$|V_{cs}|$ determination and LFU test in charm decays at BEST

Peilian Liu

Institute of High Energy Physics, CAS, Beijing

(on behalf of the BESIII collaboration)

Moriond EW, March 24-31 2024, Lathuile

Physics motivation

+ Precise measurement of CKM matrix element $|V_{cs}|$, to test the unitarity of

CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

In SM, Lepton Flavor Universality (LFU)
 requires equality of couplings between
 three families of leptons and gauge bosons

 Leptonic decays of charmed hadrons, well understood in the SM, offer an excellent opportunity to test LFU and search for new physics effects.

The BESIII detector at BEPCII collider

- Double-ring multi-bunch e^+e^- collider (2 × 93)
- Luminosity reached $1.1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (10% higher than the design value) in 2022
- + Beam energy: 1.0 2.5 GeV
- Circumference: 237m

Charmed hadron samples at BESIII

- Collected near the mass threshold of charmed hadron pairs
 - 7.9 fb⁻¹ at $E_{cm} = 3.773 \text{ GeV} : e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$
 - 7.3 fb⁻¹ at $E_{cm} = 4.128 4.226 \text{ GeV} : e^+e^- \rightarrow D_s D_s^* \rightarrow \gamma/\pi^0 D_s^+ D_s^-$
 - 4.5 fb⁻¹ at $E_{cm} = 4.600 4.699 \text{ GeV} : e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda_c^-}$

Determination of BF of charmed hadrons at BESIII

Hadronic tagging of charmed hadrons

$N_{\mathrm{tag}} = 2N_{D\overline{D}}\mathcal{B}_{\mathrm{tag}}\epsilon_{\mathrm{tag}}$				
Charmed hadrons	$N_{\rm tag}(imes 10^6)$			
$D^0/\overline{D}{}^0$	7.3			
D^{\pm}	4.6			
D_s^{\pm}	0.8			
$\Lambda_c^+/\overline{\Lambda}_c^-$	0.12			

Features to extract the (semi-)leptonic signals

$$N_{\rm DT} = 2N_{D\overline{D}}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\epsilon_{\rm DT}$$

- One, two or three neutrinos missing
- $U_{miss} = E_{miss} |\vec{p}_{miss}|$, $M_{miss}^2 = E_{miss}^2 |\vec{p}_{miss}^2|$
- $E_{extra \gamma}^{tot}$ the total energy of the good isolated EMC showers not used in tag selection

Branching fraction determined with the double tag method

 $\mathcal{B}_{sig} = \frac{N_{DT}}{N_{tag}\epsilon_{DT}/\epsilon_{tag}}$ Benefitting from the $D_{(s)}\overline{D}_{(s)}/\Lambda_c^+\overline{\Lambda}_c^-$ pairs collected at the mass threshold 5

$|V_{\rm CS}|$ determination

Extraction of $|V_{cs}|$ via $D_s^+ \rightarrow l^+ \nu_l$

$$\Gamma(D_s^+ \to l^+ \nu_l) = \frac{G_F^2}{8\pi} V_{cs}^2 |^2 f_{D_s^+}^2 m_l^2 m_{D_s^+}^2 (1 - \frac{m_l^2}{m_{D_s^+}^2})^2$$

- G_F is the Fermi coupling constant
- D_s^+ decay constant $f_{D_s^+}$, describes strong interaction effects

$$\Gamma_{D_s^+ \to l^+ \nu_l} = \frac{\mathcal{B}(D_s^+ \to l^+ \nu_l)}{\tau_{D_s}}$$

• $|V_{cs}|$ is determined by measuring $\mathcal{B}(D_s^+ \to l^+ \nu_l)$ and taking $f_{D_s^+}$ from LQCD calculation as input

$D_s^+ o \mu^+ \nu_\mu$

Ref	\mathcal{L} [fb ⁻¹]	$\mathcal{B}\left[imes 10^{-3} ight]$	$\mathbf{f}_{D_{s}^{+}} \mathbf{V}_{cs} $ [MeV]	Precision [%]	
PRL122(2019)071802	3.2@4.18 GeV	$5.49 \pm 0.16 \pm 0.15$	$246.2 \pm 3.6 \pm 3.5$	2.1	
PRD104(2021)05200	6.3@4.18-4.23GeV	$5.35 \pm 0.13 \pm 0.16$	$243.1 \pm 3.0 \pm 3.7$	2.0	
PRD108(2023)112001	7. 3@4. 13-4. 23GeV	$5.29\pm 0.11\pm 0.09$	$241.8 \pm 2.5 \pm 2.2$	1.4	

