Rencontres de Moriond Electroweak Interactions La Thuile, March 25-31, 2024

Search for sterile neutrinos (Mini-review)

Mikhail Danilov

There are several experimental indications of a new neutrino with $\Delta m^2 \sim 1 \text{ eV}^2$, $\sin^2 2\theta_{ee} \sim 0.1$, Must be Sterile since $\Gamma_z \Rightarrow N_v = 3$

- 1. LSND, MiniBoone: V_e (∇_e) appearance in v_{μ} (∇_{μ}) beams: Signif. > 60 Not confirmed by MicroBoone arXiv:2110.14054v2 but not excluded
- 2. SAGE and GALEX V_e deficit (GA) confirmed by BEST: Signif. > 5σ arXiv: <u>2109.11482</u>, arXiv: <u>2201.07364</u>, PRL 128.232501
- 3 Reactor V_e deficit (RAA): Signif. ~ 30 Explained by KI (arXiv:2103.01684), DayaBay, RENO experiments and new reactor neutrino flux models? Estienne et al arXiv:1904.09358, Letourneau et al, arxXiv:2205.14954,

Perisse etal(BESTIOLE) arXiv:2304.14992V2

4. Neutrino-4 claim of sterile neutrino observation Δm²=7.3±1.17eV² and sin²2θ=0.36±0.12 Signif.=2.7σ Phys.Rev.D 104, 032003 (2021)

These are statistically strongest laboratory indications of physics BSM!

3+1 v model is usually used in analysis with extended 4x4 PMNS matrix U_{ij} $P_{ee} \approx 1 - \sin^2 2\Theta_{ee} \sin^2(\Delta m_{14}^2 L/4E)$ with $\sin^2 2\Theta_{ee} = 4|U_{e4}|^2 (1 - |U_{e4}|^2)$ $P_{\mu\mu} \approx 1 - \sin^2 2\Theta_{\mu\mu} \sin^2(\Delta m_{14}^2 L/4E)$ with $\sin^2 2\Theta_{\mu\mu} = 4|U_{\mu4}|^2 (1 - |U_{\mu4}|^2)$

 $P_{\mu e} \approx sin^{2}2\Theta_{\mu e}sin^{2}(\Delta m_{14}^{2}L/4E) \sim 4|U_{e4}|^{2} |U_{\mu 4}|^{2} \approx sin^{2}2\Theta_{ee}sin^{2}2\Theta_{\mu \mu}/4 = 2$

LSND and MiniBooNE anomalous ve appearance

In 1995 LSND observed excess of anti- v_e in anti- v_μ beam (~4.0 σ) In 2018 MiniBooNE observed excess of (anti)- v_e in (anti)- v_μ beam (~4.8 σ) Combined significance 6.00 - Statistically strongest lab. indication of New Physics

3

MicroBooNE did not confirm v_e LEE arXiv:2110.14054

They observed even less v_e than expected The same neutrino beam (0.5% v_e (anti- v_e) only), much better e identification

MiniBooNE v_e LEE central value excluded with $>3\sigma$

But not the whole parameter space!

MicroBooNE does not exclude MiniBooNE+LSND results completely

Joint MiniBooNE and MicroBooNE analysis (including v_e and v_μ disappearance) arXiv:2201.01724

Break cancelation with NuMI beam (4%v_e) Results soon! MICROBOONE-NOTE-1116-PUB

cancelation in v_e appearance

and disappearance.

Reduces MiniBooNE significance from 4.6σ to 3.4σFit quality is very poor!5But 3+1 scenario is still preferred

Appearance and Disappearance results are in contradiction

Short-Baseline Neutrino Program at FNAL and JSNS² will clarify the situation

Gallium Anomaly (GA)

Deficit of v events in GALLEX and SAGE calibrations with radioactive sources \rightarrow GA - 3.0 σ (Giunti, Laveder 1006.3244)

Recently BEST confirmed GA with more than 50 ! arXiv:2109.11482

- No difference between inner and outer targets Rin = 0.791±0.05 and Rout = 0.766±0.05
- → No sign of oscillations. Only rate difference

