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The magnetic moment and quantum corrections
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The g -factor in µ⃗ = g
(

e
2m

)
S⃗ describes the strength of coupling to

a magnetic field, which can be measured and computed from
theory very precisely.
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Anomalous Magnetic Moment
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The magnetic moment of charged leptons (e, µ, τ): ~µ = g
e

2m
~S

Dirac:

quantum effects

Quantum corrections change how a muon interacts with a magnetic 
field.     ➠                            
The contributions to the anomalous magnetic moment can be 
calculated within the Standard Model of Particle Physics. All known 
particles contribute … 

g = 2
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g > 2
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g = 2 + 2a
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Anomalous magnetic moment

a = (g − 2)/2

The quantum effects arise from virtual particle contributions from
all known and unknown particles.

By comparing high-precision experiments and theory, we have the
potential to learn about such contributions of new particles.
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Experimental status (PRL 131 (2023) 16, 161802)
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Run !a/2⇡ [Hz] !̃0
p/2⇡ [Hz] R0

µ ⇥ 1000
Run-1 3.7073004(17)
Run-2 229077.408(79) 61790875.0(3.3) 3.7073016(13)
Run-3a 229077.591(68) 61790957.5(3.3) 3.7072996(11)
Run-3b 229077.81(11) 61790962.3(3.3) 3.7073029(18)
Run-2/3 3.70730088(79)
Run-1/2/3 3.70730082(75)

TABLE II. Measurements of !a, !̃0
p, and their ratios R0

µ mul-
tiplied by 1000. The Run-1 value has been updated from [1]
as described in the text.

a recent lattice calculation of HVP by the BMW Col-
laboration [45] shows significant tension with the e+e�

data. In addition, a new preliminary measurement of
the e+e� ! ⇡+⇡� cross section from the CMD-3 experi-
ment [46] disagrees significantly with all other e+e� data.
There are ongoing e↵orts to clarify the current theoretical
situation [47]. While a comparison between the Fermilab
result from Run-1/2/3 presented here, aµ(FNAL), and
the 2020 prediction yields a discrepancy of 5.0�, an up-
dated prediction considering all available data will likely
yield a smaller and less significant discrepancy.

In summary, we report a measurement of the muon
magnetic anomaly to 0.20 ppm precision using our first
three years of data. This is the most precise determi-
nation of this quantity, and it improves on our previous
result by more than a factor of 2. Analysis of the remain-
ing data from three additional years of data collection is
underway and is expected to lead to another factor of 2
improvement in statistical precision.

FIG. 3. Experimental values of aµ from BNL E821 [8], our
Run-1 result [1], this measurement, the combined Fermilab re-
sult, and the new experimental average. The inner tick marks
indicate the statistical contribution to the total uncertainties.
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• Run 1 (2018): 15 ⇥ 109 e+ analyzed

• Run 2 (2019) + Run 3 (2020): 71 ⇥ 109 e+ analyzed

• Run 1: ± 434 (stat) ± 157 (syst) ± 25 (ext param) (ppb)

• Run 2/3: ± 201 (stat) ± 68 (syst) ± 25 (ext param) (ppb)

30
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Contributions from known particles: The Standard Model

A. El-Khadra JETP 07 April 2021

The Standard Model of Particle Physics

6

Unanswered Questions:  
• ``Why three generations?” 
• Dark matter 
• Dark energy 
• Why (a lot) more matter than 

antimatter?  
• Why  ?  
• … 

mHiggs ≃ 125 GeV

The Higgs boson (discovered in 2012) completes the very successful SM

If new particles contribute to the muon’s anomalous magnetic 
moment, Standard Model theory will disagree with experiment. 
➠ discovery potential of precision measurements

Open questions: dark matter, size of matter-antimatter asymmetry, origin
of neutrino masses, . . . ⇒ Standard Model is incomplete
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Contributions from known particles: The Standard Model

aµ(SM) = aµ(QED) + aµ(Weak) + aµ(Hadronic)
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Muon g-2: SM contributions
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aµ = aµ(QED) + aµ(Weak) + aµ(Hadronic)
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Hadronic…

α2

…Light-by-Light (HLbL)

aEW
µ = 153.6 (1.0) ⇥ 10�11
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6845 (40) × 10−11

