(Progress-in) Unitarity triangles and CP violation Amarjit Soni (BNL-HET)

EW Moriond 2024 03/28/24

Valuable inputs from: Buras, Cirigliano, D’Ambrosio, Isidori, Martinelli, Pich.......

Citations Incomplete; apologies

Outline

- Motivation: It is exceedingly important to determine UTs as precisely as possible....
- Progress in lattice eps'....implications for both UTs though crucial for KUT
- K UT
- B UT: esp gamma
- Summary

Main: (Old) and new points

- Naturalness assumed throughout:
- eps': Periodic Boundary Condition appear promising
- [with RBC-UKQCD]
- Improving LD contribution to K+ => pi+ nu nu [with Enrico Lunghi]
- KO=> piO I+ I-: should help significantly in constraining the extremely challenging gold plated mode: KL => piO nu nu. [with Stefan Schacht]
Reg gamma : [ADS revisit] path involving one pi0 stressed esp. promising for Belle-II..May be also for LHCb.
iviain points ior 4U+years on iactice eps' effort
- Calculational framework for K=> pi pi \& eps'
- Obstacles aglore and major break-throughs
- Lattice chiral symmetry even fora finite npm-vanishing lattice spacing!: DWQ
- Direct K=> pi pi w/o ChPT using finite vo corrglation functions
- Non-perurbative renormalization marimel tachryda... NPR
- $1^{\text {st }}$ [prot-type] demonstration.... 2015 FPBC
- Difficulty therein : strong l=0 pi pi phase
- $1^{\text {st }}$ complete result with GPBC, 2020 PBC, MRSMAKI Tomii
- $2^{\text {nd }}$ independent method (PBC) developed, 2023
- Lattice applications to K and B-UTs

Recapitulate: Many fascinating aspects of kaons=> led to several profoundly important discoveries in Particle Physics
I: $\Delta I=\|_{2} A_{\text {LE }} / P$ pUZzLE

$$
\begin{aligned}
& K^{+} \frac{\frac{\zeta}{6}}{n} \quad \frac{3}{d} k^{0}<k_{K_{2}}^{k_{5}} \quad I=1 / 2 \\
& \rightarrow 2 \pi\left(I=2, \Delta[=3 / 2) \quad \rightarrow 2 \pi\left(I=0 ; 2 ; \Delta I=1 / 23^{3} k\right)\right.
\end{aligned}
$$

III Indiect CPrioldion
BNL 1964 Fith, $C_{\text {mim }}$, Chisithenent Turkery

$$
\begin{array}{ll}
\frac{A\left(K_{L} \rightarrow \pi \pi\right)}{A\left(k_{s} \rightarrow \pi \pi\right)} & \neq 0! \\
& \sim 2.23 \times 10^{-3} \quad \begin{array}{c}
\text { NobEL PRRzE } \\
\text { Cnmint Fitch }
\end{array} \\
&
\end{array}
$$

$\left.6^{0}\right\}\left\{\frac{k^{0}}{0}\right.$ CPV instate mixing, $\Delta S=2 \mathrm{He}$ ff

TV: $\varepsilon^{\prime} / \varepsilon$: Direct civ Exp FRI MENTAL ROUTE
ROUTE

$$
\begin{aligned}
& \epsilon=\frac{1}{3}\left[2 \eta_{t}+\eta_{x}\right) \\
& \Rightarrow 10^{-6}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Use lattice to calculate } 6 \text { quantities: } \\
\text { ReAd, } \operatorname{ReA} 2 \text { known from ext; } \delta 0, \delta 2 \text { via }
\end{array} \\
& \text { ChaT etc..So very good checks; } \\
& \omega \equiv \operatorname{Re} A_{2} / R_{e} A_{0} \\
& \text { 「0.045 } \\
& |\epsilon|=2.228(11) \times 10^{-3},
\end{aligned}
$$

Weak Transition Matrix Elements from Finite-Volume Correlation Functions ${ }^{\star}$

$$
\begin{gathered}
\Delta \mathrm{M}_{\mathrm{s}} / \Delta \mathrm{M}_{\mathrm{c}} \\
\varepsilon_{\mathrm{K}}+\mid \mathrm{V}_{\mathrm{cb}} \\
\sin 2 \beta \\
\left|\mathrm{~V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right| \\
\varepsilon
\end{gathered}
$$

$$
\begin{aligned}
& \rightarrow \text { amen ne duce Tin } \\
& \text { Aim to }
\end{aligned}
$$

in Ms

FIG. 12: The horizontal-band constraint on the CKM matrix unitarity triangle in the $\bar{\rho}-\bar{\eta}$ plane obtained from our calculation of ε^{\prime}, along with constraints obtained from other inputs $[6,70,71]$. The error bands represent the statistical and systematic errors combined in quadrature. Note that the band labeled ε^{\prime} is historically (e.g. in Ref. [72]) labeled as $\varepsilon^{\prime} / \varepsilon$, where ε is taken from experiment.

