

Higgs couplings measurements from ATLAS and CMS

Nicolò Trevisani, on behalf of the ATLAS and CMS collaborations

58th Rencontres de Moriond 2024 - La Thuile (Italy)

Introduction

The Higgs boson is responsible for electroweak spontaneous symmetry breaking

$$\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - \sum_{f} g_{f}(\bar{\psi}_{L}\phi\psi_{R} + h.c.) - V(\phi)$$

• Gives mass to vector bosons through gauge couplings and vacuum expectation value:

$$m_W = \frac{vg}{2}$$

• Fermion masses determined by Yukawa couplings:

$$m_f = \frac{\lambda_f v}{\sqrt{2}}$$

<u>Nature 607, 52–59 (2022)</u>

$H \to cc$

Relies on VH associate production to trigger interesting events and suppress backgrounds:

- 0, 1, and 2 leptons final states:
 - $\circ~~ZH \rightarrow$ vvcc, WH \rightarrow lvcc, and ZH \rightarrow llcc
- Analysis strategy validated in VZ ($Z \rightarrow cc$) channel
- ATLAS:
 - Different ΔR between c tagged jets depending on $p^{T}(V)$
- CMS:
 - Resolved- and merged-jets categories
 - \circ $\,$ Graph neural network used in merged topology

$H \rightarrow cc$ - Results

CMS

- $\mu(VZ, Z \rightarrow cc) = 1.01^{+0.23}_{-0.21}$
 - First observation of $Z \rightarrow cc$ at a hadron collider
 - \circ $\,$ Observed (expected) significance of 5.7 (5.9) σ
- $\sigma(VH) \ge BR(H \rightarrow cc) < 14 (7.6^{+3.4}_{-2.3})$ SM at 95% CL
- $1.1 < |\kappa_c| < 5.5$ (expected: $|\kappa_c| < 3.4$) at 95% CL

ATLAS

- $\mu(VH \rightarrow cc) = -9 \pm 10 \text{ (stat.)} \pm 12 \text{ (syst.)}$
 - $\circ \quad \mu(VZ{\rightarrow}cc) = 1.16 \pm 0.32 \text{ (stat.)} \pm 0.36 \text{ (syst.)}.$
- Observed (expected) constraint of $|\kappa_c| < 8.5$ (12.4) at 95% CL
- Ratio κ_c / κ_b constrained to less than 4.5 at the 95% CL

$H \to \mu \mu$

Targeting decay channel with low branching fraction:

- Including ggF, VBF, WH, ZH, and ttH production modes
- Categorisation based on BDTs for each production mode
- Dominant DY background described by product of:
 - Core function: common to all categories
 - Empirical function: independent in each category
- Fit to data to distinguish signal peak from dominant smoothly-falling distribution from $Z \rightarrow \mu\mu$
 - CMS: MC template-based approach for the VBF category extracting signal strength from DNN distributions

$H \to \mu \mu$ - Results

CMS:

- $\mu = 1.19 + 0.40 0.39$ (stat) + 0.15 (syst)
 - First evidence of $H \rightarrow \mu\mu$ process (3.0 σ significance)
- Branching fraction: $0.8 \times 10^{-4} < BR(H \rightarrow \mu\mu) < 4.5 \times 10^{-4}$ at 95% C.L.
 - SM value: B(H → $\mu\mu$) = 2.18 × 10⁻⁴
- Coupling modifier: $\kappa_{\mu} = 1.07 \pm 0.22$ at 68% CL

ATLAS:

- $\mu = 1.2 \pm 0.6$ (dominated by statistical uncertainty)
- Corresponding upper limit of 2.2 at 95% CL is set on the signal strength

Targeting the Production Mode: $ttH \rightarrow bb$

The ttH \rightarrow bb process allows to measure both the κ_t and κ_b coupling values. Main challenges:

- Low signal production cross-section
- Irreducible tt+jets background especially difficult to model

Signal strength consistently below expectation both in ATLAS and CMS results:

