

Status of Models with extended Higgs Sectors

Giorgio Arcadi

University of Messina

General Setup

Good compromise between theoretical consistency and predictivity (still limited number of free parameters);

- Benchmark for a large variety of collider studies;
- Interesting Dark Matter phenomenology.
- Possibility of triggering First Order Phase Transition (FOPT).

$$V_{S}(S) = \frac{1}{2}M_{SS}^{2}S^{2} + \frac{1}{3}\mu_{S}S^{3} + \frac{1}{4}\lambda_{5}S^{4}$$
Conventional 2HDM Potential
$$V_{S,2HDM}(\Phi_{1}, \Phi_{2}, S) = \mu_{11S}(\Phi_{1}\Phi_{1}^{\dagger})S + \mu_{22S}(\Phi_{2}\Phi_{2}^{\dagger})S + (\mu_{12S}\Phi_{1}\Phi_{2}^{\dagger}S + h.c.) + \frac{\lambda_{11S}}{2}(\Phi_{1}\Phi_{1}^{\dagger})S^{2} + \frac{\lambda_{22S}}{2}(\Phi_{2}\Phi_{2}^{\dagger})S^{2} + \frac{1}{2}(\lambda_{12S}\Phi_{1}\Phi_{2}^{\dagger}S^{2} + h.c.)$$

$$V(\Phi_{1}, \Phi_{2}, S/P) = V_{2HDM}(\Phi_{1}, \Phi_{2}) + V_{S/P,2HDM}(\Phi_{1}, \Phi_{2}, S/P) + V_{S/P,2HDM}(\Phi_{1}, \Phi_{2}, S/P)$$

$$Self Interaction lagrangian$$

$$V_{P}(P) = \frac{1}{2}M_{PP}^{2}P^{2} + \frac{1}{4}\lambda_{P}P^{4}$$

$$V_{P,2HDM}(P) = \frac{\lambda_{11P}}{2}(\Phi_{1}\Phi_{1}^{\dagger})P^{2} + \frac{\lambda_{22P}}{2}(\Phi_{2}\Phi_{2}^{\dagger})P^{2} + \mu_{12P}P(i\Phi_{1}^{\dagger}\Phi_{2} + h.c.)$$

58th Recontres de Moriond EW

 $L_{Yukawa} = -\sum_{n=h,H} \left(Y_n^u Q_L u_R \widetilde{\Phi}_n + Y_n^d Q_L d_R \Phi_n + Y_n^l L_L e_R \Phi_n \right)$

2HDM+s
$$\longrightarrow (\Phi_1, \Phi_2, S) \longrightarrow (h, S_1, S_2, A, H^{\pm})$$

2HDM+a $\longrightarrow (\Phi_1, \Phi_2, P) \longrightarrow (h, a, H, A, H^{\pm})$

