$pp \to \ell^+ \ell^- + X \text{ via } \gamma \gamma \text{ and } \gamma Z$

S. I. Godunov, E. K. Karkaryan, V. A. Novikov, A. N. Rozanov, M. I. Vysotsky, E. V. Zhemchugov

> based on Eur.Phys.J.C 82 (2022) 11, 1055 Phys.Rev.D 108 (2023) 9, 093006

Moriond-2024 Electroweak Interactions & Unified Theories

March 25, 2024

Ultraperipheral collisions (UPC) at the LHC

- It is possible to detect protons in forward detectors to reconstruct full kinematics.
- Accessible analytically with equivalent photons approximation (EPA).
- Formulae can be easily adopted for new particles (γ couples to electric charge).

Ultraperipheral collisions (UPC) at the LHC

- It is possible to detect protons in forward detectors to reconstruct full kinematics.
- Accessible analytically with equivalent photons approximation (EPA).
- Formulae can be easily adopted for new particles (γ couples to electric charge).

$$Q^2 \lesssim (200 \text{ MeV})^2 \Rightarrow \frac{Q^2}{M_Z^2 + Q^2} \sim 10^{-5}$$

Weak interaction contribution is negligible

Semi-inclusive processes with proton(s) in forward detector

ATLAS [PRL 125, 261801 (2020)]

Experimental selections:

- $p_T > 15$ GeV.
- $|\eta| < 2.4.$
- $p_T^{\mu\mu} < 5$ GeV.
- 20 GeV $< m_{\mu\mu} <$ 70 GeV or $m_{\mu\mu} > 105$ GeV.
- At least one proton hits a forward detector.

 $\gamma\gamma$ and γZ fusion are not the only diagrams! (bremsstrahlung-like: production of real Z)

See our recent results (Eur. Phys. J. C82, 1055 (2022));

cut on trnsverse momentum allows to calculate inelastic part with the help of EPA

Semi-inclusive processes with proton(s) in forward detector

ATLAS [PRL 125, 261801 (2020)]

Experimental selections:

- $p_T > 15$ GeV.
- $|\eta| < 2.4.$
- $p_T^{\mu\mu} < 5$ GeV.
- 20 GeV $< m_{\mu\mu} <$ 70 GeV or $m_{\mu\mu} > 105$ GeV.
- At least one proton hits a forward detector.

 $\begin{array}{l} \gamma\gamma \mbox{ and } \gamma Z \mbox{ fusion} \\ \mbox{ are not} \\ \mbox{ the only diagrams!} \\ \mbox{ (bremsstrahlung-like:} \\ \mbox{ production of real } Z) \end{array}$

See our recent results (Eur. Phys. J. C82, 1055 (2022));

cut on trnsverse momentum allows to calculate inelastic part with the help of EPA

For
$$(p_T^{\mu\mu})^2 \gg 1$$
 GeV² we have $Q_2^2 \approx (p_T^{\mu\mu})^2$ and
 $\frac{Q^2}{M_Z^2 + Q^2} \approx \frac{(p_T^{\mu\mu})^2}{M_Z^2 + (p_T^{\mu\mu})^2} \sim 10^{-3}$

Weak interaction contribution is negligible

Semi-inclusive processes with proton(s) in forward detector

ATLAS [PRL 125, 261801 (2020)]

Experimental selections:

- $p_T > 15$ GeV.
- $|\eta| < 2.4.$
- $p_T^{\mu\mu} < 5$ GeV.
- 20 GeV $< m_{\mu\mu} <$ 70 GeV or $m_{\mu\mu} > 105$ GeV.
- At least one proton hits a forward detector.