• ATLAS:

$$\mu = 0.35^{+0.36}_{-0.34} = 0.33 \pm 0.20 \text{ (stat)}^{+0.30}_{-0.28} \text{ (syst)}$$

• CMS:

 \circ $\mu = 0.33 \pm 0.26 = 0.33 \pm 0.17 \text{ (stat)} \pm 0.21 \text{ (syst)}$

VH→bb

Targeting Higgs boson production in association with a W or Z boson

- Vector bosons decaying leptonically
 - \circ 0, 1, and 2 leptons categories
- Observation of VH process
- ATLAS:
 - \circ $\mu(VH) = 1.02 + 0.18 0.17$
 - \circ Corresponding to an observed (expected) significance of 6.7 (6.7) σ
- CMS:
 - \circ $\mu(VH) = 1.15 + 0.22 0.20$
 - \circ $\,$ Corresponding to an observed (expected) significance of 6.3 (5.6) σ

Targeting the Production Mode: bbH

Rare Higgs production mode, sensitive to the coupling to **top** and **bottom** quarks

- Similar production cross section as ttH
 - \circ \quad But no top quarks in the final state
 - More challenging signature than ttH
- WW and $\tau\tau$ final states
- Observed (expected) upper limit 3.7 (6.1) times the SM prediction at 95% CL
- Results also interpreted in terms of couplings to top and bottom quarks
 - Best fit values: $(\kappa_t, \kappa_b) = (-0.73, 1.58)$
 - \circ ~ Compatible with SM within 2 σ

VBF WH→bb

 $\sim \kappa_Z^2 \qquad \text{Interference} \sim \kappa_W \kappa_Z \qquad \sim \kappa_W^2 \quad \frac{\text{Picture from Karsten Köneke}}{\text{M}}$ $\kappa_W \text{ and } \kappa_Z \text{ are usually measured using } H \rightarrow WW \text{ and } H \rightarrow ZZ$

- The square of κ_W or κ_Z is involved
 Sign is left unconstrained
- In the SM, $\lambda_{WZ} = \kappa_W / \kappa_Z = 1$
 - \circ $\;$ Negative values of λ_{WZ} would enhance the VBF WH production and are predicted by BSM models
- ATLAS and CMS results exclude negative λ_{WZ} with significance greater than 5σ

Combined Results

Nature 607 (2022) 52

Nature 607 (2022) 60

Nicolò Trevisani - Higgs couplings results from ATLAS and CMS - 58th Rencontres de Moriond - La Thuile (Italy) - 24-31 Mar 2024

Higgs Self-Coupling Results

Several single- and double-Higgs measurements combined to measure the Higgs self-coupling κ_{λ} :

 \circ -1.4 < κ_{λ} < 6.1 at 95% CL CMS:

Conclusions

We are in the era of precision measurements of the Higgs boson properties:

- Couplings to the most massive particles are well established
 - $\circ \quad \text{Relative } \kappa_W^{}/\kappa_Z^{} \text{ sign}$
 - $\circ ~~$ ttH and bbH measurements to constraint $\kappa_{_{\rm t}}$ and $\kappa_{_{\rm b}}$
- Challenging second-generation fermions:
 - \circ Already 3-sigma evidence for $H \rightarrow \mu \mu$
 - \circ Competitive limits on the $\kappa_{\rm c}$ coupling modifier
- Combination of H and HH measurements put stringent limits on Higgs self-coupling

BACK-UP

Targeting the CP Structure: ttH

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_t}{v} \bar{\psi}_t (\underline{\kappa}_t + \underline{i\gamma_5 \widetilde{\kappa}_t}) \psi_t H \qquad |f_{CP}^{Htt}| = \frac{|\widetilde{\kappa}_t^2|}{(|\widetilde{\kappa}_t|^2 + |\kappa_t|^2)}$$