Significant deficit implies large mixing

Serious tension with many experiments for v_s interpretation

However perfect agreement with Neutrino-4 and MicroBooNE 2.4 σ indication of v_s: sin²2 θ_{ee} = 0.35 \pm ^{0.19}_{0.16} Δm^2_{14} =1.25 \pm ^{0.74}_{0.39}eV² Denton <u>arXiv:2111.05793</u>

Look for alternative explanations of GA
See comprehensive review by Brdar, Gehrlein, Kopp arXiv:2303.05528

Possible conventional explanations of GA

Smaller cross-section for ⁷¹Ga(v_e, e⁻)⁷¹Ge

Recent reevaluation arXiv: 2303.13623V3 1% smaller σ than Bahcall model - not enough

<u>Smaller ⁷¹Ge half-life</u> Unexplained differences between measurements Giunti etal <u>arXiv:2212.09722</u> Second in accuracy result reduces significance to 3 o level

New yet undiscovered exited low-lying state of ⁷¹Ga Need 20% decays of ⁷¹Ge to this state to explain GA

Reduction of cross section would increase measured v_e pp flux above predictions based on total Solar luminosity However discrepancy would be at ~2 σ level only Bergstrom et al, arXiv:1601.00972, Nature 562 (2018), no. 7728 505–510.

Wrong activity of radioactive source Main heat in ${}^{51}Cr(e_{-}, v_{e})V^{(*)}$ comes from $V^* \rightarrow V + \gamma(320 \text{keV})$ 20% increase of BR(${}^{51}Cr \rightarrow {}^{51}V^*$) would solve GA (or additional new exited state)

Wrong efficiency of ⁷¹Ge extraction

SAGE had one extraction with very high amount of extra Ge. Reason not clear.

But new measurements of ⁷¹Ge half-life exclude this explanation

Possible BSM explanations of GA

(From Brdar, Gehrlein, Kopp arXiv:2303.05528)

Sharp MSW resonance at E~750keV (main ⁵¹Cr lines)

Interaction with ultra-light polarized vector DM φ

- Adjust parameters to avoid Solar constraints
 Decay to additional scalar and v is needed
- to avoid early Universe constraints
- BEST with ⁶⁵Zn source smoking gun test

Interaction with Dark Energy

Boehmer, Harko gr-qc/0701029, Tasinato 1402.6450, 1404.4883

Parametric resonance with scalar of vector DM Petcov hep-ph/9805262, Akhmedov hep-ph/9805272, Losada arXiv: 2205.09769

Decaying sterile neutrinos

See Brdar et al,arXiv:2303.05528 and ref. therein v_s decays fast to S+ v_e \rightarrow

no v_e flux reduction in reactor experiments but E is smaller and IBD rate is smaller Does not solve tension with reactor results

Many other BSM ideas to resolve GA

Several models with damping of oscillations were proposed

Reactor Antineutrino Anomaly (RAA)

New calculations of antineutrino flux in 2011 were $\sim 6\%(2.5\sigma)$ above experiment

Mueller et al, arXiv:1101.2663, Huber arXiv:1106.0687, Mention et al, arXive:1101.2755 (RAA)

Deficit of v_e can be explained by oscillations to sterile v_s with m~ 1 eV In model with 3 active and 1 sterile neutrino (3+1 model) survival probability at short L

 $P_{ee}=1-\sin^2 2\Theta_{ee} \sin^2(\Delta m^2_{14}L/4E)$

with $\sin^2 2\theta_{ee} = 4|U_{e4}|^2(1-|U_{e4}|^2)$, where U is 4x4 extended PMNS matrix

Recent DANSS results are consistent with HM model

New neutrino flux models

HKSS conversion model Hayen et al arXiv:1908.08302 increases RAA to 2.90 R_{HKSS} = 0.925^{+0.025}_{-0.023} Giunti et al, arXiv:2110.96820

EF summation model Estienne et al arXiv:1904.09358 decreases RAA to 1.20 Giunti et al, arXiv:2110.96820ЛШ $\overline{R}_{EF} = 0.960^{+0.033}_{-0.031}$

KI conversion model arXiv:2103.01684 No RAA Letourneau etal, model arxXiv:2205.14954 describes STEREO spectrum -> No RAA Perisse etal(BESTIOLE) arXiv:2304.14992V2 No RAA? (No conclusion in paper)

New measurements indicate smaller contribution from ²³⁵U Kurchatov Inst group observed 5.4% smaller ratio of β yields for ²³⁵U/²³⁹Pu arXiv:2103.01684 This can explain RAA!