 $\begin{array}{l} \gamma\gamma \mbox{ and } \gamma Z \mbox{ fusion} \\ \mbox{ are not} \\ \mbox{ the only diagrams!} \\ \mbox{ (bremsstrahlung-like:} \\ \mbox{ production of real } Z) \end{array}$

See our recent results (Eur. Phys. J. C82, 1055 (2022));

cut on trnsverse momentum allows to calculate inelastic part with the help of EPA

For
$$(p_T^{\mu\mu})^2 \gg 1$$
 GeV² we have $Q_2^2 \approx (p_T^{\mu\mu})^2$ and
 $\frac{Q^2}{M_Z^2 + Q^2} \approx \frac{(p_T^{\mu\mu})^2}{M_Z^2 + (p_T^{\mu\mu})^2} \sim 10^{-3}$

Weak interaction contribution is negligible

But what if we remove cuts?

Inelastic part

Inelastic part dominates when no cuts applied, see our paper JETP Lett. 115, 59 (2022).

Within the parton approximation:

 $Q_2^2 \equiv -q_2^2$ is not necessarily much smaller than W^2 ; special consideration required.

We closely follow review Budnev et al, Phys. Rep. 15, 181 (1975).

 $pp \to \ell^+ \ell^- + X$ via $\gamma \gamma$ and γZ

$\gamma\gamma$ fusion cross section

$$d\sigma_{pq \to p\mu^{+}\mu^{-}q} = 2 \cdot \frac{Q_{q}^{2}(4\pi\alpha)^{2}}{(q_{1}^{2})^{2}(q_{2}^{2})^{2}} \left(q_{1}^{2}\rho_{\mu\nu}^{(1)}\right) \left(q_{2}^{2}\rho_{\alpha\beta}^{(2)}\right) M_{\mu\alpha}M_{\nu\beta}^{*} \times \times \frac{(2\pi)^{4}\delta^{(4)}(q_{1}+q_{2}-k_{1}-k_{2})\,\mathrm{d}\Gamma}{4\sqrt{(p_{1}p_{2})^{2}-m_{p}^{4}}} \frac{\mathrm{d}^{3}p_{1}^{'}}{(2\pi)^{3}2E_{1}^{'}} \frac{\mathrm{d}^{3}p_{2}^{'}}{(2\pi)^{3}2E_{2}^{'}}f_{q}(x,Q_{2}^{2})\,\mathrm{d}x$$

$$\rho_{\mu\nu}^{(1)} = -\left(g_{\mu\nu} - \frac{q_{1\mu}q_{1\nu}}{q_1^2}\right) G_M^2(Q_1^2) - \frac{(2p_1 - q_1)_\mu (2p_1 - q_1)_\nu}{q_1^2} D(Q_1^2),$$
$$D(Q_1^2) = \frac{G_E^2(Q_1^2) + (Q_1^2/4m_p^2)G_M^2(Q_1^2)}{1 + Q_1^2/4m_p^2}.$$

Here $Q_1^2 = -q_1^2$, and $G_E(Q_1^2)$, $G_M(Q_1^2)$ are the Sachs form factors of the proton. For the latter we use the dipole approximation:

$$G_E(Q^2) = \frac{1}{(1+Q^2/\Lambda^2)^2}, \quad G_M(Q^2) = \frac{\mu_p}{(1+Q^2/\Lambda^2)^2}, \quad \Lambda^2 = \frac{12}{r_p^2} = 0.66 \text{ GeV}^2,$$

where $\mu_p = 2.79$ and $r_p = 0.84 \text{ fm}$

where $\mu_p = 2.79$ and $r_p = 0.84$ fm.

s.

$$\rho_{\alpha\beta}^{(2)} = -\frac{1}{2q_2^2} \operatorname{Tr}\{\hat{p}_2' \gamma_\alpha \hat{p}_2 \gamma_\beta\} = -\left(g_{\alpha\beta} - \frac{q_{2\alpha}q_{2\beta}}{q_2^2}\right) - \frac{(2p_2 - q_2)_\alpha (2p_2 - q_2)_\beta}{q_2^2}.$$

Helicity representation

Calculations are performed in the c.m.s of the colliding photons.

