

58th Rencontres de Moriond

Recent electroweak single boson (W/Z) results from ATLAS and CMS

Kenneth Long for the ATLAS and CMS Collaborations

Kenneth Long

Introduction

- Electroweak theory extremely successful over vast scales
- Some parameters are fundamentally experimental ____
 - but precise relationships predicted by SM —
- Huge samples of W and Z boson production at LHC enable studies of SM self consistency, tests of pQCD: O(billion) event data sets
- Building percent-level measurements takes time
 - Still a lot to learn from Run 2 (or 1) data
 - New measurements in Run 3 are arriving
 - Huge value in special runs (low pileup)

M_w [GeV] 68% and 95% CL contours direct M_{w} and $\sin^2(\theta_{eff}^f)$ measurements fit w/o M_w, sin²(θ^f_{eff}) a<mark>nd Z widths meas</mark>urements fit w/o M_w^{i} , sin²($\theta_{eff}^{f''}$) and M_i measurements 80.45 fit w/o M_w , sin²(θ_{eff}^{f}), M and Z widths measurements 80.4 80.35 $sin^{2}(\theta_{eff}^{f}) = 0.23153 \pm 0.00016$

80.3

0.231

80.5

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_\mu} (1 + \frac{m_W^2}{\sqrt{2}G_\mu})$$

0.2315

Higher-order corrections (Δr) depend on m_t, m_H, ... m_{BSM}?

0.232

W and Z cross section measurements: 13.6 TeV (New)

- Cornerstone of experimental program. New opportunities at 13.6 TeV
 - Test of perturbative calculations, important input for PDFs
 - Experimentally challenging! e.g., estimation of non-prompt backgrounds for W

- New measurement of σ_W and σ_Z and ratio at 13.6 TeV from ATLAS

- Prod. ratios directly extracted from simultaneous fit to W/Z/tt
- Nonprompt estimated by extrapolating track isolation in m_T and p_T^{miss}
- Lumi dominates absolute σ , nonprompt and lepton reco. for ratio —
- Dedicated talk by M. Marinescu tomorrow
- Measurement of σ_z at 13.6 TeV also performed at CMS (CMS-SMP-22-017)

- Drell-Yan angular properties, non-zero AFB arise from different Z/γ^* vector/axial couplings, interference
 - $\sin^2\theta_{eff} := \kappa_F(1 m^2_W/m^2_Z)$
 - Modification impacts AFB, angular distributions
 - **New CMS measurement**: reconstructed A_{FB} , $\cos\theta^*$; unfolded A_4
- Extreme experimental challenge
 - include electrons outside of tracking/only in forward calor. (h)
 - $|\eta|$ acceptance up to 4.36, increase sensitivity to AFB
- Best hadron collider measurement, _ approaching LEP and SLD sensitivity
 - PDF unc. dominates (nom. CT18Z)
- In-depth look will be presented in wildcard talk by A. Khukhunaishvili later today

Electroweak precision: m_W and Γ_W at ATLAS (New)

- Measuring mw is a major challenge at hadron colliders
 - Most precise measurement from CDF is in strong tension with EW fit and other experimental results
- Update of ATLAS mw analysis shown 1 year ago, in agreement with SM
 - Updated for publication with extended studies of PDF
 - +6.5 MeV shift in m_W wrt preliminary due to Γ_W constraint (EW fit unc.)
 - Impact of PDF profiling demonstrated by inflating pre-fit unc.
 - Increased PDF priors lead to less PDF-model-dependence

$m_W = 80366.5 \pm 15.9 \text{ MeV}$

- m_W measured from m_T^W , p_T^W ; also sensitive to Γ_{W}
- \blacksquare New measurement Γ_W
 - is first at LHC
- Study Interplay of m_W and Γ_W

```
ATLAS
  \sqrt{s} = 7 \text{ TeV}, 4.6/4.1 \text{ fb}^{-1}
                        \sigma_{PDF} \times 1
--- ATLASpdf21
--- MSHT20
--CT18
                        \sigma_{PDF} 	imes 2
• NNPDF3.1
-NNPDF4.0
                        \sigma_{\text{PDF}} 	imes 3
           -100
```


Electroweak precision: m_W and Γ_W at ATLAS (New)