Motivations for independent calculation of eps' with PBC

- For the first time RBC-UKQCD calculated eps' from $1^{\text {st }}$ principles with a modest accuracy of $\sim 35 \%$. Because of naturalness reasoning, continuing to search for a BSM-CP odd phase with eps' is important and therefore continuing to calculate eps' with better accuracy is highly desirable.
- With GPBC configs have to be specially created making it very expensive to use multiple lattice spacings for taking a continuum limit.
- With PBC no need for special configs and in fact two different lattice spacings with ~physical pions already exist, so taking the continuum limit seems a lot more viable
- Given the importance of the result on eps' and the complexity of the calculation, an independent calculation of $K=>2$ pion and epsilon' with possibly using PBC seems highly desirable
- With GPBC a lattice calculation of corrections on eps' due to EM+isospin appears very difficult, with PBC this may be less problematic
- Driving force behind current RBC/UKQCD-PBC effort is Masaaki Tomii
- Ensembles already generated for periodic BC
- $24^{3} \times 64, \mathrm{a}^{-1}=1.0 \mathrm{GeV}$: measurements w 258 confs done \rightarrow soon 440 confs
- $32^{3} \times 64, \mathrm{a}^{-1}=1.4 \mathrm{GeV}$: measurements w 107 confs done $\rightarrow \sim 250$ confs in a year
- $48^{3} \times 96, \mathrm{a}^{-1}=1.7 \mathrm{GeV} \& 64^{3} \times 128, \mathrm{a}^{-1}=2.4 \mathrm{GeV}$: future work

Precision performance

- Good precision performance of PBC (ME with excited-state $\pi \pi$) compared to G-parity BC calculation (ME with ground-state $\pi \pi$)

anyes:2306006781 cyor on atry $258 \mathrm{~g} \cdot \mathrm{C}$			Mascakit etal
Quantity	This work	Experiment	
$\operatorname{Re}\left(A_{2}\right)$	$1.74(15)(48) \times 10^{-8} \mathrm{GeV}$	$1.479(4) \times 10^{-8} \mathrm{GeV}$	
$\operatorname{Im}\left(A_{2}\right)$	$-5.91(13)(1.75) \times 10^{-13} \mathrm{GeV}$...	
$\operatorname{Re}\left(A_{0}\right)$	$3.13(69)(95) \times 10^{-7} \mathrm{GeV}$	$3.3201(18) \times 10^{-7} \mathrm{GeV}$	
$\operatorname{Im}\left(A_{0}\right)$	$-9.3(1.5)(2.8) \times 10^{-11} \mathrm{GeV}$	\ldots	Explurataky
$\operatorname{Re}\left(A_{0}\right) / \operatorname{Re}\left(A_{2}\right)$	18.0(4.4)(7.4)	22.45(6)	
$\omega=\operatorname{Re}\left(A_{2}\right) / \operatorname{Re}\left(A_{0}\right)$	0.056(14)(23)	$0.04454(12)$	
$\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)$	$31.8(6.3)(11.8)(5.0) \times 10^{-4}$	$16.6(2.3) \times 10^{-4}$	

TABLE I. A summary of the primary results of this work shown in the middle column. The values in parentheses give the statistical and systematic errors, respectively. For the last entry the systematic error associated with electromagnetic and isospin breaking effects is listed separately as the third error, which we inherit from the estimation in Ref. [2] based on the large- N_{c} expansion of QCD and ChPT [49]. The corresponding experimental values are shown in the right column if applicable.

\rightarrow SOMmLER Cle JHEP Key points (so far) on our PBC effort

- Demonstrated that with GEVPmatrix elements of ground and $1^{\text {st }}$ two excited states can be extracted quite well
- Good quality of signals with PBC obtained rather efficiently
- On our way to get results from 2 lattice spacings,
- Optimistic that we can get epsilon' in the continuum limit (for the iso-symmetric) case in
the next few months...That should appreciably reduce one of the major source of systematic errors.
- PBC and other methods being studied to deal with EM+IB

$$
\begin{aligned}
& \pm=0,2 \text { stang pha iss alacaly donte }
\end{aligned}
$$