$$e_{1}^{+} = \frac{1}{\sqrt{2}}(0, -1, -i, 0), \quad e_{1}^{-} = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \quad e_{1}^{0} = \frac{i}{\sqrt{-q_{1}^{2}}}(\tilde{q}, 0, 0, \tilde{\omega}_{1}),$$

$$e_{2}^{+} = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \quad e_{2}^{-} = \frac{1}{\sqrt{2}}(0, -1, -i, 0), \quad e_{2}^{0} = \frac{i}{\sqrt{-q_{2}^{2}}}(-\tilde{q}, 0, 0, \tilde{\omega}_{2}).$$

$$\rho_{i}^{\mu\nu} = \sum_{a,b} (e_{i}^{a\mu})^{*} e_{i}^{b\nu} \rho_{i}^{ab},$$

$$\rho_{i}^{ab} = (-1)^{a+b} e_{i}^{a\mu} \left(e_{i}^{b\nu}\right)^{*} \rho_{i}^{\mu\nu},$$

$$\rho_{1}^{\mu\nu} \rho_{2}^{\alpha\beta} M_{\mu\alpha} M_{\nu\beta}^{*} = (-1)^{a+b+c+d} \rho_{1}^{ab} \rho_{2}^{cd} M_{ac} M_{bd}^{*} =$$

$$= \rho_{++}^{(1)} \rho_{++}^{(2)} |M_{++}|^{2} + \rho_{++}^{(1)} \rho_{--}^{(2)} |M_{+-}|^{2} + \rho_{++}^{(1)} \rho_{00}^{(2)} |M_{+0}|^{2} +$$

$$+ \rho_{--}^{(1)} \rho_{++}^{(2)} |M_{-+}|^{2} + \rho_{--}^{(1)} \rho_{00}^{(2)} |M_{-0}|^{2} + \rho_{--}^{(1)} \rho_{--}^{(2)} |M_{--}|^{2}$$

 M_{++} and M_{--} are not vanishing in the limit $m \to 0$ due to chiral anomaly!

$$\begin{split} \rho_{++}^{(1)} &= \rho_{--}^{(1)} \approx D \big(Q_1^2 \big) \frac{2E^2 q_{1\perp}^2}{\omega_1^2 Q_1^2}, \\ \rho_{++}^{(2)} &= \rho_{--}^{(2)} \approx \frac{2x^2 E^2 q_{2\perp}^2}{\omega_2^2 Q_2^2}, \quad \rho_{00}^{(2)} \approx \frac{4x^2 E^2 q_{2\perp}^2}{\omega_2^2 Q_2^2}. \end{split}$$

S.I. Godunov

 $pp \to \ell^+ \ell^- + X$ via $\gamma \gamma$ and γZ

$\gamma\gamma$ fusion

$$\frac{\mathrm{d}\sigma_{pq \to p\mu^+\mu^- q}}{\mathrm{d}W} = W \int\limits_{\frac{W^4}{36\gamma^{2}s}}^{s-W^2} \sigma_{\gamma\gamma^* \to \mu^+\mu^-} \left(W^2, Q_2^2\right) \mathrm{d}Q_2^2 \int\limits_{\frac{1}{2}\ln\left(\frac{W^2+Q_2^2}{s} \cdot \max\left(1, \frac{m_p^2}{9Q_2^2}\right)\right)}^{\frac{1}{2}\ln\left(\frac{W^2+Q_2^2}{s} \cdot \max\left(1, \frac{m_p^2}{9Q_2^2}\right)\right)}$$