Targeting the CP Structure: ttH

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_{t}}{v} \bar{\psi}_{t} (\underline{\kappa_{t}} + \underline{i\gamma_{5}}\widetilde{\kappa_{t}}) \psi_{t} H \qquad |f_{CP}^{Htt}| = \frac{|\widetilde{\kappa_{t}}^{2}|}{(|\widetilde{\kappa_{t}}|^{2} + |\kappa_{t}|^{2})}$$

ttH \rightarrow bb final state:

- ATLAS:
 - Coupling modifier $\kappa_t = 0.84^{+0.30}_{-0.46}$
 - CP-mixing angle $\alpha = 11^{\circ} + 52^{\circ}_{-73^{\circ}}$
- CMS:
 - Best-fit values of (κ_t, κ_v) of (+0.59, +1.40)
 - Assuming $\kappa_{\rm V}$ = 1, a best-fit value of $\kappa_{\rm t}$ = 0.54^{+0.19}_{-0.34} is obtained

0

Targeting the CP Structure: ttH

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_{t}}{v} \bar{\psi}_{t} (\underline{\kappa_{t}} + \underline{i\gamma_{5}}\widetilde{\kappa_{t}}) \psi_{t} H \qquad |f_{CP}^{Htt}| = \frac{|\widetilde{\kappa_{t}}^{2}|}{(|\widetilde{\kappa_{t}}|^{2} + |\kappa_{t}|^{2})}$$

CMS: Combination of multilepton, $\gamma\gamma$, and ZZ final states:

- $|f_{CP}^{\text{Htt}}| = 0.28 \text{ with } |f_{CP}^{\text{Htt}}| < 0.55 \text{ at } 68\% \text{ CL}$
- Pure CP-odd coupling excluded at 3.7 σ

ATLAS: $\gamma\gamma$ final state

• CP-mixing angle $-43^{\circ} < \alpha < 43^{\circ}$ at 95% confidence level.

Higgs Branching Fractions

Decays of a 125 GeV Standard-Model Higgs boson

https://atlas.physicsmasterclasses.org/en/zpath_hboson.htm

CP Properties: ttH

arXiv:2208.02686

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_t}{v} \bar{\psi}_t (\underline{\kappa}_t + \underline{i\gamma_5 \widetilde{\kappa}_t}) \psi_t H$$

Scenario	α
Purely CP-even	0° or 180°
Purely CP-odd	90°
Mixed	$ eq 0^\circ, eq 90^\circ, eq 180^\circ$

- $|\sin^2 \alpha| = 0.28$ with $|\sin^2 \alpha| < 0.55$ at 68% CL
- Pure CP-odd coupling excluded at 3.7 σ

CP Properties: $H \rightarrow \tau \tau$

JHEP 06 (2022) 012

Effective Lagrangian for Yukawa coupling to tau lepton parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{\mathrm{Y}} = -\frac{m_{\tau}}{v} \mathrm{H}(\underline{\kappa_{\tau} \overline{\tau} \tau} + \widetilde{\kappa}_{\tau} \overline{\tau} i \gamma_{5} \tau)$$

Scenario	α
Purely CP-even	0° or 180°
Purely CP-odd	90°
Mixed	$ eq 0^\circ, eq 90^\circ, eq 180^\circ$

- $\alpha = -1^\circ \pm 19^\circ (0^\circ \pm 21^\circ \text{ expected})$
- Pure CP-odd coupling excluded at 3 σ

$H \rightarrow \tau \tau$ - Results

Several methods to reconstruct CP-sensitive observable ϕ_{CP}

ATLAS:

- Observed (expected) $\alpha^{H\tau\tau} = 9^\circ \pm 16^\circ (0^\circ \pm 28^\circ)$ at 68% confidence level.
- Pure CP-odd hypothesis disfavoured at 3.4 σ CMS:
 - Observed (expected) $\alpha^{H\tau\tau} = -1^{\circ} \pm 19^{\circ} (0^{\circ} \pm 21^{\circ})$ at 68% confidence level.
 - Pure CP-odd coupling excluded at 3 σ