$D_s^+ o au^+ u_ au$

$ au^+$ channel	$\mathcal{B}\left[\times 10^{-2} ight]$	$\mathbf{f}_{m{D}_{S}^{+}} \mathbf{V}_{cs} $ [MeV]	Precision [%]
$ ho^+ u$	$5.29 \pm 0.25 \pm 0.20$	$244.8 \pm 5.8 \pm 4.8$	3.1
$\pi^+ u$	$5.21 \pm 0.25 \pm 0.17$	$243.0 \pm 5.8 \pm 4.0$	2.9
$e^+ \nu \nu$	$5.27 \pm 0.10 \pm 0.12$	$244.4 \pm 2.3 \pm 2.9$	1.5
$μ^+νν$	$5.37\pm 0.17\pm 0.15$	$246.7 \pm 3.9 \pm 3.6$	2.2
$\pi^+ u$	$5.44\pm 0.17\pm 0.13$	$248.3 \pm 3.9 \pm 3.2$	2.0
	$ au^+$ channel $ ho^+ u$ $\pi^+ u$ $e^+ u u$ $\mu^+ u v$ $\pi^+ u$	τ^+ channel $\mathcal{B}[\times 10^{-2}]$ $\rho^+\nu$ $5.29 \pm 0.25 \pm 0.20$ $\pi^+\nu$ $5.21 \pm 0.25 \pm 0.17$ $e^+\nu\nu$ $5.27 \pm 0.10 \pm 0.12$ $\mu^+\nu\nu$ $5.37 \pm 0.17 \pm 0.15$ $\pi^+\nu$ $5.44 \pm 0.17 \pm 0.13$	τ^+ channel $\mathcal{B}[\times 10^{-2}]$ $f_{D_s^+} V_{cs} $ [MeV] $\rho^+\nu$ $5.29 \pm 0.25 \pm 0.20$ $244.8 \pm 5.8 \pm 4.8$ $\pi^+\nu$ $5.21 \pm 0.25 \pm 0.17$ $243.0 \pm 5.8 \pm 4.0$ $e^+\nu\nu$ $5.27 \pm 0.10 \pm 0.12$ $244.4 \pm 2.3 \pm 2.9$ $\mu^+\nu\nu$ $5.37 \pm 0.17 \pm 0.15$ $246.7 \pm 3.9 \pm 3.6$ $\pi^+\nu$ $5.44 \pm 0.17 \pm 0.13$ $248.3 \pm 3.9 \pm 3.2$