$$\begin{split} \sigma_{\gamma\gamma^* \to \mu^+ \mu^-} &= \sigma_{TT} + \sigma_{TS}, \\ \sigma_{TS} \approx \frac{16\pi \alpha^2 W^2 Q_2^2}{(W^2 + Q_2^2)^3}, \quad \sigma_{TT} \approx \frac{4\pi \alpha^2}{W^2} \left[\frac{1 + Q_2^4 / W^4}{(1 + Q_2^2 / W^2)^3} \ln \frac{W^2}{m^2} - \frac{\left(1 - Q_2^2 / W^2\right)^2}{(1 + Q_2^2 / W^2)^3} \right], \\ \omega_1 &= \sqrt{W^2 + Q_2^2} \cdot e^y / 2, \quad \omega_2 = \sqrt{W^2 + Q_2^2} \cdot e^{-y} / 2, \\ n_p(\omega_1) &= \frac{\alpha}{\pi \omega_1} \int_0^\infty \frac{D(Q_1^2) q_{1\perp}^2 \mathrm{d} q_{1\perp}^2}{Q_1^4}, \quad \text{(can be integrated analytically; see arXiv:2308.01169)} \\ \frac{\mathrm{d} n_q(\omega_2)}{\mathrm{d} Q_2^2} &= \frac{\alpha Q_q^2}{\pi \omega_2} \int_{\sqrt{\frac{W^2 + Q_2^2}{s} \cdot e^{-y} \cdot \max} \left\{ 1, \frac{m_p}{3\sqrt{Q_2^2}} \right\}} \frac{Q_2^2 - \left(\omega_2 / 3x\gamma\right)^2}{Q_2^4} f_q(x, Q_2^2) \mathrm{d}x. \end{split}$$

S.I. Godunov

 $pp \to \ell^+ \ell^- + X$ via $\gamma \gamma$ and γZ

γZ fusion

$$\begin{split} \tilde{\rho}_{\alpha\beta}^{(2)} &= -\frac{1}{2q_2^2} \bigg[\frac{g_V^q}{2} \operatorname{Tr} \{ \hat{p}_2' \gamma_\alpha \hat{p}_2 \gamma_\beta \} + \frac{g_A^q}{2} \operatorname{Tr} \{ \hat{p}_2' \gamma_\alpha \hat{p}_2 \gamma_\beta \gamma_5 \} \bigg], \\ \tilde{\rho}_{\alpha\beta}^{(2)} &= -\frac{1}{2q_2^2} \operatorname{Tr} \bigg\{ \hat{p}_2' \bigg(\frac{g_V^q}{2} \gamma_\alpha + \frac{g_A^q}{2} \gamma_\alpha \gamma_5 \bigg) \hat{p}_2 \bigg(\frac{g_V^q}{2} \gamma_\beta + \frac{g_A^q}{2} \gamma_\beta \gamma_5 \bigg) \bigg\}. \end{split}$$

$$\tilde{\rho}^{(2)}_{ab} \approx \frac{g_V^q}{2} \rho^{(2)}_{ab}, \quad \tilde{\rho}^{(2)}_{ab} \approx \frac{\left(g_V^q\right)^2 + \left(g_A^q\right)^2}{4} \rho^{(2)}_{ab}.$$

Amplitudes

$$\mathcal{A} = A_{\mu} \cdot \overline{p}' \gamma_{\mu} p/q_1^2, \ A_{\mu} = \frac{eQ_q}{q_2^2} \overline{q}' \gamma_{\alpha} q M_{\mu\alpha}^{\gamma} + \frac{e}{s_W c_W (q_2^2 - M_Z^2)} \overline{q}' \left[\frac{g_V^q}{2} \gamma_{\alpha} + \frac{g_A^q}{2} \gamma_{\alpha} \gamma_5 \right] q M_{\mu\alpha}^Z.$$

For the $\gamma\gamma \rightarrow \mu^+\mu^-$ and $\gamma Z \rightarrow \mu^+\mu^-$ amplitudes we have:

$$\begin{split} M^{\gamma}_{\mu\alpha} &= Q^{2}_{\mu}e^{2}\bigg[\bar{\mu}\gamma_{\mu}\frac{1}{\hat{k}_{1}-\hat{q}_{1}-m}\gamma_{\alpha}\mu + \bar{\mu}\gamma_{\alpha}\frac{1}{\hat{q}_{1}-\hat{k}_{2}-m}\gamma_{\mu}\mu\bigg],\\ M^{Z}_{\mu\alpha} &= \frac{Q_{\mu}e^{2}}{s_{W}c_{W}}\bigg\{\frac{g^{\mu}_{V}}{2}\bigg[\bar{\mu}\gamma_{\mu}\frac{1}{\hat{k}_{1}-\hat{q}_{1}-m}\gamma_{\alpha}\mu + \bar{\mu}\gamma_{\alpha}\frac{1}{\hat{q}_{1}-\hat{k}_{2}-m}\gamma_{\mu}\mu\bigg] + \frac{g^{\mu}_{A}}{2}[\gamma_{\alpha} \to \gamma_{\alpha}\gamma_{5}]\bigg\} = \\ &= \frac{1}{s_{W}c_{W}}\frac{g^{\mu}_{V}}{2Q_{\mu}}M^{\gamma}_{\mu\alpha} + \frac{Q_{\mu}e^{2}}{s_{W}c_{W}}\frac{g^{\mu}_{A}}{2}\bigg[\bar{\mu}\gamma_{\mu}\frac{1}{\hat{k}_{1}-\hat{q}_{1}-m}\gamma_{\alpha}\gamma_{5}\mu + \bar{\mu}\gamma_{\alpha}\gamma_{5}\frac{1}{\hat{q}_{1}-\hat{k}_{2}-m}\gamma_{\mu}\mu\bigg]. \end{split}$$

$$\begin{split} |\mathcal{A}|^{2} &\equiv \varkappa |\mathcal{A}_{\gamma\gamma}|^{2}, \quad \varkappa \left(Q_{2}^{2}\right) = 1 + 2 \cdot \frac{g_{V}^{\mu}}{Q_{\mu}} \cdot \frac{g_{V}^{q}}{Q_{q}} \cdot \lambda + \frac{\left(g_{V}^{\mu}\right)^{2} + \left(g_{A}^{\mu}\right)^{2}}{Q_{\mu}^{2}} \cdot \frac{\left(g_{V}^{q}\right)^{2} + \left(g_{A}^{q}\right)^{2}}{Q_{q}^{2}} \cdot \lambda^{2}, \\ \lambda &\equiv \frac{1}{\left(2s_{W}c_{W}\right)^{2}\left(1 + M_{Z}^{2}/Q_{2}^{2}\right)}. \end{split}$$

S.I. Godunov

 $pp \rightarrow \ell^+ \ell^- + X$ via $\gamma \gamma$ and γZ

$$\begin{split} \frac{\mathrm{d}\sigma_{pp \to p\mu^+\mu^- X}}{\mathrm{d}W} = & \frac{4\alpha W}{\pi} \sum_{q} Q_q^2 \int_{\frac{W^4}{36\gamma^{2}s}}^{s} \frac{\sigma_{\gamma\gamma^* \to \mu^+\mu^-} \left(W^2, Q_2^2\right)}{\left(W^2 + Q_2^2\right) Q_2^4} \cdot \varkappa \left(Q_2^2\right) \cdot \mathrm{d}Q_2^2 \times \\ & \times \int_{\frac{1}{3}}^{1} \mathrm{d}x f_q(x, Q_2^2) \int_{\frac{1}{2}\ln \frac{w^s}{W^2 + Q_2^2}}^{\frac{1}{2}\ln \frac{w^s}{W^2 + Q_2^2}} \omega_1 n_p(\omega_1) \left[Q_2^2 - (\omega_2/3x\gamma)^2\right] \mathrm{d}y, \\ & \frac{W^2 + Q_2^2}{s} \cdot \max\left(1, \frac{m_p}{3\sqrt{Q_2^2}}\right) - \frac{1}{2}\ln\left(\frac{W^2 + Q_2^2}{x^2s} \cdot \max\left(1, \frac{m_p^2}{9Q_2^2}\right)\right) \end{split}$$