DayaBay, RENO, STEREO observed smaller ²³⁵U flux than in HM model which is based on ILL results

Phys. Rev. Lett. **123**, 111801, Phys. Rev. Lett. **122**, 232501 <u>Nature</u> v 613, 257–261 (2023)

Spectral analysis

Practically all parameters preferred by BEST and best fit Neutrino-4 point are excluded (Bugey-3 -similar conclusions arXiv:2002.00301) Detector upgrade is planned

Strong limits on sterile neutrino parameters Best point (ΔM^2 =2.37 eV²) agrees with RAA but p-value is 13% only FC limits are not shown

- hard to compare them with other experiments

NEOS-II took data 500 days in 2018-2020 Results on v_s search expected at Neutrino 2024 Seon-Hee Seo, Priv.Comm. 14

Neutrino-4

Indication of oscillations with large $\Delta m^2 \sim 7.3 \pm 1.17 eV^2$ and $\sin^2 2\theta = 0.36 \pm 0.12$ Significance 2.7 σ Phys.Rev.D 104, 032003 (2021) There were concerns about Neutrino-4 analysis MD J.Phys.Conf.Ser. 1390 (2019) 1, 012049, MD, N.Skrobova JETP Lett. 112 (2020) 7, 452 C.Giunti Phys.Lett.B 816 (2021) 136214, M.Andriamirado et al. ArXiv:2006.13147, Coloma et al. arXiv:2008.06083V2. Neurino-4 addressed several concerns

Neutrino-4 and BEST results agree nicely

Serious tension of Neutrino-4 result with

- Absolute reactor v flux
- Solar neutrino limits
- PROSPECT and STEREO experiments
 See e.g. Giunti et al arXiv:2101.06785

However Neutrino-4 result can't be excluded A.Serebrov et al, JETP v137, p.55(2023)

New experiments are needed to confirm or discard Neutrino-4 result

Neutrino-4 upgrade

Serebrov et al, Techn. Phys., 2023, V.68, No1, 15

5.4m³ LS(0.2% Gd) detector in a new hall 100 sections with 2 PMT readout PSD, L=6-15m Sensitivity 3 times better than at Neutrino-4 Start of data taking in Autumn 2024 Old setup upgraded with PSD 15 started data taking in January 2024

PROSPECT and **STEREO**

16

Combined fit of SBL experiments without Neutrino-4

Fit with NEOS/RENO - 2.6 σ Weak indication of Sterile neutrino But fit assumes validity of Wilks theorem → overestimation of significance (see Berryman et al arXiv:2111.12530) New experiments are needed to clarify the situation. Upgraded DANSS, Neutrino-4, and PROSPECT will give answer in few years

17

Conclusions

- LSND and MiniBooNE anomalies are disfavored by MicroBooNE
- v_s explanation of LEE is still possible but contradicts disapp. experiments
- MicroBooNE(NuMI), SBNP and JSNS² will soon clarify the situation
- -GA is in serious tension with many experiments but agrees with Neutrino-4 -Many ideas of possible conventional or BSM explanation but not convincing
- v_s explanation of GA is still marginally possible
- BEST with ⁶⁵Zn source smoking gun test for many explanations
- RAA is probably explained by smaller ²³⁵U contribution preferred by new experiments (with exception of DANSS) and new Reactor flux models
- Spectral analysis still indicates v_s with a small sin^22 θ_{ee} at ~3 σ
- Neutrino-4 claim of $v_{\rm s}$ observation is in tension with many results but not excluded
- Upgraded VSBL reactor experiments will clarify the situation
 Upgraded Neutrino-4+ is already taking data, Neutrino-4M will start in 2024

Cosmological constraints were not discussed but models exist which remove them See e.g. Davoudiasl,Denton arXiv:2301.09651 Explains Ga, LSND, MiniBooNE, DM

Experimental evidence for v_s is fading away but not excluded

Backup slides

First SBND Physics Run from April-July 2024 Expected data will match the MicroBooNE entire dataset Nowak@NuPhys 2023

- > QE ve CC event contained candidate, EDEP~870 MeV:
 - proton candidate is upward going/stopping L= 13 cm;
 - ✓ e-shower is downward going.