$$D_s^+ \rightarrow \tau^+(\mu^+ \nu \nu) \nu$$

 $D_s^+ \rightarrow \tau^+(\pi^+ v)v$

$|V_{cs}|$ determined via $D_s^+ \rightarrow l^+ \nu_l$

Combining measured $|V_{cs}|f_{D_s^+}$ with $f_{D_s^+}$ calculated by LQCD

CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081		SM
CLEO	PRD79(2009)052002, τ _e ν	0.981±0.044±0.021	H-H-H	
CLEO	PRD80(2009)112004, τ _ρ ν	1.001±0.052±0.019	r	
CLEO	PRD79(2009)052001 , τ _π ν	1.079±0.068±0.016		
BaBar	PRD82(2010)091103, $\tau_{e,\mu}v$	0.953±0.033±0.047	<mark>⊢₊₋₊</mark> ₊₁	
Belle	JHEP09 (2013)139, τ _{e,μ,π} ν	1.017±0.019±0.028	<mark>++ + +</mark>	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , τ _π ν	0.972±0.023±0.016	# <mark>=</mark> #	τν
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, $\tau_{\rho}v$	0.980±0.023±0.019	H <mark>-</mark> -H	•••
BESIII 6.32 fb ⁻¹	PRL127(2021)171801 , $\tau_e v$	0.978±0.009±0.012	H=H	
BESIII 7.33 fb ⁻¹	PRD108(2023)092014, τ _π ν	0.993±0.016±0.013	<mark>⊮ ⊷ n</mark>	
BESIII 7.33 fb ⁻¹	JHEP09(2023)124, $\tau_{\mu}v$	0.987±0.016±0.014	r - I	
CLEO	PRD79(2009)052001, μν	1.000±0.040±0.016	F	
BaBar	PRD82(2010)091103 , μν	1.032±0.033±0.029	н н	
Belle	JHEP09(2013)139 , μν	0.969±0.026±0.019	H - H	
BESIII 0.482 fb ⁻¹	PRD94(2016)072004 , μν	0.956±0.069±0.020	<u>ы</u> н	μν
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014	H <mark>-</mark> H	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009 , μν	0.973±0.012±0.015	н <mark>-</mark> н	
BESIII 7.33 fb ⁻¹	PRD108(2023)112001, μν	0.968±0.010±0.009	H	
BESIII Combined	τν	0.9831±0.0068±0.0080	10/	
BESIII Combined	$\tau v + \mu v$	0.9774±0.0056±0.0072	1 /0	
	-1	0	1	
		-		

10

Extraction of $|V_{cs}|$ via $D_{(s)}^{+/0} \rightarrow Pl^+\nu_l$

- Hadronic form factor(FF) $f_{+,0}$ depends on q^2 , the square of the four-momentum transfer from $D_{(s)}^{+/0}$ to P, can be calculated in LQCD
- The most general parametrization of FF:

Series expansion
$$f_+(q^2) = \frac{1}{P(q^2)\phi(q^2, t_0)} \sum_{k=0}^{\infty} a_k(t_0) [z(q^2, t_0)]^k$$

- * $f_+(0)|V_{cs}|$ is obtained by the fit to the differential decay rates
- $|V_{cs}|$ is extracted by taking the $f_+(0)$ predicted by LQCD as input

$D_{(s)}^{+/0} \rightarrow 0$	$Pl^+\nu_l$
-------------------------------	-------------

	$f_{+}^{D \to K}(0) V_{cs} $	Ref
$D^0 \to K^- e^+ \nu_e$	$0.717 \pm 0.003 \pm 0.004$	PRD92(2015)072012
$D^+ \to \overline{K}{}^0 e^+ \nu_e$	$0.705 \pm 0.004 \pm 0.011$	PRD96(2017)012002
$D^+ \rightarrow K_L^0 e^+ \nu_e$	$0.728 \pm 0.006 \pm 0.011$	PRD92(2015)112008
$D^0 \to K^- \mu^+ \nu_\mu$	$0.715 \pm 0.004 \pm 0.003$	PRL122(2019)011804

PRD108(2023)092003

1.0

 $f_{+}^{D_{s} \to \eta}(0) |V_{cs}| = 0.452 \pm 0.007 \pm 0.007$ $f_{+}^{D_{s} \to \eta'}(0) |V_{cs}| = 0.525 \pm 0.024 \pm 0.009$

> PRL132(2024)091802 $f_{+}^{D_{s} \to \eta}(0)|V_{cs}| = 0.451 \pm 0.010 \pm 0.008$ $f_{+}^{D_{s} \to \eta'}(0)|V_{cs}| = 0.506 \pm 0.037 \pm 0.011$