$H \to cc$

Targeting VH associate production to trigger interesting events and suppress backgrounds:

- $ZH \rightarrow vvcc, WH \rightarrow lvcc, and ZH \rightarrow llcc$
- Analysis strategy validated in VZ ($Z \rightarrow cc$) channel
- ATLAS:
 - $\circ \quad \text{Different } \Delta R \text{ between c tagged jets depending on } p^T(V)$
- CMS:
 - Resolved- and merged-jets categories
 - \circ ~ State of the art graph neural network for merged topology

H→ee

 $H \rightarrow ee$ branching fraction measurement is currently out of reach at LHC:

- BR(H \rightarrow ee) = $G_F m_H m_e^2 / (4\sqrt{2\pi} \Gamma_H) \sim 5 \times 10^{-9}$
- BSM physics may manifest in enhanced Higgs coupling to electrons
- Both ATLAS and CMS follow strategies from similar searches:
 - $\circ \quad \text{ATLAS: } H {\rightarrow} \mu \mu$
 - with additional interpretation in terms of BR($H \rightarrow e\mu$)
 - $\circ \quad CMS: H \to \gamma \gamma$
- Upper limits on BR($H \rightarrow ee$) in line with expectations:
 - ATLAS: 3.6×10^{-4} (3.5×10^{-4}) at 95% C.L.
 - For B(H \rightarrow eµ): 6.2 × 10⁻⁵ (5.9 × 10⁻⁵)
 - \circ CMS: 3.0 $\times \, 10^{-4}$ (3.0 $\times \, 10^{-4})$ at 95% C.L.

 $H \rightarrow ee$ branching fraction measurement is currently out of reach at LHC:

- BR(H \rightarrow ee) ~ 5 × 10⁻⁹
- BSM physics may manifest in enhanced Higgs coupling to electrons
- Both ATLAS and CMS follow strategies from similar searches:
 - $\circ \quad \text{ATLAS: } H \rightarrow \mu \mu$
 - with additional interpretation in terms of BR($H \rightarrow e\mu$)
 - $\circ \quad CMS: H \to \gamma \gamma$
- Upper limits on BR($H \rightarrow ee$) in line with expectations:
 - ATLAS: 3.6×10^{-4} (3.5×10^{-4}) at 95% C.L.
 - For B(H \rightarrow eµ): 6.2 × 10⁻⁵ (5.9 × 10⁻⁵)
 - \circ CMS: 3.0 $\times \, 10^{-4}$ (3.0 $\times \, 10^{-4})$ at 95% C.L.

$H \to \mu \mu$

First evidence for Higgs coupling to second-generation fermions

- Dominant DY background described by product of:
 - Core function (common to all categories)
 - Empirical function (independent in each category)
- Targeting ggF, VBF, WH, ZH, ttH
- Categorisation based on BDTs exploiting the topological and kinematic differences between the different signal production modes and the background processes
- Fit to data to distinguish signal peak from dominant smoothly-falling distribution from $Z \rightarrow \mu\mu$
 - CMS: MC template-based approach for the VBF category extracting signal strength from DNN distributions

25

$H \to \mu \mu$ - Results

CMS:

- $\mu = 1.19^{+0.40}_{-0.39}$ (stat) $^{+0.15}_{-0.14}$ (syst)
 - $\circ~$ First evidence of H—µµ process (3.0 σ significance)
- Branching fraction: $0.8 \times 10^{-4} < BR(H \rightarrow \mu\mu) < 4.5 \times 10^{-4}$ at 95% C.L.
 - SM value: B(H → $\mu\mu$) = 2.18 × 10⁻⁴
- Coupling modifier: $\kappa_{\mu} = 1.07 \pm 0.22$ at 68% CL

ATLAS:

- $\mu = 1.2 \pm 0.6$ (dominated by statistical uncertainty)
- Corresponding upper limit of 2.2 at 95% CL is set on the signal strength

Conclusions

We are in the era of precision measurements of the Higgs boson properties:

- Couplings to the most massive fermions are well established
 - Sensitive to the coupling structure
 - We can test CP hypotheses
- For second-generation fermions, the Run 3 of LHC data taking may bring us to the observation of their interaction with the Higgs boson
 - \circ Already 3-sigma evidence for $H \rightarrow \mu \mu$
 - Competitive limits on the κ_c coupling modifier
- Results are also interpreted in the EFT framework

Nature 607 (2022) 60

Conclusions

We are in the era of precision measurements of the Higgs boson properties:

- Couplings to the most massive fermions are well established
 - Sensitive to the coupling structure
 - We can test CP hypotheses
- For second-generation fermions, the Run 3 of LHC data taking may bring us to the observation of their interaction with the Higgs boson
 - \circ Already 3-sigma evidence for $H \rightarrow \mu \mu$
 - Competitive limits on the κ_c coupling modifier
- Results are also interpreted in the EFT framework

<u>Nature 607, 52–59 (2022)</u>

$H \rightarrow cc - Results$

ATLAS

- $\mu(VH \rightarrow cc) = -9 \pm 10 \text{ (stat.)} \pm 12 \text{ (syst.)}$
 - $\circ \quad \mu(VW \rightarrow cq) = 0.83 \pm 0.11 \text{ (stat.)} \pm 0.21 \text{ (syst.)}$
 - $\mu(VZ\rightarrow cc) = 1.16 \pm 0.32$ (stat.) ± 0.36 (syst.).
- Observed (expected) constraint of $|\kappa_c| < 8.5$ (12.4) at 95% CL
- Ratio κ_c / κ_b constrained to less than 4.5 at the 95% confidence level

CMS

- $\mu(VZ, Z \rightarrow cc) = 1.01^{+0.23}_{-0.21}$
 - $\circ \quad \ \ \, \text{First observation of } Z \to cc \text{ at a hadron collider}$
 - \circ ~ Observed (expected) significance of 5.7 (5.9) σ
- $\sigma(VH) \ge BR(H \rightarrow cc) < 14 (7.6_{-2.3})$ SM at 95% CL
- $1.1 < |\kappa_c| < 5.5 (|\kappa_c| < 3.4)$ at 95% CL

Conclusions

We are in the era of precision measurements of the Higgs boson properties:

- Couplings to the most massive fermions are well established
 - Sensitive to the coupling structure
 - We can test CP hypotheses
- For second-generation fermions, the Run 3 of LHC data taking may bring us to the observation of their interaction with the Higgs boson
 - \circ ~ Already 3-sigma evidence for $H{\rightarrow}\mu\mu$
 - \circ Competitive limits on the $\kappa_{\rm c}$ coupling modifier
- Results are also interpreted in the EFT framework

 $H \to \tau\tau$

Effective Lagrangian for Yukawa coupling to tau lepton parameterized by **CP-even** and **CP-odd** components:

 π

JHEP06(2022)012

H

 $|\pi^+|$

 ϕ_{CP}

$H \rightarrow \tau \tau$ - Results

Several methods to reconstruct CP-sensitive observable ϕ_{CP}

ATLAS:

- Observed (expected) $\alpha^{H\tau\tau} = 9^\circ \pm 16^\circ (0^\circ \pm 28^\circ)$ at 68% confidence level.
- Pure CP-odd hypothesis disfavoured at 3.4 σ CMS:
 - Observed (expected) $\alpha^{H\tau\tau} = -1^{\circ} \pm 19^{\circ} (0^{\circ} \pm 21^{\circ})$ at 68% confidence level.
 - Pure CP-odd coupling excluded at 3 σ

Targeting the Production Mode: ttH

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$\mathcal{L}_{t\bar{t}H} =$	$\frac{m_{\rm t}}{v}\bar{\psi}_{\rm t}(\underline{\kappa}_{\rm t}+\underline{i\gamma_5}\widetilde{\kappa}_{\rm t})\psi_{\rm t}{\rm H}$	
-----------------------------	--	--

