58th Rencontres de Moriond

Pheno & Cosmo Implications of Scotogenic 3-loop Neutrino Mass Models

Téssio de Melo

Universidad Andrés Bello/Millenium SAPHIR Institute

Based on arXiv:2312.14105 [hep-ph], with A. Abada, N. Bernal, A. Cárcamo, S. Kovalenko and J. High Energ. Phys. 03 (2023) 035 arXiv:2212.06852 [hep-ph], with A. Abada, N. Bernal, A. Cárcamo, S. Kovalenko and T. Toma

29 March 2024

Introduction

Rencontres de Moriond - 03-29-2024

Téssio de Melo

PROTECTING ROCK

-p

pe

2 100 m

2

Introduction

Including vR fields:

$$\mathcal{L} \supset y_{\nu} \bar{L}_L \tilde{H} \nu_R$$

Dirac mass: $m_{\nu} \bar{\nu}_L \nu_R$

Small neutrino masses O(0.1) eV requires:

$$y_
u \sim \mathcal{O}(10^{-12})$$

Introduction

Including vR fields:

$$\mathcal{L} \supset y_{\nu} \bar{L}_L \tilde{H} \nu_R$$

Dirac mass: $m_{\nu} \bar{\nu}_L \nu_R$

Small neutrino masses O(0.1) eV requires:

 $y_
u \sim \mathcal{O}(10^{-12})$

Introduction

 ν_R are singlets under all the symmetries of the SM

Majorana mass term is not forbidden:

$$\mathcal{L} \supset y_{\nu} \bar{L}_{L} \tilde{H} \nu_{R} + M_{R} \overline{\nu_{R}}^{c} \nu_{R}$$

Introduction

 ν_R are singlets under all the symmetries of the SM

Majorana mass term is not forbidden:

$$\mathcal{L} \supset y_{\nu} \bar{L}_{L} \tilde{H} \nu_{R} + M_{R} \overline{\nu_{R}}^{c} \nu_{R}$$

0

0

$$M_R \gg v$$
 $m_\nu \simeq \frac{y_\nu^2 v^2}{M_R}$

Introduction

Weinberg Operator:

Scotogenic Model

[Ma, 2006]

Rencontres de Moriond - 03-29-2024

	$SU(2)_L$	$U(1)_Y$	Z_2
η	2	$\frac{1}{2}$	I
N_R	1	0	I

Lepton Sector

$$\mathcal{L} \supset -\frac{m_N}{2} \overline{N_R^c} N_R - y \overline{L} \eta N_R$$

Scalar Sector

$$V \supset \frac{\lambda_5}{2} \left[(\phi^{\dagger} \eta)^2 + (\eta^{\dagger} \phi)^2 \right]$$

Scotogenic Model

- The scotogenic model accounts for neutrino masses and dark matter with a very simple and economic setup
- However, λ5 has to be very small if the Yukawa couplings are "natural" (or vice-versa

$$\lambda_5 \sim 5 \times 10^{-8} \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{m_N}{1 \text{ TeV}}\right) \left(\frac{0.1}{y}\right)^2$$

Scotogenic Model

- The scotogenic model accounts for neutrino masses and dark matter with a very simple and economic setup
- However, λ5 has to be very small if the Yukawa couplings are "natural" (or vice-versa

$$\lambda_5 \sim 5 \times 10^{-8} \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right) \left(\frac{m_N}{1 \text{ TeV}}\right) \left(\frac{0.1}{y}\right)^2$$

 This motivates us to go for higher loops. At n-loop order, neutrino masses are typically given by:

$$m_{\nu} \sim C \left(\frac{1}{16\pi^2}\right)^n \frac{v^2}{\Lambda}$$

3-loop Scotogenic Model

Field	N_{R_k}	η	φ	ρ	ζ	σ
$SU(2)_L$	1	2	1	1	1	1
$U(1)_Y$	0	$\frac{1}{2}$	0	0	0	0
U(1)'	0	3	3	-1	0	$\frac{1}{2}$
\mathbb{Z}_2	-1	-1	-1	-1	-1	1

3-loop Scotogenic Model

Field	N_{R_k}	η	φ	ρ	ζ	σ
$SU(2)_L$	1	2	1	1	1	1
$U(1)_Y$	0	$\frac{1}{2}$	0	0	0	0
U(1)'	0	3	3	-1	0	$\frac{1}{2}$
\mathbb{Z}_2	-1	-1	-1	-1	-1	1