$|V_{cs}|$ determined via $D_{(s)}^{+/0} \rightarrow Pl^{+}\nu_{l}$

Combining measured $|V_{cs}|f_+(0)$ with $f_+(0)$ calculated by LQCD

CKMFitter HFLAV21	PTEP2022(2022 PRD107(2023)0	2)083C01 52008	0.97349±0 0.9701±0.0).00016)081	•		
Fermilab Lattice & MILC ETM(2+1+1)	PRD107(2023)0 PRD96(2017)05	94516 4514	0.9589±0.0 0.945±0.3	0107 8	•		
CLEO BESIII BESIII BESIII BESIII	PRD80(2015)03 PRD92(2015)11 PRD96(2017)01 PRD92(2015)07 PRL122(2019)0	2005, Κe ⁺ ν _e 2008, Κ ⁰ e ⁺ ν _e 2002, Κ ⁰ e ⁺ ν _e 2012, Κ ⁻ e ⁺ ν _e 11804, Κ ⁻ μ ⁺ ν _μ	0.9648±0.0 0.977±0.00 0.946±0.00 <mark>0.9624±0.0</mark> 0.9572±0.0	0090±0.078 08±0.016 05±0.016 0034±0.0062 0050±0.0057		<i>D</i> ^{0/+} → 0.8%	$K^{-/0}l^+\nu_l$
BESIII BESIII BESIII BESIII BESIII	PRL122(2019)1 PRD108(2023)0 PRL132(2024)0 PRL122(2019)1 PRD108(2023)0 PRL132(2024)0	21801, ηe ⁺ ν _e 92002, ηe ⁺ ν _e 91802, ημ ⁺ ν _μ 21801, η'e ⁺ ν _e 92002, η'e ⁺ ν _e 91802, η'μ ⁺ ν _μ	0.900±0.02 0.913±0.0 0.911±0.02 0.903±0.00 0.941±0.04 0.907±0.00	20±0.057 14±0.057 20±0.057 60±0.077 14±0.081 67±0.078		$D_s^+ \rightarrow$	η ^(′) l+ν _l
-2 -1.5	-1	-0.5 V _{cs}	0	0.5	1		13

$$\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_e$$

The differential decay rate in terms of four variables

$$\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{e}d\cos\theta_{p}d\chi} = \frac{G_{F}^{2}|V_{cs}|^{2}}{2(2\pi)^{4}} \cdot \frac{Pq^{2}}{24M_{\Lambda_{c}}^{2}} \times \left\{ \frac{3}{8}(1-\cos\theta_{e})^{2}|H_{\frac{1}{2}1}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{8}(1+\cos\theta_{e})^{2}|H_{-\frac{1}{2}-1}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p}) + \frac{3}{4}\sin^{2}\theta_{e}[|H_{\frac{1}{2}0}|^{2}(1+\alpha_{\Lambda}\cos\theta_{p}) + |H_{-\frac{1}{2}0}|^{2}(1-\alpha_{\Lambda}\cos\theta_{p})] + \frac{3}{2\sqrt{2}}\alpha_{\Lambda}\cos\chi\sin\theta_{e}\sin\theta_{p} \times \left[(1-\cos\theta_{e})H_{-\frac{1}{2}0}H_{\frac{1}{2}1} + (1+\cos\theta_{e})H_{\frac{1}{2}0}H_{-\frac{1}{2}-1}]\right\} (2)$$

+ The helicity amplitudes $H_{\lambda_A \lambda_W}$ are related to four form factors

$$\begin{aligned} H_{\frac{1}{2}1}^{V} &= \sqrt{2Q_{-}} f_{\perp}(q^{2}), \quad H_{\frac{1}{2}1}^{A} = \sqrt{2Q_{+}} g_{\perp}(q^{2}), \quad Q_{\pm} = (M_{\Lambda_{c}} \pm M_{\Lambda})^{2} - q^{2} \\ H_{\frac{1}{2}0}^{\Lambda_{c}} &= \sqrt{Q_{-}/q^{2}} f_{+}(q^{2}) (M_{\Lambda_{c}} + M_{\Lambda}), \quad H_{-\lambda_{\Lambda} - \lambda_{W}}^{V(A)} = H_{\lambda_{\Lambda} \lambda_{W}}^{V(A)} = H_{\lambda_{\Lambda} \lambda_{W}}^{V(A)} \\ H_{\frac{1}{2}0}^{A} &= \sqrt{Q_{+}/q^{2}} g_{+}(q^{2}) (M_{\Lambda_{c}} - M_{\Lambda}), \quad H_{-\lambda_{\Lambda} - \lambda_{W}}^{V(A)} = +(-)H_{\lambda_{\Lambda} \lambda_{W}}^{V(A)} \end{aligned}$$

$$14$$

$\Lambda_{\rm c}^+ \rightarrow \Lambda e^+ \nu_e$

- ★ Four FFs are parameterized $f(q^2) = \frac{a_0'}{1 q^2 / \left(m_{\text{pole}}^f\right)^2} \left[1 + \alpha_1^f \times z(q^2)\right]$
- A four-dimensional ML fit is performed with five independent free parameters