Scenario	α
Purely <i>CP</i> -even	0° or 180°
Purely <i>CP</i> -odd	90°
Mixed	$ eq 0^{\circ}, eq 90^{\circ}, eq 180^{\circ} $

Combination of multilepton, $\gamma\gamma$, and ZZ final states:

- $|f_{CP}^{\text{Htt}}| = \frac{|\tilde{\kappa}_{t}^{2}|}{(|\tilde{\kappa}_{t}|^{2} + |\kappa_{t}|^{2})} = 0.28 \text{ with } |f_{CP}^{\text{Htt}}| < 0.55 \text{ at } 68\% \text{ CL}$
- Pure CP-odd coupling excluded at 3.7 σ

bb final state:

- Best-fit values of (κ_t, κ_v) of (+0.59, +1.40)
- Assuming $\kappa_V = 1$, a best-fit value of $\kappa_t = 0.54^{+0.19}_{-0.34}$ is obtained

Targeting the Production Mode: ttH

Effective Lagrangian for Yukawa coupling to top quarks parameterized by **CP-even** and **CP-odd** components:

$$\mathcal{L}_{t\bar{t}H} = \frac{m_{t}}{v} \bar{\psi}_{t} (\underline{\kappa_{t}} + \underline{i\gamma_{5}}\widetilde{\kappa_{t}}) \psi_{t} H \qquad |f_{CP}^{Htt}| = \frac{|\widetilde{\kappa_{t}}^{2}|}{(|\widetilde{\kappa_{t}}|^{2} + |\kappa_{t}|^{2})}$$

Combination of multilepton, $\gamma\gamma$, and ZZ final states:

- $|f_{CP}^{\text{Htt}}| = 0.28 \text{ with } |f_{CP}^{\text{Htt}}| < 0.55 \text{ at } 68\% \text{ CL}$
- Pure CP-odd coupling excluded at 3.7 σ

bb final state:

- Best-fit values of (κ_t, κ_v) of (+0.59, +1.40)
- Assuming $\kappa_{\rm V} = 1$, a best-fit value of $\kappa_{\rm t} = 0.54^{+0.19}_{-0.34}$ is obtained

Effective Field Theory Interpretation

Combination of several Higgs ATLAS results in terms of EFT:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$
 Introducing new operators O_i and the corresponding coefficients c_i

ATLAS and CMS Public Results

- ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome#Recent_Results</u>
- CMS: <u>https://cms-results-search.web.cern.ch/</u>

Analyses List

- H→bb
 - ATLAS: <u>VH bb boosted</u>, <u>ttH bb</u>, <u>WH/ZH bb</u>
 - CMS: <u>VH bb</u>, <u>WH bb AC</u>, <u>ttH bb</u>
- H→ττ
 - ATLAS: <u>H tautau</u>, <u>H tautau CP</u>, <u>VH tautau</u>
 - CMS: <u>H tautau AC</u>, <u>H tautau CP</u>
- H→μμ
 - ATLAS: <u>H mumu</u>
 - CMS: <u>H mumu</u>
- H→cc
 - ATLAS: <u>H cc</u>
 - CMS: <u>H cc</u>
- H→ee
 - ATLAS: <u>H ee</u>
 - CMS: <u>H ee</u>
- Couplings to u,d,s?
 - ATLAS:
 - CMS:

- $H \rightarrow WW$
 - ATLAS: <u>H WW</u>
 - CMS: <u>H WW</u>, <u>H WW AC</u>
- $H \rightarrow Z\gamma: \underline{LHC HZ\gamma}$
- Higgs self couplings
 - ATLAS: double Higgs
 - CMS: <u>single-double Higgs combination</u>
- Higgs Nature papers
 - ATLAS: <u>10 years paper</u>
 - CMS: <u>10 years paper</u>
- ttH:
 - CMS: <u>ttH multilepton CP</u>
- BSM/EFT interpretation:
 - ATLAS: <u>EFT/BSM</u>