21

Hasogawa@CERN

4.5m

 10^{-3}

Detection; IBD(Inverse Beta Decay)

¹ m²[eV²/c⁴]

10

10-1

10

- Neutrino; μ⁺(Decay at Rest) → e⁺ + v_e + v_μ
 Target volume ; Gd-loaded Liquid Scintillator

50% 10%

 10^{-2}

LSND 99%C.L

LSND 90%C.L OPERA(2018) 90%

1(

Positron spectrum dependence on fuel composition is clearly seen

IBD rate dependence on 239Pu fission fraction $(d\sigma/dF239)/\sigma(F239=0.3)$ for various Ee+ It is closer to H-M model than DayaBay results

Errors are dominated by systematics estimated from the spread between campaigns Probably errors are overestimated 22 Determination of 235U / 239Pu contributions from the slope

$$N = \alpha \cdot (\sigma_8 f_8 + \sigma_1 f_1 + \sigma_5 f_5 + \sigma_9 f_9)$$

$$\frac{dN}{df_9} = \alpha \cdot \left(\sigma_8 \frac{df_8}{df_9} + \sigma_1 \frac{df_1}{df_9} + \sigma_5 \frac{df_5}{df_9} + \sigma_9 \right)$$

$$SI = \left(\frac{dN}{df_9}\right) / N = \frac{\frac{\sigma_8}{\sigma_9}\frac{df_8}{df_9} + \frac{\sigma_1}{\sigma_9}\frac{df_1}{df_9} + \frac{\sigma_5}{\sigma_9}\frac{df_5}{df_9} + 1}{\frac{\sigma_8}{\sigma_9}f_8 + \frac{\sigma_1}{\sigma_9}f_1 + \frac{\sigma_5}{\sigma_9}f_5 + f_9}$$

$$\frac{\sigma_5}{\sigma_9} = -\frac{\frac{\sigma_8}{\sigma_9}(SI \cdot f_8 - \frac{df_8}{df_9}) + \frac{\sigma_1}{\sigma_9}(SI \cdot f_1 - \frac{df_1}{df_9}) + (SI \cdot f_9 - 1)}{SI \cdot f_5 - \frac{df_5}{df_9}}$$

 $(\sigma_8/\sigma_9 \text{ and } \sigma_1/\sigma_9 \text{ are taken from HM})$ DANSS result $\sigma_5/\sigma_9 = 1.53 \pm 0.06$ is larger than Day Bay (1.445 ± 0.097) and agrees with HM (1.53 ± 0.05). Use of DB-Slope in our formula gives: $\sigma_5/\sigma_9 = 1.459 \pm 0.052$. \Rightarrow difference between DANSS and DB is due to slope Maybe it's premature to say that RAA is solved by new σ_5/σ_9 ?

Data comparison with models Giunti et al, arXiv:2110.96820

Daya Bay and RENO results agree with EF and KI models

Tension with HM (2.6 σ) and HKSS (2.8 σ) models

RAA understood? Probably YES! However errors are still large

And recent DANSS results are consistent with HM model Skrobova@ LaThuile_23

Ratio of positron spectra

Fit in 1.5-6 MeV range (to be conservative)

(5.5 million IBD events with 1.5 MeV<E<6MeV)

There is no statistically significant evidence in favor of 4v signal:

 ΔX^2 =-8.5 (2.1 σ) for 4v hypothesis best fit point Δm^2 =0.35 eV², sin²20=0.06

 ΔX^2 =-5.7 for 4v hypothesis second best fit point Δm^2 =1.3 eV² , sin²20=0.015

- ✤ RAA has been excluded with $\Delta X^2 = 194$
- ✤ RAA was excluded by DANSS with more than 5^o already in 2018 (arXive:1804.04046v1)