- Right-handed neutrinos
- Scalar doublet
- Singlet scalars

3-loop Scotogenic Model

Field	N_{R_k}	η	φ	ρ	ζ	σ
$SU(2)_L$	1	2	1	1	1	1
$U(1)_Y$	0	$\frac{1}{2}$	0	0	0	0
U(1)'	0	3	3	-1	0	$\frac{1}{2}$
\mathbb{Z}_2	-1	-1	-1	-1	-1	1

Z2 symmetry forbids tree level Dirac mass term

3-loop Scotogenic Model

- Z2 symmetry forbids tree level Dirac mass term
- U(1)' symmetry forbids 1- and 2-loop mass terms

Dark matter

- The lightest particle charged under Z2 is stable:
 dark matter candidate
- Fermion Dark Matter: NR1
 - It can only be produced via Yukawa interactions
 - It annihilates into a pair of charged leptons or active neutrinos via the η exchange

$$\sigma(N_1 N_1 \to \bar{l}_\alpha l_\alpha) \sim y_{1\alpha}{}^4 \quad \Longrightarrow \quad \Omega_{DM} \Rightarrow y \sim \mathcal{O}(1)$$

[[]A. Vicente, C. Yaguna, 2015]

Dark matter

- Scalar Dark Matter: the lightest neutral scalar among η0, φ, ρ and ζ
 - Gauge and scalar interactions
 - Not correlated to lepton flavor violation
- If the dominant component is ηο
 - > DM properties similar to the inert scalar DM
 - > Annihilation dominated by gauge interactions
- If DM is dominated by the other components
 - Main annihilation channels into the Higgs bosons via the scalar couplings

Precision EW and CDF anomaly

CDF-II measurement of the W mass

[CDF Collaboration, 2022]

$$M_W = (80.433 \pm 0.0064_{\text{stat}} \pm 0.0069_{\text{syst}}) \text{ GeV}$$

 $(M_W)_{\text{SM}} = (80.379 \pm 0.012) \text{ GeV}$

Non-SM particles provide radiative corrections to the W-boson mass

$$M_W^2 = \left(M_W^2\right)_{\rm SM} + \frac{\alpha_{\rm EM}\left(M_Z\right)\cos^2\theta_W M_Z^2}{\cos^2\theta_W - \sin^2\theta_W} \left[-\frac{S}{2} + \cos^2\theta_W T + \frac{\cos^2\theta_W - \sin^2\theta_W}{4\sin^2\theta_W} U\right]$$

CDF-II result can be explained by new physics that contribute to STU parameters

Precision EW and CDF anomaly

Rencontres de Moriond - 03-29-2024

23

Precision EW and CDF anomaly

 $m_{\eta^+} = 1500 \text{ GeV} \qquad m_{\Phi_1} = 1600 \text{ GeV}$

Precision EW and CDF anomaly

 $m_{\eta^+} = 1500 \text{ GeV} \qquad m_{\Phi_1} = 1600 \text{ GeV}$

3-loop Scotogenic ISS Model

- Right-handed neutrinos
- Extra neutral singlet fermions
- Vector-like fermion pair
- Singlet scalars

Field	ν_{kR}	N_{kR}	Ω_{kL}	Ψ_{kR}	Ψ_{kL}	$arphi_1$	$arphi_2$	σ
$SU(2)_L$	1	1	1	1	1	1	1	1
$U(1)_Y$	0	0	0	0	0	0	0	0
U(1)'	-4	4	0	-5	-1	-1	-1	4
\mathbb{Z}_2	1	1	-1	-1	-1	-1	1	1

 W^{-}

Charged Lepton Flavor Violation

Photon and Z penguin diagrams
 mediated by neutrinos and W

 W^{-}

Dark matter

- Fermion or scalar DM candidates are possible
- For definiteness, here we assume the neutral lepton Ψ1 is the DM, and that N1 (which is Z2-even) is lighter than Ψ1
- Ψ1 annihilate mainly into N1 through the t-channel exchange of φ1. Later, N1 decays into Higgs and leptons
- All the points in the scan comply with neutrino oscillation data and DM relic abundance