$$\alpha_1^{g_\perp}, \ \alpha_1^{f_\perp}, \ r_{f_+} = a_0^{f_+} / a_0^{g_\perp}, \ \ r_{f_\perp} = a_0^{f_\perp} / a_0^{g_\perp}, \ \ r_{g_+} = a_0^{g_+} / a_0^{g_\perp}$$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 M_{\Lambda_c}^2} \times \left[|H_{\frac{1}{2}1}|^2 + |H_{-\frac{1}{2}-1}|^2 + |H_{\frac{1}{2}0}|^2 + |H_{-\frac{1}{2}0}|^2 \right]$$

- $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11 \pm 0.07)\%$ $|V_{cs}| = 0.936 \pm 0.030$, by combining
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ and the

 q^2 -integrated rate predicted by LQCD

 $\Lambda_{\rm c}^+
ightarrow \Lambda \mu^+
u_{\mu}$ PRD108(2023)L031105

LFU test

BESIII	PRD108(2023)11200, μν	(5.29±0.11±0.09)× 10 ^{−3}
CLEO	PRD79(2009)052002, $\tau_e v$	5.32±0.47±0.22	HH
CLEO	PRD80(2009)112004, $\tau_{\rho}v$	5.50±0.54±0.24	HH
CLEO	PRD79(2009)052001, $\tau_{\pi}v$	6.47±0.80±0.22	HH
BaBar	PRD82(2010)091103 , $\tau_{e,\mu}v$	4.96±0.37±0.57	
Belle	JHEP09(2013)139, $\tau_{e,\mu,\pi} v$	5.70±0.21±0.31	
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, τ _π ν	5.21±0.25±0.17	H-+-H
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, $\tau_{\rho}v$	5.29±0.25±0.23	+++
BESIII 6.32 fb ⁻¹	PRL127(2021)171801 , $\tau_e v$	5.27±0.10±0.12	H = H
BESIII 7.33 fb ⁻¹	PRD108(2023)092014, τ _π ν	5.44±0.17±0.13	н • н
BESIII 7.33 fb ⁻¹	JHEP09(2023)124 , $\tau_{\mu}v$	5.37±0.17±0.15	HH
BESHI	τν	5.33±0.07±0.08	••• Combined
	-5	0	5

 $\begin{array}{c} 0\\ B(D_{s}^{+} \rightarrow \tau^{+}\nu) (\%) \end{array}$

 $R_{\tau/\mu} = \frac{\mathcal{B}[D_s^+ \to \tau^+ v]}{\mathcal{B}[D_s^+ \to \mu^+ v]} = 10.05 \pm 0.35$, consistent with the SM prediction 9.75

LFU test in semileptonic decays

✤ $\mathcal{R}_{\mu/e}$ obtained by measuring BFs

	Ref	$\mathcal{R}_{\mu/e}$	SM prediction
$D^+ o \eta l^+ u_l$	PRL124(2020)231801	0.91 ± 0.13	0.97 - 1.00
$D^+ ightarrow \omega l^+ u_l$	PRD101(2020)072005	1.05 ± 0.14	0.93 - 0.99
$D^+ ightarrow ho l^+ u_l$	PRD104(2021)L091103	0.90 ± 0.11	0.93 – 0.96

Summary

- ← Thanks to the largest data samples collected at $D\overline{D}/D_s D_s^*/\Lambda_c^+\overline{\Lambda_c^-}$ mass threshold, purely and semi leptonic decays of charmed hadrons have been studied in a clean environment.
- Precise measurement of the CKM matrix element at 1% precision level
- No evidence of LFU violation found at 1.5% precision level
- BESIII just finished taking the data @3.773GeV, and collected 20fb^{-1} of $D\overline{D}$ sample
 - Combined study of $D^{0/+} \rightarrow K^{-/0}e^+\nu_e$ and $D^{0/+} \rightarrow K^{-/0}\mu^+\nu_{\mu}$ for a high precise measurement of $|V_{cs}|$
 - Higher precise LFU test