K-UT..MANY REASONS TO GO FOR IT E.G. LONG-STANDING ISSUES INCLUSIVE VERSUS EXCLUSIVE TENSION IN VXB

K-UT: A dream for some

Blucher, Winstein and Yamanaka '09; see also Buras

- Click to add t

[^0]

- LHCb: Ks
- JPARC:KL
- Pheno: Isidori et al...;D’Ambrosio et al;Schact + AS (WIP)
- Lattice: RBC+UKQCD many papers on closely related rare K-decays

$$
\left\{\begin{array}{l}
1910 \cdot 10644 \\
1806.11520 \\
1701.08258
\end{array}\right.
$$

With Enflco IUNGI TRy Rearce LD mantainty W ip

Figure 1. Long distance contributions to $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ at the quark level.

$$
B\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)=(8.39 \pm 0.30) \times 10^{-11}\left[\frac{\left|V_{c b}\right|}{40.7 \times 10^{-3}}\right]^{2.8}\left[\frac{\gamma}{73.2^{\circ}}\right]^{0.74}
$$

In the above formula, the explicit numerical uncertainty is the theoretical one originating from QCD and electroweak uncertainties, which amounts to 3.6%. Taking the latest values (28) for $\left|V_{c b}\right|_{\text {avg }}=(41.0 \pm 1.4) \times 10^{-3}$ and $\gamma=\left(72.1_{-4.5}^{+4.1}\right)^{\circ}$, one finds the following:

$$
B\left(K^{+} \rightarrow \pi^{+} v \bar{v}\right)_{\mathrm{SM}}=(8.5 \pm 1.0) \times 10^{-11} .
$$

The predictions are currently dominated by the parametric uncertainty that will plausibly be reduced by new measurements of $\left|V_{c b}\right|$ and γ by LHCb and Belle II. cannot be detected. A long series of decay-at-rest searches for $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ have culminated with the final results of the BNL E787/E949 experiments, which found the following (50):

$$
B\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)_{\mathrm{E} 787 / \mathrm{E} 949}=\left(17.3_{-10.5}^{+11.5}\right) \times 10^{-11} .
$$

From these analyses, the best upper limit, at 90% confidence level (CL), has been obtained:

$$
B\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)_{\mathrm{NA} 62(2016-2017)} \leq 17.8 \times 10^{-11} .
$$

The 2016-2017 data also allow one to set a 68% CL mean value for the branching ratio:

$$
B\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)_{\text {NA62(2016-2017) }}=\left(4.8_{-4.8}^{+7.2}\right) \times 10^{-11}
$$

CECCUCCI Rev.

Experimental upper limit at 90% confidence level \$ Experimental measurement Theoretical prediction

BLETRTT 1949
 $2 \angle 1$ TSNGEPG
 pamprsmy

Figure 4
PR1ZE
the NA62 Collaboration reported the following:

$$
B\left(K^{+} \rightarrow \pi^{+} \nu \bar{v}\right)_{\mathrm{NA} 62(2016-2018)}=\left(11.0_{-3.5}^{+4.0} \pm 0.3_{\mathrm{syst}}\right) \times 10^{-11},
$$

$$
\begin{aligned}
& \text { LITEENBERG PR } 1989 \\
& \text { GOLD PLATED KOTO PRC }
\end{aligned}
$$

BUT EXPERIMENTALLY extremely challenging

$$
B\left(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{v}\right)=(3.36 \pm 0.05) \times 10^{-11}\left[\frac{\left|V_{u b}\right|}{3.88 \times 10^{-3}}\right]^{2}\left[\frac{\left|V_{c b}\right|}{40.7 \times 10^{-3}}\right]^{2}\left[\frac{\sin \gamma}{\sin 73.2^{\circ}}\right]^{2}
$$

which, taking the latest values (28) for $\left|V_{c b}\right|_{\text {avg }}=(41.0 \pm 1.4) \times 10^{-3},\left|V_{u b}\right|_{\text {avg }}=(3.82 \pm 0.24) \times$ 10^{-3}, and $\gamma=\left(72.1_{-4.5}^{+4.1}\right)^{\circ}$, leads to the following numerical prediction:

$$
B\left(K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(3.2 \pm 0.6) \times 10^{-11} .
$$