Leptogenesis

- Out-of-equilibrium decays of the pseudo-Dirac neutrinos NR can generate the baryon asymmetry of the universe via leptogenesis
- All the points in the plot generate correct neutrino masses and DM relic abundance.
 Grey points are excluded by cLFV constraints. Purple points generate the correct baryon asymmetry

Conclusions

- Radiative seesaw models are well motivated and testable extensions of the SM
- We discussed 2 examples of scotogenic models in which neutrinos masses are generated at the 3-loop level
- The 3-loop suppression allows the new particles to have masses in the TeV scale without fine-tuning the model parameters
- Fermionic or scalar DM can easily be accommodated; stability is ensured by the same symmetries involved in the generation of neutrino masses
- Depending on the realization, the models are capable of accounting for specific problems; here we discussed the W mass anomaly and baryogenesis
- These models lead to sizable cLFV rates which are within the sensitivity of future facilities

Rencontres de Moriond - 03-29-2024

Thank you!

Back Up

Neutrinoless double beta decay

Effective mass for neutrinoless double beta decay *

$$m_{ee} = \left| \sum_{i=1}^{3} \mathbf{U}_{ei}^2 \, m_i \right|$$

- * RH neutrinos do not contribute due to the Z₂ symmetry
- With one massless neutrino implies a definite prediction (depending * on the mass ordering):

 $m_{ee}^{\rm IO} = 48.36 \text{ meV} \text{ (for IO)}$ $m_{ee}^{\rm NO} = 3.67 \text{ meV} \text{ (for NO)}$

Both satisfy the bound from KamLAND-ZEN $m_{ee} \lesssim 61 \,\, {
m meV}$ *

Inverted ordering is within reach of experiments such as LEGEND and NEXT * Rencontres de Moriond - 03-29-2024

Neutrinoless double beta decay

$$\begin{split} V &= -\mu_{\phi}^{2}(\phi^{\dagger}\phi) - \mu_{\sigma}^{2}(\sigma^{*}\sigma) + \mu_{\eta}^{2}(\eta^{\dagger}\eta) + \mu_{\varphi}^{2}(\varphi^{*}\varphi) + \mu_{\rho}^{2}(\rho^{*}\rho) + \mu_{\zeta}^{2}(\zeta^{*}\zeta) + \tilde{\mu}_{\zeta}^{2}\left(\zeta^{2} + \text{H.c.}\right) \\ &+ \lambda_{1}(\phi^{\dagger}\phi)^{2} + \lambda_{2}(\sigma^{*}\sigma)^{2} + \lambda_{3}(\phi^{\dagger}\phi)(\sigma^{*}\sigma) + \lambda_{4}(\eta^{\dagger}\eta)^{2} + \lambda_{5}(\varphi^{*}\varphi)^{2} + \lambda_{6}(\rho^{*}\rho)^{2} \\ &+ \lambda_{7}(\zeta^{*}\zeta)^{2} + \left(\kappa_{1}\zeta^{4} + \text{H.c.}\right) + \left(\kappa_{2}\zeta^{2} + \text{H.c.}\right)(\zeta^{*}\zeta) + \lambda_{8}(\eta^{\dagger}\eta)(\varphi^{*}\varphi) + \lambda_{9}(\eta^{\dagger}\eta)(\rho^{*}\rho) \\ &+ \lambda_{10}(\eta^{\dagger}\eta)\zeta^{2} + \left(\kappa_{3}\zeta^{2} + \text{H.c.}\right)(\eta^{\dagger}\eta) + \lambda_{11}(\varphi^{*}\varphi)(\rho^{*}\rho) + \lambda_{12}(\varphi^{*}\varphi)(\zeta^{*}\zeta) \\ &+ \left(\kappa_{4}\zeta^{2} + \text{H.c.}\right)(\varphi^{*}\varphi) + \lambda_{13}(\rho^{*}\rho)(\zeta^{*}\zeta) + \left(\kappa_{5}\zeta^{2} + \text{H.c.}\right)(\rho^{*}\rho) + \lambda_{14}\left(\varphi\rho^{3} + \text{H.c.}\right) \\ &+ \lambda_{15}\left(\rho\zeta\sigma^{2} + \text{H.c.}\right) + \lambda_{16}(\phi^{\dagger}\phi)(\eta^{\dagger}\eta) + \lambda_{17}(\phi^{\dagger}\eta)(\eta^{\dagger}\phi) + \lambda_{18}(\phi^{\dagger}\phi)(\varphi^{*}\varphi) \\ &+ \lambda_{19}(\phi^{\dagger}\phi)(\rho^{*}\rho) + \lambda_{20}(\phi^{\dagger}\phi)(\zeta^{*}\zeta) + \left(\kappa_{6}\zeta^{2} + \text{H.c.}\right)(\phi^{\dagger}\phi) + \lambda_{21}(\sigma^{*}\sigma)(\eta^{\dagger}\eta) \\ &+ \lambda_{22}(\sigma^{*}\sigma)(\varphi^{*}\varphi) + \lambda_{23}(\sigma^{*}\sigma)(\rho^{*}\rho) + \lambda_{24}(\sigma^{*}\sigma)(\zeta^{*}\zeta) + \left(\kappa_{7}\zeta^{2} + \text{H.c.}\right)(\sigma^{*}\sigma) \\ &+ A\left[(\eta^{\dagger}\phi)\varphi + \text{H.c.}\right] \end{split}$$