$$\begin{split} \varkappa \left(Q_{2}^{2}\right) &= 1 + 2 \cdot \frac{g_{V}^{\mu}}{Q_{\mu}} \cdot \frac{g_{V}^{q}}{Q_{q}} \cdot \lambda + \frac{\left(g_{V}^{\mu}\right)^{2} + \left(g_{A}^{\mu}\right)^{2}}{Q_{\mu}^{2}} \cdot \frac{\left(g_{V}^{q}\right)^{2} + \left(g_{A}^{q}\right)^{2}}{Q_{q}^{2}} \cdot \lambda^{2},\\ \lambda &\equiv \frac{1}{\left(2s_{W}c_{W}\right)^{2}\left(1 + M_{Z}^{2}/Q_{2}^{2}\right)}. \end{split}$$

S.I. Godunov

 $pp \rightarrow \ell^+ \ell^- + X$ via $\gamma \gamma$ and γZ

$$\hat{Q}_2 = 30 \text{ GeV}$$

$$\hat{Q}_2 = 50 \text{ GeV}$$

 $\hat{Q}_2 = 70 \text{ GeV}$

In the limit $Q_2^2 \gg M_Z^2$ the function $\varkappa (Q_2^2)$ reaches its maximum value:

$$\varkappa \left(Q_{2}^{2}\right) \approx 1 + 2 \cdot \frac{g_{\mu}^{\mu}}{Q_{\mu}} \cdot \frac{g_{q}^{q}}{Q_{q}} \cdot \frac{1}{\left(2s_{W}c_{W}\right)^{2}} + \frac{\left(g_{V}^{\mu}\right)^{2} + \left(g_{A}^{\mu}\right)^{2}}{Q_{\mu}^{2}} \cdot \frac{\left(g_{V}^{q}\right)^{2} + \left(g_{A}^{q}\right)^{2}}{Q_{q}^{2}} \cdot \frac{1}{\left(2s_{W}c_{W}\right)^{4}} \approx \\ \approx \begin{cases} 1.35 & \text{for} \quad q = u, \ \bar{u}, \ c, \ \bar{c}; \\ 2.76 & \text{for} \quad q = d, \ \bar{d}, \ s, \ \bar{s}, \ b, \ \bar{b}. \end{cases}$$

However, to get an idea of what the correction in principle might be, one should know how much up- and down-type quarks contribute to the cross section in photon–photon fusion. For $\hat{Q}_2 = 70$ GeV and W = 20 GeV, u quark gives 41 % of the cross section, \bar{u} gives 16 %, d - 7 %, $\bar{d} - 4$ %, $s + \bar{s} - 7$ %, $c + \bar{c} - 21$ %, $b + \bar{b} - 4$ %. Up-type quarks combined $(u + \bar{u} + c + \bar{c})$ give 78 %. Consequently, the asymptotic value of the enhancement is $0.78 \cdot 1.35 + 0.22 \cdot 2.76 \approx 1.6$.

- For ultraperipheral collisions weak interaction correction is negligible.
- Weak interaction correction to the lepton pair production in semi-exclusive process gives few percent increase of the production cross section.
- When the lower limit on the net transverse momentum of the produced pair is set, the correction goes up and can reach 20 %.
- Numerical calculations were performed with the help of libepa (<u>https://github.com/jini-zh/libepa</u>) — a library for calculations of cross sections of ultraperipheral collisions (and beyond!) under the equivalent photons approximation.

Now with description of included physics, arXiv:2311.01353

Backup slides

[1909.10827]

in the center-of-mass frame, GeV 2.9-29

0.37 - 3.7

• Experiment: $7.2 \pm 1.6 \text{ (stat.)} \pm 0.9 \text{ (syst.)} \pm 0.2 \text{ (lumi.)}$ fb.

- Exclusive process $(pp \rightarrow pp\mu^+\mu^-)$: 8.6 fb.
- Inclusive process $(pp \rightarrow pX\mu^+\mu^-)$: 9.2 fb.

Survival factor should reduce the cross section by up to $\sim 30\%$ (10% for the elastic cross section; $\sim 50\%$ for the inelastic cross section according to MC simulations).