backup

$\Lambda_{\rm c}^+ \rightarrow \Lambda e^+ \nu_e$

+ Form factors $f_{\perp,+}(q^2)$ and $g_{\perp,+}(q^2)$ are defined following a z-expansion of the parameters

$$f(q^2) = \frac{a_0^f}{1 - q^2 / \left(m_{\text{pole}}^f\right)^2} \left[1 + \alpha_1^f \times z(q^2)\right]$$

where m_{pole}^{f} is the pole mass; a_{0}^{f} , α_{1}^{f} are free param-

eters;
$$z(q^2) = \frac{(\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0})}{(\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0})}$$
 with $t_0 = q_{\max}^2 = (m_{\max} - \frac{1}{2})^2$

 $(m_{\Lambda_c} - m_{\Lambda})^2$, $t_+ = (m_D + m_K)^2$, $m_D = 1.870 \text{ GeV}/c^2$ and $m_K = 0.494 \text{ GeV}/c^2$. The pole masses are $m_{\text{pole}}^{f_+, f_\perp} = 2.112 \text{ GeV}/c^2$ and $m_{\text{pole}}^{g_+, g_\perp} = 2.460 \text{ GeV}/c^2$ [14].

Five independent free parameters in the ML fit for the differential decay amplitude :

+ The differential decay rate has to be normalized. Only the ratios of a_0^f are determined in the maximum likelihood fit:

$$r_{f_+} = a_0^{f_+} / a_0^{g_\perp}$$
 $r_{f_\perp} = a_0^{f_\perp} / a_0^{g_\perp}$ $r_{g_+} = a_0^{g_+} / a_0^{g_\perp}$

*a*₁^{g_⊥} ≡ *a*₁^{g₊} and *a*₁<sup>f_⊥</sub> ≡ *a*₁^{f₊}

 i the kinematic dependences of *g_⊥(q²)* and *g₊(q²) f_⊥(q²)* and *f₊(q²)* as a function of *q²* are similar according to LQCD.

</sup>

$\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_e$

+ A four-dimensional ML fit is performed as a function of q^2 , $\cos \theta_e$, $\cos \theta_p$, and χ

Parameters	$\alpha_1^{g_\perp}$	$\alpha_1^{f_\perp}$	r_{f_+}	$r_{f\perp}$	r_{g_+}
Values	$1.43 \pm 2.09 \pm 0.16$	$-8.15 \pm 1.58 \pm 0.05$	$1.75 \pm 0.32 \pm 0.01$	$3.62 \pm 0.65 \pm 0.02$	$1.13 \pm 0.13 \pm 0.01$
Coefficients	$\alpha_1^{g_\perp}$	$\alpha_1^{f_\perp}$	r_{f_+}	$r_{f\perp}$	r_{g_+}
$a_0^{g_\perp}$	-0.64	0.60	-0.66	-0.83	-0.40
$\alpha_1^{g_\perp}$		-0.63	0.62	0.53	-0.33
$\alpha_1^{f_\perp}$			-0.79	-0.67	-0.07
r_{f_+}				0.57	-0.09
$r_{f\perp}$					0.39

$$\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_e$$

$$r_{f_+} = a_0^{f_+} / a_0^{g_\perp}, r_{f_\perp} = a_0^{f_\perp} / a_0^{g_\perp}, r_{g_+} = a_0^{g_+} / a_0^{g_\perp}.$$

★ In order to determine the parameter of $a_0^{g_\perp}$ (the FF at q2 being 0), the differential decay rate is related to $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ and the lifetime of lambda_c by

$$a_0^{g_\perp} = 0.54 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}}$$

FIG. 3. Comparison of form factors with LQCD calculations. The bands show the total uncertainties.