$$\begin{pmatrix} \eta^0 \\ \varphi \end{pmatrix} = \begin{pmatrix} \cos \theta_{\Phi} & \sin \theta_{\Phi} \\ -\sin \theta_{\Phi} & \cos \theta_{\Phi} \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$
$$\begin{pmatrix} \rho_R \\ \zeta_R \end{pmatrix} = \begin{pmatrix} \cos \theta_{\Xi} & \sin \theta_{\Xi} \\ -\sin \theta_{\Xi} & \cos \theta_{\Xi} \end{pmatrix} \begin{pmatrix} \Xi_1 \\ \Xi_2 \end{pmatrix}$$
$$\begin{pmatrix} \rho_I \\ \zeta_I \end{pmatrix} = \begin{pmatrix} \cos \theta'_{\Xi} & \sin \theta'_{\Xi} \\ -\sin \theta'_{\Xi} & \cos \theta'_{\Xi} \end{pmatrix} \begin{pmatrix} \Xi_3 \\ \Xi_4 \end{pmatrix}$$

 We scan the parameter space of the model enforcing agreement with neutrino oscillation data via an adapted Casas-Ibarra parametrization

$$y_{\eta} = \sqrt{\Lambda}^{-1} R \begin{pmatrix} 0 \sqrt{m_2} & 0 \\ 0 & 0 & \sqrt{m_3} \end{pmatrix} P U_{\text{PMNS}}^{\dagger}$$

Parameters	Scanned ranges
$ heta_R$	$[0,2\pi]$
λ_{14}	[0.01,1]
$m_{N_R}, m_{\eta^+}, m_{\Phi_{1,2}}, m_{\Xi_{1,2,3,4}}$	$[500,10000]\mathrm{GeV}$

Benchmark Points

	Parameters	BP1		BI	P2		
	$ heta_{\Phi}$	0.2		0.	2		
	θ_{Ξ}	0.3		0.3			
	θ'_{Ξ}	0.	1	0.	.1		
	m_{η^+} [GeV]	15	00	17	1700		
	m_{Φ_1} [GeV]	16	00	1765			
	m_{Φ_2} [GeV]	10	00	20	00		
		NO	NO IO		IO		
	m_{N_R} [GeV]	8954.5	4246.9	5040.0	3450.7		
	m_{Ξ_1} [GeV]	8130.4	2925.0	8244.0	3282.9		
	m_{Ξ_2} [GeV]	1452.5	4748.5	2431.6	1815.4		
	m_{Ξ_3} [GeV]	8932.4	2763.1	6392.1	3637.6		
	m_{Ξ_4} [GeV]	7127.2	9336.4	1296.0	1458.4		
	λ_{14}	0.729	0.726	0.363	0.504		
	y_{η}^{e1}	0.124	0.346	-0.009	0.639		
	y_{η}^{e2}	-0.253	0.389	0.154	0.152		
	$y_{\eta}^{\mu 1}$	0.746	0.220	-0.313	0.031		
	$y_{\eta}^{\mu 2}$	-0.307	-0.272	0.312	-0.440		
d - 03-2	$29-202 \mathcal{Y}_{\eta}^{\tau 1}$	0.705	-0.335	-0.400	-0.183		
Ĩ	$y_{\eta}^{ au 2}$	0.207	0.225	0.043	0.475^{-39}		