While the experimental situation for $K^{+} \rightarrow \pi^{+} \nu \bar{v}$ shows that we have two independent experimental techniques that can reach SM sensitivities, with the NA62 experiment on the way to making a precise measurement, the situation for the neutral mode is more complex. Progress has been hampered by the lack of a clean experimental signature because no redundancy is available once the π^{0} mass is used as a constraint to reconstruct the decay vertex. The KOTO experiment at J-PARC builds on the experience of the predecessor experiment E391a (67), which was performed at KEK. It is based on the technique of letting a well-collimated "pencil" beam enter the decay region surrounded by high-performance photon vetoes. By vetoing extra photons and applying a transverse momentum cut ($150 \mathrm{MeV} / c$) to eliminate residual $\Lambda \rightarrow n \pi^{0}$ decays, KOTO is expected to reach SM sensitivities by the mid-2020s. The KOTO experiment has published the best upper limit (68):
\sim about $\begin{aligned} & B\left(K_{L}^{0} \rightarrow \pi^{0} v_{\bar{v}} \bar{K}_{K \text { ото }}<3.0 \times 10^{-9}(90 \% \mathrm{CL}) .\right.\end{aligned}$

Figure 5. Top panel: current status of the Kaon Unitarity Triangle. Bottom panel: impact of improved calculations of $\operatorname{Im} A_{0,2}$ from lattice QCD and of expected measurements of charged (NA62) and neutral (KOTO) $K \rightarrow \pi \nu \bar{\nu}$ branching ratios on the Kaon Unitarity Triangle. The two dotted contours are the 3σ and 4σ KUT contours, respectively.

UT ANGLE GAMMA $\equiv \phi_{3} \equiv-\arg \left[-\frac{\left.V_{a d} V_{u} h\right]}{V_{c \alpha} V_{c b}^{*}}\right]$

Dalitz analysis: Giri,Grossman, Soffer \& Zupan PRD ‘03; Atwood, Dunietz + AS, PRD’01

ADS also PRL'97

- Both emphasize model independent (diff approaches) analysis via the Dalitz plot
- Following the then existing experimental data from F 637 Collab It should be realized that three body states $K^{+} \rho^{-}, K_{s} \rho^{0^{\prime}}$? analysis $\mathrm{u}_{\mathrm{and}} K^{*+} \pi^{-}$can all lead to the common final state (though it $\mathrm{d}\left(K_{s} \pi^{+} \pi^{-}\right.$. If one examines the distribution in phase space,

[^1]
VERY HOPEFUL THAT BELLE-II (MAY BE EVEN LHCB?) WILL BE ABLE TO HANDLE FS WITH 1 PIO

Optimised observables (Atwood+AS, PRD 45,'92); see esp sec III

Figure 77.3: World average of $\gamma \equiv \phi_{3}$, as well as contributions from individual modes, in terms of $1-\mathrm{CL}$.

Combined analysis

- $\mathrm{B}+, \mathrm{BO}, \mathrm{Bs}$ are all used to get the World Average:

$$
\phi_{3}=\gamma=65.9+3.3 \text { stat enara dominimos }
$$

- In panticalar higau arter cosnections ase elyccedinglo smple a will ceromin so fy a very long lom $t a$ come [BRDD + zution $1 / 4$]

Summary + Outlook

- After decades of development and effort, using DWQ, and GPBC in 2020 completed the $1^{\text {st }}$ calculation of eps' with a modest accuracy of 35% at a singitem $/ /$ lattice spacing $\sim 1.38 \mathrm{GeV}$; resulting eps' is compatible with experiment within 1_{C} te sigma [also attained qualitative and quantitative understanding of the Delta $\mathrm{I}=1 / 2$ Rule]
- We are well on our way to get eps' along withscattering phases again, in a completely independent set up using PBC. Driving force for this effort is MASAAKI TOMII. With this method we are hopeful to get eps' for the $1^{\text {st }}$ time in the continuum limit
- Showed how using eps' + eps + $\mathrm{Br}(\mathrm{K}+=>\mathrm{pi}+\mathrm{nu} \mathrm{nu})$ can construct the $\mathrm{K}-\mathrm{UT}$
- Also $K 0=>$ piO $\mathrm{mu}+\mathrm{mu}$ - input from LHCb, JPARC, pheno and lattice should provide important constraints for the gold plated KL=>piO nu nu mode being pursued by the KOTO expt @ JPARC
- UT gamma: DO Dalitz decays with 1 piO in FSBelle-II, LHCb
- UT gamma: ADS PRD method should also be used => v likely get improve results
- It is exceedingly important to determine/constrain UTs as precisely as possible as it is highly unlikely to be just a triangle

EXTRA'S

UIssectıng (the mucn easier) $\Delta I=3 /<$ [I=く $\pi \pi$] Amp on the lattice: 2 contributing topologies only

FIG. 3: Contractions (1), -(2) and (1) + (2) as functions of t from the simulation at threshold with $m_{\pi} \simeq 330 \mathrm{MeV}$ and $\Delta=20$.