- Γ_{W} (m_W) measurement with m_W (Γ_{W}) constrained and simultaneously
- Measurement w/ mw constrained: most precise from single experiment
 - Modeling (shower tune variations) and recoil unc. dominate —
 - m_T^W significantly more sensitive channel (opposite of m_W)

$\Gamma_W = 2202 \pm 32$ (stat.) ± 34 (syst.) MeV = 2202 ± 47 MeV

- Central value in m_W differs by -12 MeV in simultaneous fit vs. fixed $\Gamma_{\rm W}$ fit
 - Uncertainty ~1% increase
- Width unc. increases by ~4% in simultaneous measurement with very small shift in central value

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ
p_{T}^ℓ	71.8	27.3	66.4	21.2	13.9	10.4	4.9	13.2	11.5
m _T	47.5	35.5	31.6	4.9	6.6	9.6	3.3	13.2	9.2
Combined	46.8	32.0	34.1	6.7	7.5	9.4	3.3	13.1	9.4

Differential study of p_T^{miss}+jets (NEW)

- New ATLAS studies of W/Z production with v decays
 - Backgrounds for searches (e.g., mono-jet), VBF H(v
 - Sensitivity to high p_T^V spectrum wrt $Z(\ell \ell)$ channel
 - Sensitive to BSM (limits in EFT and specific models)
- Very comprehensive result, with W, Z, γ dominated selections and unfolded results
- Nonprompt background estimated by smearing jets selected data events to produce pseudodata with p-

	Final-state event selection							
Production process	$p_{\rm T}^{\rm miss}$ +jets	2e+jets	2μ +jets	e+jets	μ +jets	_		
$Z \rightarrow \nu\nu + jets$	55%	_	_	_	_			
$Z \rightarrow ee + jets$	_	94%	_	_	_			
$Z \rightarrow \mu \mu$ + jets	_	_	95%	_	2%			
$W \rightarrow e\nu + jets$	6%	_	_	68%	_			
$W \rightarrow \mu \nu + \text{jets}$	9%	_	_	_	67%			
$W \rightarrow \tau \nu + \text{jets}$	20%	_	_	5%	7%			
γ + jets	_	_	_	_	_			
Тор	7%	3%	2%	25%	21%			
Multi-boson	3%	3%	3%	2%	3%			

- of results presented

Electroweak precision: $\Gamma_{Z \rightarrow vv}$ at ATLAS

- Study of Z(vv) can be recast as partial width measurement
- Partial width is fundamental, independent of production mechanism —
 - In practice, produce at collider, correct (hopefully small) assumptions

Data SM pre-fit

SM post-fit

 $Z(\rightarrow \nu\nu) + j$

 $W(\rightarrow \ell \nu) + j$

QCD multijet

 $Z/\gamma^*(\rightarrow \ell \ell) +$

Minor bgrd

- Indirect Z(vv) measurement
 - At LEP (e+e-): tot. width from energy scan. subtract visible
 - ➡ Very accurate, this is the number in the PDG
- Direct measurement
 - At LEP: $Z(vv)+\gamma$. O(10x) less sensitive than indirect
 - At LHC: only indirect possible. Use Z(vv)+j
- New ATLAS result most precise indirect measurement
 - Measure Z in $ee/\mu\mu/\nu\nu$ channels
 - ut^Z > 130 GeV
 - $p_T^j > 110 \text{ GeV}, |\eta^j| < 2.4$
- Recently measured at CMS —
 - PLB 842 (2023) 137563

Kenneth Long

CMS

Events/bin

Rat

Pull

0.75

Electroweak precision: $\Gamma_{Z \rightarrow vv}$ results

- W(lv) estimated from simulation corrected in single-lepton CRs
- True observable is ratio of $Z(vv)/Z(\ell \ell)$ in fiducial (high p_T^Z) region
 - Rely on theory prediction for inclusive ratio (from fiducial) —
 - Correct reco to gen level per bin
 - Derive single value for $R = vv/\mu\mu = vv/ee$ from corrected data —

$\Gamma_{Z \rightarrow vv} = 506 \pm 2 \text{ (stat.)} \pm 12 \text{ (syst.)} \text{ MeV}$