3-loop Scotogenic Model

$$-\mathcal{L}_{Y}^{(\nu)} = \sum_{i=1}^{3} \sum_{k=1}^{2} (y_{\nu})_{ik} \,\overline{l}_{iL} \,\widetilde{\phi} \,\nu_{kR} + \sum_{n=1}^{2} \sum_{k=1}^{2} M_{nk} \,\overline{\nu}_{nR} \,N_{kR}^{C} \\ + \sum_{n=1}^{2} \sum_{k=1}^{2} (y_{N})_{nk} \,N_{nR} \,\varphi_{1}^{*} \,\overline{\Psi_{kR}^{C}} + \sum_{n=1}^{2} \sum_{k=1}^{2} (y_{\Omega})_{nk} \,\Psi_{nL}^{C} \,\varphi_{2} \overline{\Omega}_{kL} \\ + \sum_{n=1}^{2} \sum_{k=1}^{2} (y_{\Psi})_{nk} \,\overline{\Psi}_{nL} \,\sigma \,\Psi_{kR} + \sum_{n=1}^{2} \sum_{k=1}^{2} (m_{\Omega})_{nk} \,\overline{\Omega}_{kL} \,\Omega_{nL}^{C} + \text{H.c.}$$

$$-\mathcal{L}_{\text{mass}}^{(\nu)} = \frac{1}{2} \left(\begin{array}{cc} \overline{\nu_L^C} & \overline{\nu_R} & \overline{N_R} \end{array} \right) M_{\nu} \left(\begin{array}{c} \nu_L \\ \nu_R^C \\ N_R^C \end{array} \right) + \sum_{n=1}^2 \sum_{k=1}^2 (m_{\Psi})_{nk} \ \overline{\Psi}_{nL} \Psi_{kR} + \sum_{n=1}^2 \sum_{k=1}^2 (m_{\Omega})_{nk} \ \overline{\Omega}_{kL} \ \Omega_{nL}^C + H.c.$$

$$M_{\nu} = \begin{pmatrix} 0_{3\times3} & m_{\nu D} & 0_{3\times2} \\ m_{\nu D}^{T} & 0_{2\times2} & M \\ 0_{2\times3} & M^{T} & \mu \end{pmatrix}$$

$$\widetilde{\mathbf{M}}_{\nu} = m_{\nu D} \left(M^T \right)^{-1} \mu \, M^{-1} m_{\nu D}^T, \quad \mathbf{M}_{\nu}^{(-)} = -\frac{M + M^T}{2} + \frac{\mu}{2}, \quad \mathbf{M}_{\nu}^{(+)} = \frac{M + M^T}{2} + \frac{\mu}{2}$$

$$\mu_{sp} = \sum_{k=1}^{2} \sum_{n=1}^{2} \sum_{r=1}^{2} \frac{\lambda_{10} m_{\Psi_R} m_{\Psi_k}}{8 (4\pi^2)^3 m_{\varphi_2}} (y_N)_{sr} (y_N)_{pk} (y_\Omega)_{rn} (y_\Omega)_{kn} F\left(\frac{m_{\Omega_n}^2}{m_{\varphi_2}^2}, \frac{m_{\varphi_1}^2}{m_{\varphi_2}^2}\right)$$

Casas-Ibarra parametrization

$$m_{\nu D} = R_{\nu} \left(\left(\widetilde{\mathbf{M}}_{\nu} \right)_{\text{diag}} \right)^{\frac{1}{2}} O \mu^{-\frac{1}{2}} M$$

✤ µ-parametrization

$$\mu = M^T m_{\nu D}^{-1} \widetilde{\mathbf{M}}_{\nu} \left(m_{\nu D}^T \right)^{-1} M = M^T m_{\nu D}^{-1} U_{\text{PMNS}} \left(\widetilde{\mathbf{M}}_{\nu} \right)_{\text{diag}} U_{\text{PMNS}}^T \left(m_{\nu D}^T \right)^{-1} M$$

3-loop Scotogenic ISS Model

3-loop Scotogenic ISS Model