Ensemble USED fa Ao

- $32^{3} \times 64$ Mobius DWF ensemble with IDSDR gauge action at $\beta=1.75$. Coarse lattice spacing ($\left.a^{-1}=1.378(7) \mathrm{GeV}\right)$ but large, $(4.6 \mathrm{fm})^{3}$ box.
- Using Mobius params $(\mathrm{b}+\mathrm{c})=32 / 12$ and $\mathrm{L}=12$ obtain same explicit $\chi \mathrm{SB}$ as the $\mathrm{L}_{\mathrm{s}}=32$ Shamir DWF + IDSDR ens. used for $\Delta \mathrm{I}=3 / 2$ but at reduced cost.
- Utilized USQCD 512-node BG/Q machine at BNL, the DOE "Mira" BG/Q

$32^{3} \times 64 \times 12$

$m \times 5=0018$
$m_{s}=.045$ machines at ANL and the STFC BG/Q "DiRAC" machines at Edinburgh,UK.

- Performed 216 independent measurements (4 MDTU sep.).
- Cost is $\sim 1 \mathrm{BG} / \mathrm{Q}$ rack-dayper complete measurement (4 configs generated +1 set of contractions).
- G-parity BCs in 3 spatial directions results in close matching of kaon and $\pi \pi$ energies:

TABLE XXVI: Relative systematic errors on Re $\left(A_{0}\right)$ and $\operatorname{Im}\left(A_{0}\right)$.

Expt

TABLE I: A summary of the primary results of this work. The values in parentheses give the
statistical and systematic errors, respectively. For the last entry the systematic error associated with electromagnetism and isospin breaking is listed separately as a third error contribution.

IB leased on cialelianoctal JHED 2020

> Numenicl results til le Results for Superseded by the higher tot insp a0.0 sing RevA) and RevA) from cole como mprigimeritm(A and the phase shifts movies $\left.{ }_{0}\right)$
> RBC-UKQCD PRL'15 EDITORS CHOICE

Bearing in mind the largish errors in this first calculation, we interpret that our result are consistent with experiment at ~2 σ level
or

$$
w=\frac{R_{e} A_{2}}{R_{e} A_{0}} \alpha 0.045
$$ enhancement er

Why EWK cannot be neglected: 3 Reasons

- Despite $\alpha_{\text {QED,EWK }} \ll \alpha_{0 C D}$, EWK contributions are extremely important and CANNOT be neglected:
- EWK are $(8,8)$ and QCD are $(8,1)$, and $(8,8)$ go to constant whereas (8,1) vanish in the chiral limit
- EWK, i.e. those due Z exch have Wilson coeff that go as $\mathrm{mt}^{2} / \mathrm{mW}^{2}$

EWP

ICHEP2014: Similar results from UTFIT (D. Derkach) as well from G. Eigen et al. NP
Phase
0^{0}

Current O(few\%) tests are far away from $O(0.1 \%)$ asymmetry in KL=>pi pi

A lesson from history (I)

"A special search at Dubna was carried out by E. Okonov and his group. They did not find a single $K_{L} \rightarrow \pi^{+} \pi^{-}$event among 600 decays into charged particles [12] (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the Lab. The group was unlucky."
-Lev Okun, "The Vacuum as Seen from Moscow"

1964: $\mathrm{BF}=2 \times 10^{-3}$
A failure of imagination ? Lack of patience ?
Had KL=>pi pi been abandoned, history of Particle Physics would have been significantly different!

XTRAS

A.S. in Proceedings of Latitice 855 (FSU).1.15 Latice meeting ever atended

The matrix elements of sone penfuin operators control in the standard model another CP violation parameter, namely $\varepsilon^{\prime} / 6$.