 $\Lambda_c \to \Lambda \ell^+ \nu_\ell$ form factors and decay rates from lattice QCD with physical quark masses 23

Extraction of $|V_{cs}|$ via $D_{(s)}^{+/0} \rightarrow Pl^+\nu_l$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{24\pi^3} \frac{(q^2 - m_l^2)^2 |\overrightarrow{p}|}{q^4 m_{D_{(s)}^{+/0}}^2} [(1 + \frac{m_l^2}{2q^2}) m_{D_{(s)}^{+/0}}^2 |\overrightarrow{p}|^2 f_+(q^2)|^2 + \frac{3m_l^2}{8q^2} (m_{D_{(s)}^{+/0}}^2 - m_P^2)^2 |f_0(q^2)|^2]$$

 $f_{+(0)}$ is the vector (scalar) FF. Theoretically , $f_{+}(0)$ and $f_{0}(0)$ have to be equal

More theoretical details in PRD 101, 013004 (2020)

 $D_s^+ \to \eta^{(\prime)} e^+ \nu_e$

 $D_s^+ \rightarrow \eta^{(\prime)} \mu^+ \nu_{\mu}$

- + The yellow bands are the $\pm 1\sigma$ limits of fitted parameters
- Curves in different colors are from various theoretical calculations

 $D_{s}^{+} \rightarrow \tau^{+}(\mu^{+}\nu\nu)\nu$

BKG I: incorrectly tagged D_s^- BKG II : correctly tagged D_s^- and $D_s^+ \to K_L^0 \mu^+ \nu_\mu$ BKG III : correctly tagged D_s^- and $D_s^+ \to \text{non-}\tau^+\nu$ expect for $D_s^+ \to K_L^0 \mu^+ \nu_\mu$

To minimize the effect of the imperfect signal shape, we adopt an extrapolation technique. The extrapolation factor, defined as the ratio of the number of events between the signal region and the background region, is determined by MC sample.

A bin maximum likelihood fit is performed on the events with $E_{extra \gamma}^{tot} > 0.6$ GeV, where the signal is negligible, and the sizes and shapes of BKGI and BKGII, and the shape of BKGIII are fixed.

The signal DT yield is obtained by subtracting bkgs in the signal region $E_{extra \gamma}^{tot} < 0.4 \text{GeV}$

 $D_s^+ \to \overline{\tau^+(\pi^+ v)}\overline{v}$

Aside from the M2 , the search sensitivity is further improved by incorporating additional kinematic and topological information from the selected events using a multivariate analysis technique known as BDT 28

Branching fractions of semileptonic D and D_s decays

from the covariant light-front quark model

	D -	$\rightarrow X \mu \nu$			$D \rightarrow$	Xev	
Channel	D ightarrow ho	$D ightarrow \omega$	$D \rightarrow \eta$	Channel	$D \to \rho$	$D\to \omega$	$D \to \eta$
Theory (10^{-2})	0.22 ± 0.02	0.20 ± 0.02	0.12 ± 0.01	Theory (10^{-2})	0.23 ± 0.02	0.21 ± 0.02	0.12 ± 0.01

Investigating the nature of light scalar mesons with semileptonic decays of D mesons

Mode	l = e	$l = \mu$
$\rho(770)^{0}$	2.54×10^{-3}	2.37×10^{-3}
$\omega(782)$	2.46×10^{-3}	2.29×10^{-3}

Semileptonic $D_{(s)}$ -meson decays in the light of recent data

			~	. ,
Channel	Unit	Present	Other	Reference
$D^+ \to \rho^0 e^+ \nu_e$	10^{-3}	2.09	2.54	$\chi \text{UA} [38]$
			$2.217^{+0.534}_{-0.376} \pm 0.01$	5 LCSR [<u>25</u>]
			2.5	$HM\chi T$ [35]
$D^+ o ho^0 \mu^+ u_\mu$	10^{-3}	2.01	2.37	$\chi UA [38]$
$D^+ \to \omega e^+ \nu_e$	10^{-3}	1.85	2.46	$\chi UA [38]$
			2.5	$HM\chi T$ [35]
			2.1 ± 0.2	LFQM <u>[33]</u>
$D^+ \to \omega \mu^+ \nu_\mu$	10^{-3}	1.78	2.29	$\chi UA [38]$
-			2.0 ± 0.2	LFQM [<u>33</u>]
$D^+ \to \eta e^+ \nu_e$	10^{-4}	9.37	12 ± 1	LFQM [<u>33</u>]
			24.5 ± 5.26	LCSR [22]
			14.24 ± 10.98	LCSR [24]
$D^+ \to \eta \mu^+ \nu_\mu$	10^{-4}	9.12	12 ± 1	LFQM [<u>33</u>]