID
 - Pileup
 - Luminosity

• Theory

- μ_R, μ_F scales
- $\blacksquare p_{\mathrm{T}}^{\ell\ell} \mod$
- FSR
- EW input schemes
- EW input parameters

• PDF

EW VARIATIONS AND PDFS

- Default EW configuration:
 - NLO weak + universal HO corrections
 - input scheme: $(\sin^2 \theta_{\rm eff}^{\ell}, m_{\rm Z}, G_{\mu})$
 - width: complex-mass scheme (CMS)
- Systematic variations:
 - input scheme: $(\sin^2 \theta_{\rm eff}^{\ell}, m_{\rm Z}, \alpha)$
 - width: pole scheme (PS)
 - parameters: $(\Delta m_{\rm Z}, \Delta m_t, \Delta G_{\mu})$

- Various NNLO PDFs considered
- By default we chose CT18Z (before unblinding) since its uncertainty covers best others' central values (→ next)

$A_{\rm FB}$ FIT RESULT

• $\sin^2 \theta_{\text{eff}}^{\ell}$ is extracted by simultaneous χ^2 fit of $A_{\text{FB}}(y,m)$ in all runs and channels

• Here and in next slides, $\sin^2 \theta_{\text{eff}}^{\ell}$ values and its uncertainties are in units of 10^{-5}

$^{\rm ch}$	χ^2	nbin	p(%)	$\sin^2 \theta_{eff}^{\ell}$	\pm	σ	stat	\exp	theo	pdf	mc	bkg	eff	calib	other
μμ	241.3	264	82.7	23146	±	38	17	17	7	30	13	3	2	5	4
ee	256.7	264	59.8	23176	\pm	41	22	18	7	30	14	4	5	3	7
eg	119.1	144	92.8	23257	\pm	61	30	40	5	44	23	11	12	19	9
eh	104.6	144	99.3	23119	\pm	48	18	33	9	37	14	10	16	18	6
ll	730.7	816	98.4	23157	±	31	10	15	9	27	8	4	6	6	3

 A₄(y, m) is measured by fitting reconstructed cos θ_{CS} distributions in y and m bins simultaneously in all runs and channels

- Total $\chi^2_{min} = 14839$ for total of 14205 measurement bins and 101 free POIs
- Minimized with L-BFGS method using analytic gradient input
- Resulting covariance matrix also evaluated analytically with inverse Hessian

INTERPRETATION FIT RESULT

• Fit measured $A_4(y,m)$ with $\sin^2 \theta_{\text{eff}}^{\ell}$ (s) and PDF-nuisance templates

Channel	n(bins)	$\chi^2_{\rm min}$	p(%)	$\sin^2 \theta_{\rm eff}^{\ell}$	\pm	σ
$\mu\mu$	54	59.7	24.6	23146	±	39
ee	54	47.0	70.7	23192	±	43
eg	12	11.1	43.6	23251	±	60
eh	12	8.4	67.3	23129	±	47
ll	63	61.3	50.3	23155	±	32

Comparison between channels and PDFs

Compared results for:

- $-A_{\rm FB}, A_4, \& \cos \theta_{\rm CS}$ fits
- Different channels
- Different runs (backup)
- Different PDFs

(with & without profiling)

• Results in good agreement within corresponding uncertainties

 $\sin^2 \theta_{\rm eff}^\ell = 0.23157 \pm 0.00010 (\rm stat) \pm 0.00015 (\rm syst) \pm 0.00009 (\rm theo) \pm 0.00027 (\rm pdf)$

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.23157 \pm 0.00031$

- Good agreement with previous measurements and SM
- PDF uncertainties (which are correlated with others) dominate

- Most precise hadron-collider measurement: $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00031$ \rightarrow precision also comparable with LEP and SLD results
- PDF is already the dominant uncertainty in Run-2 \rightarrow main challenge for future sin² $\theta_{\text{eff}}^{\ell}$ measurements at the LHC
- Also measured unfolded $A_4(y,m)$
 - \rightarrow simple reinterpretation and combination with other measurements

Backup

COMPARISON BETWEEN SAMPLES

Event selections

- $\mu\mu,ee:$ single- & double- ℓ triggers standard ID, opposite charges
- eg,eh: single-e triggers dedicated IDs for g & htight (selective) charge-ID for e

Signal sample

Powheg MiNNLO + Pythia8 + Photos

corrections:

- NLO weak corrections (Powheg-EW)
- Pileup weighting
- Trigger prefiring weighting
- Efficiency SFs
- Electron charge MisID SFs \rightarrow
- Lepton momentum corrections
- Dilepton $p_{\rm T}$ weighting

BACKGROUNDS

- Small multijet bkg estimated from data bkg-enriched regions using transfer-factors (TF)
- TFs evaluated using various μe and same-sign (SS) bkg-enriched regions
- $\bullet~$ Independent check in SS $\ell\ell$ samples

- Small EW & top bkg normalized to luminosity with NNLO x-sections
- \rightarrow Checked in μe samples
- µg,µh samples used to check multijet estimate & derive fake-lepton SFs for W + jets

PRE VS POST-FIT VALENCE QUARK DISTRIBUTIONS

• Comparison of pre and post-fit valence quark distributions (only post-fit error bands are shown)

• Moderate changes in individual distributions

channel						bin b	oundai	ries					# of bins
$ y_{\ell\ell} $	0.0	0.4	0.8	1.2	1.6	2.0	2.4	2.7	3.0	3.4			9
$\mu\mu, ee$	Ι	Ι	Ι	Ι	Ι	Ι	Ι						6
eg				Ι	Ι	Ι	Ι	Ι					4
eh						Ι	Ι	Ι	Ι	Ι			4
$m_{\ell\ell}$ (GeV)	54.0	66.0	76.0	82.0	86.0	89.5	92.7	96.0	100.0	106.0	116.0	150.0	11
					Obs	erved 2	$A^w_{FB}(y, r)$	n) fit					
$\mu\mu, ee$	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	11×6
eg, eh		Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		9×4
$A_4(Y, M)$ unfolding and interpretation													
0.0 < y < 1.2	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	11×3
1.2 < y < 2.4	Ι	Ι	Ι		Ι			Ι		Ι	Ι	Ι	7×3
2.4 < u < 3.4		Ι			Ι			Ι			Ι		3×3

• Rapidity and mass bins in different fits:

• Combined Run-2 fit configuration:

runs (r)	2016a, 2016b, 2017, 2018	4
channels (c)	$\mu\mu$, ee, eg, eh	4
$c \times y \times m$ bins	$6\times 11 + 6\times 11 + 4\times 9 + 4\times 9$	204
$\cos \theta_{\rm CS}$ bins		20
$r \times c \times y \times m \times \cos \theta_{\rm CS}$	with $n_{pred} > 10$	14205
$a_4(y,m)$	$3 \times 11 + 3 \times 7 + 3 \times 3$	63
$\mu(y,m)$	$6 \times 5 + 4 \times 1 + 4 \times 1$	38
nuisances	all systematic uncertainties	3361