Indeed efforts are now undervay for an improved neasurenent of this
important paraneter. ${ }^{101}$ In the absence of a reliable calculation for these paraneters, the experinental neasurenents, often achieved at
tremendous effort, cannot be used effectively for constraining the
theory, It is therefore clearly important to see how far one can go
with IC techniques in alleviating this old but very difficult

```
With C. Bernard [UCLA]



\section*{Exploring excited-state signals}
- \(\pi \pi\) energies in PBC
- \(\approx 2 m_{\pi}\) for ground st.
- Need excited-state signals to extract kinematics of \(K \rightarrow \boldsymbol{\pi} \boldsymbol{\pi}\)

Picture in non-interacting 2-pion system with rest frame
\begin{tabular}{|c|c|c|}
\hline & \(\vec{p}\) & \(E=2 \sqrt{|\vec{p}|^{2}+m_{\pi}^{2}}\) \\
\hline ground st. & \((0,0,0)\) & \(2 m_{\pi}\) \\
\hline 1st excited st. & \(2 \pi / L \times(1,0,0)\) & \multirow{2}{*}{ could be \(\approx m_{K}\)} \\
\hline 2nd excited st. & \(2 \pi / L \times(1,1,0)\) & \\
\hline
\end{tabular}
- Variational method useful [Lüscher, 1990]
- Solving GEVP (Generalized Eigenvalue Problem)
\[
\mathrm{C}(\mathrm{t}) \mathrm{v}_{\mathrm{n}}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\lambda_{\mathrm{n}}\left(\mathrm{t}, \mathrm{t}_{0}\right) \mathrm{C}\left(\mathrm{t}_{0}\right) \mathrm{v}_{\mathrm{n}}\left(\mathrm{t}, \mathrm{t}_{0}\right) \quad\left\{\begin{array}{c}
\mathrm{C}(\mathrm{t}): \mathrm{N} \times \mathrm{N} \text { correlator matrix } \\
\mathrm{C}_{\mathrm{ab}}(\mathrm{t})=\left\langle\mathrm{O}_{\mathrm{a}}(\mathrm{t}) \mathrm{O}_{\mathrm{b}}(0)^{\dagger}\right\rangle
\end{array}\right.
\]
- \(\mathrm{O}_{\mathrm{n}}^{\prime}=\sum_{\mathrm{a}} \mathrm{v}_{\mathrm{n}, \mathrm{a}}^{*} \mathrm{O}_{\mathrm{a}}\) couples with only n -th, \(\mathrm{N}+1\)-th \& higher states
- \(\lambda_{n}\left(\mathrm{t}, \mathrm{t}_{0}\right)=\mathrm{e}^{-\mathrm{E}_{\mathrm{n}}\left(\mathrm{t}-\mathrm{t}_{0}\right)}\)
- We employ 5 independent \(п п\) operators
- \(\mathrm{O}_{\mathrm{a}} \in \Pi_{\mathrm{p}=(0,0,0)} \Pi_{\mathrm{p}=(0,0,0)}, \Pi_{\mathrm{p}=(0,0,1)} \Pi_{\mathrm{p}=(0,0,-1),}, \Pi_{\mathrm{p}=(0,1,1)} \Pi_{\mathrm{p}=(0,-1,-1)}, \Pi_{\mathrm{p}=(1,1,1)} \Pi_{\mathrm{p}=(-1,-1,-1)} \& \sigma\)

\section*{Indirect CP violation in KL=>3 pi}

The basic expression for \(\varepsilon\) is
\[
\begin{align*}
\varepsilon= & e^{i \phi_{\varepsilon}} \frac{G_{F}^{2} m_{W}^{2} f_{K}^{2} m_{K}}{12 \sqrt{2} \pi^{2} \Delta m_{K}^{\exp }} \hat{B}_{K} \kappa_{\varepsilon} \operatorname{Im}[ \\
& \eta_{1} S_{0}\left(x_{c}\right)\left(V_{c s} V_{c d}^{*}\right)^{2}+\eta_{2} S_{0}\left(x_{t}\right)\left(V_{t s} V_{t d}^{*}\right)^{2} \\
& \left.+2 \eta_{3} S_{0}\left(x_{c}, x_{t}\right) V_{c s} V_{c d}^{*} V_{t s} V_{t d}^{*}\right], \tag{41}
\end{align*}
\]
where the numerical inputs we use are summarized in Table 2. The quantity \(\kappa_{\varepsilon}\) summarizes the impact of long distance effects and can be extracted from the knowledge of Im \(A_{0}\) and from an estimate of the long distance contributions to \(\Delta m_{K}\). Following Ref. [76], we have:
\(\kappa_{\varepsilon}=\sqrt{2} \sin \left(\phi_{\varepsilon}\right)\left(1+\frac{\rho}{\sqrt{2}\left|\varepsilon_{\mathrm{exp}}\right|} \frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right)\)
where \(\rho=0.6 \pm 0.3\). Using the most recent RBC determination of \(\operatorname{Im}\left(A_{0}\right)\) and \(\phi_{\varepsilon}\) of Eq. (32), we obtain \(\kappa_{\varepsilon}=0.963 \pm 0.014\) (see also the analysis presented in Ref. [77]).

(a) typel


ALL
ARE INCLIXDED!
(c) type 3

(b) type 2

(d) type 4

\section*{Effective matrix elements ( \(\Delta I=1 / 2\) )}
- Plateau appears
- Example of correlated fit result with