1

1

2HDM+S

2HDM+PS

$$Y_{h}^{i} = g_{hii}Y_{h,SM}^{i} \qquad Y_{h}^{i} = g_{hii}$$

$$Y_{S_{1}}^{i} = g_{Hii}\cos\theta Y_{h,SM}^{i} \qquad Y_{H}^{i} = g_{Hi}$$

$$Y_{S_{2}}^{i} = -g_{Hii}\sin\theta Y_{h,SM}^{i} \qquad Y_{A}^{i} = g_{Hii}$$

$$Y_{A}^{i} = g_{Aii}Y_{h,SM}^{i} \qquad Y_{a}^{i} = -g_{Hi}$$

$$Y_{h}^{i} = g_{hii}Y_{h,SM}^{i}$$

$$Y_{H}^{i} = g_{Hii}\cos\theta Y_{h,SM}^{i}$$

$$Y_{A}^{i} = g_{Aii}\cos\theta Y_{h,SM}^{i}$$

$$Y_{a}^{i} = -g_{Aii}\sin\theta Y_{h,SM}^{i}$$

Type IType IIType-X/Lepton-specificType-Y/Flipped
$$g_{huu}$$
 $\frac{\cos \alpha}{\sin \beta} \rightarrow 1$ g_{hdd} $\frac{\cos \alpha}{\sin \beta} \rightarrow 1$ $-\frac{\sin \alpha}{\cos \beta} \rightarrow 1$ $\frac{\cos \alpha}{\sin \beta} \rightarrow 1$ $-\frac{\sin \alpha}{\cos \beta} \rightarrow 1$ g_{hll} $\frac{\cos \alpha}{\sin \beta} \rightarrow 1$ $-\frac{\sin \alpha}{\cos \beta} \rightarrow 1$ $-\frac{\sin \alpha}{\cos \beta} \rightarrow 1$ $-\frac{\sin \alpha}{\cos \beta} \rightarrow 1$ g_{Huu} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ g_{Huu} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ g_{Huu} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ g_{Huu} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ g_{Huu} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta$ g_{Hul} $\frac{\sin \alpha}{\sin \beta} \rightarrow -\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ g_{Auu} $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ g_{Auu} $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ $\frac{1}{\tan \beta}$ g_{Auu} $-\frac{1}{\tan \beta}$ $\tan \beta$ $-\frac{1}{\tan \beta}$ $\tan \beta$

58th Recontres de Moriond EW

95 GeV Excess

CMS Collaboration JHEP 07 (2023) 073 CMS Collaboration Phys. Lett. B793 (2019) ATLAS Collaboration ATLAS-CONF-2023-035

$$\mu_{\tau\tau} = \frac{\sigma_{\phi} Br(\phi \to \tau\tau)}{\sigma_{\phi,SM} Br(\phi \to \tau\tau)_{SM}} = R_{gg} R_{\tau\tau} = \frac{\Gamma(\phi \to gg)}{\Gamma(\phi \to gg)_{SM}} \frac{\Gamma(\phi \to \tau\tau)}{\Gamma(\phi \to \tau\tau)_{SM}}$$

$$\mu_{\gamma\gamma} = \frac{\sigma_{\phi} Br(\phi \to \gamma\gamma)}{\sigma_{\phi,SM} Br(\phi \to \gamma\gamma)_{SM}} = \begin{cases} R_{gg} R_{\gamma\gamma} \frac{\sigma_{gg\phi,SM}}{\sigma_{\phi,SM}} (PS) \\ \frac{R_{gg} \sigma_{gg\phi,SM} + R_V \sigma_{V,BF} + R_{tt} \sigma_{tt\phi,SM}}{\sigma_{\phi,SM}} R_{\gamma\gamma} (S) \end{cases}$$

For our study we have used:

$$0.73 < \mu_{\tau\tau} < 1.83$$

 $0.17 < \mu_{\gamma\gamma} < 0.37$

Interpretation within the 2HDM+a.

G.A., G. Busoni, D. Cabo-Almeida, N. Krishnan arXiv:2311.14486

Giorgio Arcadi

Giorgio Arcadi

The best fit regions are not compatibile with the hint by LEP for $\overline{b}b$ signal.

58th Recontres de Moriond EW

Interpretation of g-2 in the 2HDM+PS

To have a sizable Δa_{μ} we need $g_{a\mu\mu} \propto tan\beta$. We need to go for Type-II or Type-X configurations.

Giorgio Arcadi

g-2 in the Type-X 2HDM+a

Parameter space leading to FOPT

GW Signal

GW background is typically the (linear) combination of three kinds of contributions

C. Caprini et al JCAP 04 (2016) 001

G.A, N. Benincasa, A. Djouadi, K. Kannike, *Phys.Rev.D* 108 (2023) 5, 055010

Conclusions

- The 2HDM+s and 2HDM+a are very interesting BSM benchmarks which can be used to interpret very different experimental signals.
- We have considered the capability of such models of interpreting the 95 GeV excess at LHC.
- In the 2HDM+a we have shown the possibility of reproducing the g-2 signal as well as providing GW signals from FOPTs in the Early Universe.

Back up

DM in the 2HDM+a

Giorgio Arcadi

DM in the 2HDM+s

58th Recontres de Moriond EW

Parameter of the scalar potential fine-tuned to set $Br(h \rightarrow aa) \simeq 0$

Giorgio Arcadi