- Jet uncertainties strongly reduced in ratio.
 - Dominant unc from lepton efficiency unc. (~1.5%)
 - Improvement wrt CMS driven by lepton eff. and jet scale

Data

ATLAS Z+heavy flavour (New)

- Z boson production in association with b and c quarks
 - Important input to PDF fits
 - Important background for Higgs measurements and searches Extensively studied in new ATLAS measurement
 - Categorize events into $\geq 1b$, $\geq 1c$, $\geq 2b$ jets, based on particle-level b/chadron matching in dR
 - Purity 34/28/46%, other Z+b/c contributions and Z+l majority of bkg
 - Tagging of heavy flavour with DL1r algorithm, 85% WP
 - Top bkg from opposite flavour CRs
- Unfolding results with iterative Baysian (d'Agostini)
 - Signal model an important unc.
 - Jet tagging dominant exp unc.
- Comparable CMS analyses:
 - W+c: <u>EPJC 84 (2024) 27</u>
 - Z+b: <u>PRD 105 (2022) 092014</u>

- Modeling of m_{bb} important for H(bb), valuable input to MC generators _ Best described by 4FS MG5aMC@NLO
- Dedicated studies of impact of intrinsic charm (IC) ____
 - 3 FS significantly underestimates rate
 - Sensitivity limited by Bjorken-x probed
 - Largest impact seen with Brodsky-Hoyer-Peterson-Sakai model fit 2 in CT14NNLO

(2.1% IC, https://arxiv.org/abs/1707.00657)

Summary and conclusions

- The LHC and its experiments have proven to be precision tools, competitive with measurements of fundamental parameters at purpose-designed colliders such as LEP and SLD
- Thanks to years of collecting very high quality data, developing understanding of detector, and incredible performance of theoretical tools
- The Run II (and Run I) data has proven rich environment for precise measurements. Run III and special runs are also providing new avenues of exploration
- Techniques built for precision physics become increasingly relevant with huge data sets, especially towards HL-LHC

W/Z cross sections

Electroweak precision: m_W and Γ_W at ATLAS

	Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	e	μ	<i>u</i> _T	Lumi	m_W	PS
Width unc.	p_{T}^{ℓ}	71.8	27.3	66.4	21.2	13.9	10.4	4.9	13.2	11.5	12.0	9.6	6.3	55.2
	m _T	47.5	35.5	31.6	4.9	6.6	9.6	3.3	13.2	9.2	17.6	9.1	5.5	12.1
	Combined	46.8	32.0	34.1	6.7	7.5	9.4	3.3	13.1	9.4	16.7	9.1	5.6	17.7
	Unc. [MeV]	Total	Stat.	Syst.	PDF	$F A_i$	Backg.	EW	e	μ	<i>u</i> _T	Lumi	Γ_W	PS
	p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
	m_{T}	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
	Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Result	with
various	PDFs

			$m_{\rm T}$ fit					
PDF set	m_W	$\sigma_{ m tot}$	$\sigma_{\rm PDF}$	χ^2 /n.d.f.	m_W	$\sigma_{ m tot}$	$\sigma_{ m PDF}$	χ^2 /n.d.f.
CT14	80358.3	+16.1 -16.2	4.6	543.3/558	80401.3	+24.3 -24.5	11.6	557.4/558
CT18	80362.0	+16.2 -16.2	4.9	529.7/558	80394.9	+24.3 -24.5	11.7	549.2/558
CT18A	80353.2	+15.9 -15.8	4.8	525.3/558	80384.8	+23.5 -23.8	10.9	548.4/558
MMHT2014	80361.6	+16.0 -16.0	4.5	539.8/558	80399.1	+23.2 -23.5	10.0	561.5/558
MSHT20	80359.0	+13.8 -15.4	4.3	550.2/558	80391.4	+23.6 -24.1	10.0	557.3/558
ATLASpdf21	80362.1	+16.9 -16.9	4.2	526.9/558	80405.5	+28.2 -27.7	13.2	544.9/558
NNPDF3.1	80347.5	+15.2 -15.7	4.8	523.1/558	80368.9	+22.7 -22.9	9.7	556.6/558
NNPDF4.0	80343.7	+15.0 -15.0	4.2	539.2/558	80363.1	+21.4 -22.1	7.7	558.8/558