\(t_{o p}-t_{K} \geq 3\) \&\& \(t_{\pi n}-t_{o p} \geq 3\) (colored filled data points)




Back to the cone stony....Conpanting XSymm te latio
A chance (crucial) meeting: Yigal Shamir visits me in Haifa \(\sim 94\) summer
- For K=> pi pi project, way to overcome the fine-tuning problem of Wilson Fermions is to use a new formulation of
fermions on the lattice=> DOMAIN WALL FERMIONS [computationally much harder but are continuum -like possessing chiral symmetry]
- Furman + Shamir: hep-lat/9405004
- See also Yigal Shamir, hep-lat 9303005 WAY FORWARD: Adopt DWF for \(K \rightarrow \pi \pi d E^{\prime}\) ? \(95-96 ?\)
- As a result, the large accidental cancellations significantly enhances sensitivity of \(\varepsilon^{\prime}\) to NP

\section*{More demands on the calculation}
- ~ The 1995 discovery of the huge top mass accentuated the cancellation of \(\mathrm{I}=0\) and \(\mathrm{I}=2\) contributions to \(\varepsilon^{\prime}\) significantly, putting additional demands on the calculation but also enhancingthepotential for discolvery of

We use
\[
\frac{\varepsilon^{\prime}}{\varepsilon}=\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{lm}\left(A_{2}\right)}{\operatorname{Re}\left(A_{2}\right)}-\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right] \rightarrow \begin{gathered}
\text { isospin symm } \\
\text { formea. } \\
\text { or } 17+9.1) \times 1 . D^{2}
\end{gathered}
\]
\[
I B+F m e f
\]
THIS isNOT WW WN NE CHOOSE To include THIS im oun enoor


\section*{A difficulty: strong phases}
- The continuum and our lattice determinations of strong phase
diffeı

Challenges of physical K=>pi pi kinematics on the lattice
 - Reimary challenge is to assure physical kinematics: For periodic Cs, ampificude with 2 stationary pions in final state dominates. However
\(\vec{F}_{\pi} \mid \sim 205 \mathrm{MeV}\)
\[
2 m_{\pi} \approx 2 \operatorname{cof}_{280} \mathrm{MeV}<m_{K} \approx 500 \mathrm{MeV}
\]
II. Desired state with moving pons is next-t-0-eading term: require exp fits? \(\leqslant\) New now understudy . ..TBlum, H Hogging et d
I - Avid 2 -exp fits by removing stationary pion state from system through manipulating lattice spatial boundary conditions:
- Antiperiodic BCs on down-quark for \(\mathrm{A}_{2}\)
, G-parity BC on both quarks for \(\mathrm{A}_{0}\)
Ckellyetal
\(\rightarrow p_{\pi}=0 \rightarrow \pi / L\)
tune \(L\) to match \(E_{k}\) and \(E_{\pi \pi}\)

Resolving the［I＝0］Energy \＆phase shift in the pi pi channel
－ 2015 result has \(2 \sigma+\) discrepancy between our \(I=0 \pi \pi\) phase shift \(\left(\delta_{0}=23.8(4.9)\right.\) \(\left.(1.2)^{\circ}\right)\) and dispersion theory prediction（ \(\sim 34^{\circ}\) ）．
［RBC\＆UKQCD PRL 115 （2015）21，212001］
［Colangelo et al，Nucl．Phys．B603（2001）125－179］
－Observed discrepancy more significant \((\sim 5 \sigma)\) with \(6.5 x\) stats．
－Most likely explanation is excited－state contamination．
aんうに

－To address added scalar（ \(\sigma=\bar{d} d\) ）\(\pi / \sigma\) operator to the \(2-p t i u n c t i o n ~ c a l c u l a t i o n . ~\)
－Combined fits（or GEVP）to \(\pi \pi \rightarrow \pi \pi, \sigma \rightarrow \pi \pi\) and \(\sigma \rightarrow \sigma\) correlators result in considerably lower ground－state energy：

508（5）MeV［1386cfgs］from \(\pi \pi \rightarrow \pi \pi\) alone vs
483（1）MeV［501 cfgs］from sim．fit of all 3 correlators．
－New phase shift \(\delta_{0}=30.9(1.5)(3.0)^{\circ}[\) prelim］compatible with dispersive result．
－Strong evidence for nearby excited finite－volume \(\pi \pi\) state． Indeed such a state with \(\mathrm{E} \sim 770 \mathrm{MeV}\) is predicted by dispersion theory．
NOTE：\(\left\{_{2}=-11.6 \pm 2.5 \pm 12^{\circ} \$ F_{m n}(T=2)=573 \rho \pm 2.9 \mathrm{MeV}\right.\)

\begin{tabular}{lll} 
arxic: & \(\downarrow\) & RBC- \\
2004. & \(=\) & RKRCD \\
09440 & & \\
& & \\
& & \\
& &
\end{tabular}

\title{
Direct \(C P\) violation and the \(\Delta I=1 / 2\) rule in \(K \rightarrow \pi \pi\) decay from the standard model
}

\author{
R. Abbott, \({ }^{1}\) T. Blum, \({ }^{2,3}\) P. A. Boyle, \({ }^{4,5}\) M. Bruno, \({ }^{6}\) N. H. Christ, \({ }^{1}\) D. Hoying, \({ }^{3,2}\) C. Jung, \({ }^{4}\) C. Kelly \(\oplus,{ }^{4}\) C. Lehner, \({ }^{7,4}\)
} R. D. Mawhinney, \({ }^{1}\) D. J. Murphy, \({ }^{8}\) C. T. Sachrajda, \({ }^{9}\) A. Soni, \({ }^{4}\) M. Tomii, \({ }^{2}\) and T. Wang \({ }^{1}\)
(RBC and UKQCD Collaborations)
\({ }^{1}\) Physics Department, Columbia University, New York, New York 10027, USA
\({ }^{2}\) Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
\({ }^{3}\) RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
\({ }^{4}\) Brookhaven National Laboratory, Upton, New York 11973, USA
\({ }^{5}\) SUPA, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
\({ }^{6}\) Theoretical Physics Department, CERN, 1211 Geneve 23, Switzerland
\({ }^{7}\) Universität Regensburg, Fakultät für Physik, 93040 Regensburg, Germany
\({ }^{8}\) Center for Theoretical Physics, Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
\({ }^{9}\) School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
(0) (Received 18 May 2020; accepted 13 August 2020; published 17 September 2020)


Power of the lattice: Only method to systematically reduce the NP error!


\section*{The RBC \& UKQCD collaborations}

\section*{UC Berkeley/LBNL}

\section*{Aaron Meyer}
\(B N L\) and \(B N L / R B R C\)
Yasumichi Aoki (KEK)
Peter Boyle (Edinburgh)
Taku Izubuchi
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Nobuyuki Matsumoto
Shigemi Ohta (KEK)
Amarjit Soni
Tianle Wang

\section*{CERN}

Andreas Jüttner (Southampton)
Tobias Tsang
Columbia University
Norman Christ
Yikai Huo
Yong-Chull Jang
Joseph Karpie
Bob Mawhinney
Bigeng Wang (Kentucky)
Yidi Zhao

University of Connecticut
Tom Blum
Luchang Jin (RBRC)
Douglas Stewart
Joshua Swaim
Masaaki Tomii

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tim Harris
Ryan Hill
Raoul Hodgson
Nelson Lachini
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richings
Azusa Yamaguchi
Andrew Z.N. Yong
Liverpool Hope/Uni. of Liverpool
Nicolas Garron
Michigan State University
Dan Hoying

University of Milano Bicocca
Mattia Bruno
Nara Women's University
Hiroshi Ohki

Peking University
Xu Feng
University of Regensburg
Davide Giusti
Christoph Lehner (BNL)

University of Siegen
Matthew Black
Oliver Witzel

University of Southampton
Alessandro Barone
Jonathan Flynn
Nikolai Husung
Rajnandini Mukherjee
Callum Radley-Scott
Chris Sachrajda
Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

\section*{Relating lattice ME to physical amplitudes}
\[
A_{2 / 0}=F \frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s} \sum_{i=1}^{10} \sum_{j=1}^{7}\left[\left(z_{i}(\mu)+\tau y_{i}(\mu)\right) z_{i j}^{\text {lat }-\overline{\mathrm{MS}}} M_{j}^{\frac{3}{2} / \frac{1}{2}, \text { lat }}\right]
\]

F is the Lellouch-Luscher factor which relates finite volume ME to the infinite volume
\[
\begin{aligned}
& A=\frac{1}{\pi q} \sqrt{\frac{\partial \phi}{\partial q}+\frac{\partial \delta}{\partial q} \sqrt{m_{K}} E_{\pi \pi} L^{2 / 3} M} \text { mphoseshibt } \\
& \text { kos } \frac{\delta}{q} \text { fasmale }
\end{aligned}
\]
```


[^0]: Also constrain KL=>piO nu nu via KO=>piO mu+mu- (c AS in Lat23)

[^1]: 1.Briefly ADS uses local regions of DP to look for minimum values of gamma; followed by searches globally
 2. The crucial point is that it then uses A+S method of "optimized observables" (PRD92) and demonstrates that
 solution to gamma thus obtained are just as good as the optimal construction gives