Kenneth Long

Electroweak precision: m_W and Γ_W at ATLAS

		p_{T}^{ℓ} fit		$m_{\rm T}$ fit				
PDF set	Γ_W	$\sigma_{ m tot}$	$\sigma_{ m PDF}$	χ^2 /n.d.f.	Γ_W	$\sigma_{ m tot}$	$\sigma_{ m PDF}$	χ^2 /n.d.f.
CT14	2228	+67 -83	24	550.0/558	2202	+48 -48	5	556.8/558
CT18	2221	+68 -76	21	534.5/558	2200	+47 -48	5	548.8/558
CT18A	2207	+68 -75	18	533.0/558	2181	+47 -48	5	550.6/558
MMHT2014	2155	+71 -78	19	546.0/558	2186	+48 -48	5	562.2/558
MSHT20	2206	+66 -79	15	556.5/558	2179	+47 -48	4	559.4/558
ATLASpdf21	2213	+67 -73	18	531.3/558	2190	+47 -48	6	545.6/558
NNPDF31	2203	+65 -78	20	531.7/558	2180	+47 -47	6	560.4/558
NNPDF40	2182	+69 -68	12	550.5/558	2184	+47 -47	4	564.0/558

Kenneth Long

-5

ATLAS

-2

-1

Electroweak precision: ATLAS and CMS $\Gamma_{Z \rightarrow vv}$

CMS

Source of systematic uncertainty	Uncertainty (%
Muon identification efficiency (syst.)	2.1
Jet energy scale	1.8–1.9
Electron identification efficiency (syst.)	1.6
Electron identification efficiency (stat.)	1.0
Pileup	0.9–1.0
Electron trigger efficiency	0.7
τ_h veto efficiency	0.6–0.7
p_{T}^{miss} trigger efficiency (jets plus p_{T}^{miss} region)	0.7
p_T^{miss} trigger efficiency $(Z/\gamma^* \rightarrow \mu \mu)$ region)	0.6
Boson $p_{\rm T}$ dependence of QCD corrections	0.5
Jet energy resolution	0.3–0.5
$p_{\rm T}^{\rm miss}$ trigger efficiency (μ +jets region)	0.4
Muon identification efficiency (stat.)	0.3
Electron reconstruction efficiency (syst.)	0.3
Boson $p_{\rm T}$ dependence of EW corrections	0.3
PDFs	0.2
Renormalization/factorization scale	0.2
Electron reconstruction efficiency (stat.)	0.2
Overall	3.2

ATLAS

Muon efficiency7.41Renormalisation & factorisation scales5.91Electron efficiency4.91	.5 .2 .0 .9 .6
Renormalisation & factorisation scales5.91Electron efficiency4.91	.2 .0 .9 .6
Electron efficiency 49 1	.0 .9 .6
	.9 .6
Detector correction 4.4 0	.6
QCD multijet 3.2 0	
$E_{\mathrm{T}}^{\mathrm{miss}}$ 2.4 0	.5
$Z(\rightarrow \mu\mu)$ +jets misid. lepton estimate 1.9 0	.4
Jet energy resolution 1.6 0	.3
$W(\rightarrow \ell \nu)$ +jets normalisation 1.5 0	.3
Pile-up reweighting 1.5 0	.3
Non-collision background estimate 1.3 0	.3
Jet energy scale 1.3 0	.3
γ^* -correction 1.0 0	.2
$Z(\rightarrow ee)$ +jets misid. lepton estimate 1.0 0	.2
Luminosity 1.0 0	.2
Parton distribution functions + α_s 0.7 0	.1
$\Gamma(Z \to \ell \ell) [5, 9] \qquad \qquad 0.5 \qquad 0$.1
Tau energy scale0.40	.1
Muon momentum scale 0.3 0	.1
$W(\rightarrow \ell \nu)$ +jets misid. lepton estimate 0.3 0	.1
(Forward) jet vertex tagging 0.2 <).1
Top subtraction scheme0.2<).1
Electron energy scale 0.1 <).1
Systematic 12 2	.4
Statistical 2 0	.4
Total 13 2	.5