92 (18) × 10−11

…Vacuum Polarization (HVP)

+…

+…

aQED
µ (↵(Cs)) = 116 584 718.9 (1) ⇥ 10�11

<latexit sha1_base64="jslMJiAKjL0WKnE49hRQIicInxE="></latexit>

+…

+…
QED

Weak

α3

0.01 ppm

0.001 ppm

0.37 ppm

0.15 ppm

[0.6%]

[20%]

Numbers from Theory Initiative Whitepaper

Uncertainty dominated by hadronic contributions
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Status of hadronic light-by-light contribution

0 20 40 60 80 100 120 140 160

aµ
HLbL × 1011

WP20

WP20 data-driven

RBC/UKQCD19

Glasgow consensus
N/JN09
J17

 + charm-loop

dispersive

Mainz21 (+ charm-loop)

Hadronic model + pQCD

Ab-initio lattice QCD+QED

Data-driven

Systematically improvable methods are maturing; uncertainty to aµ
controlled at 0.15ppm; cross-checks detailed in Theory Initiative
whitepaper
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RBC/UKQCD 23 update (2304.04423)
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Status and impact of hadronic vacuum polarization contribution
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(aµ
SM-aµ
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HVP from:

not used in WP20

BMW17

BDJ19

RBC/UKQCD
data/lattice

PACS19
RBC/UKQCD18

FHM19
Mainz/CLS19
ETM18/19
BMW20
LM20

BMW20

Dispersive, e+e− → hadrons (20+ years
of experiments, however, unresolved ten-
sions of experimental data sets)

Ab-initio lattice QCD(+QED) calculations
are maturing

Difficult problem: scales from 2mπ to sev-
eral GeV enter; cross-checks needed at high
precision

Hybrid window method restricts scales that
enter from lattice/dispersive data

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to
establish or refute high-precision lattice methodology
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Consistency of lattice results



Diagrams
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Diagrams – Isospin limit 2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the �� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e�ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e�ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the �� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e�ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e�ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Diagrams – QED corrections

and fit d�.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d� and E� and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E� and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d

(g) D2 (h) D2d (i) F (j) D3

Figure 1: QED corrections
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Figure 2: SIB corrections

4

Diagrams – Strong isospin breaking
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Overview of individual contributions



Diagrams – Isospin limit

2

with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-

x

x

x

(a) M

x

x

x

(b) R

x

x

x

(c) O

Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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Figure 8: Mass-counterterm diagrams for mass-splitting and HVP 1-photon
diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.
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quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.
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with C(t) = 1
3

P
~x

P
j=0,1,2hJj(~x, t)Jj(0)i. With appro-

priate definition of wt, we can therefore write

aµ =
X

t

wtC(t) . (4)

The correlator C(t) is computed in lattice QCD+QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aµ from bottom quarks and from
charm sea quarks in perturbative QCD [13] by integrating
the time-like region above 2 GeV and find them to be
smaller than 0.3 ⇥ 10�10.

We tune the bare up, down, and strange quark masses
mup, mdown, and mstrange such that the ⇡0, ⇡+, K0, and
K+ meson masses computed in our calculation agree with
the respective experimental measurements [14]. The lat-
tice spacing is determined by setting the ⌦� mass to
its experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [15, 16] with two degenerate light quarks
with mass mlight and a heavy quark with mass mheavy

tuned to produce a pion mass of 135.0 MeV and a kaon
mass of 495.7 MeV [17]. The correlator is expanded in
the fine-structure constant ↵ as well as �mup, down =
mup, down � mlight, and �mstrange = mstrange � mheavy.
We write

C(t) = C(0)(t) + ↵C
(1)
QED(t) +

X

f

�mfC
(1)
�mf

(t)

+ O(↵2,↵�m,�m2) , (5)

where C(0)(t) is obtained in the lattice QCD calculation
at the isospin symmetric point and the expansion terms
define the QED and strong isospin-breaking (SIB) correc-
tions, respectively. We keep only the leading corrections
in ↵ and �mf which is su�cient for the desired precision.

We insert the photon-quark vertices perturbatively
with photons coupled to local lattice vector currents mul-
tiplied by the renormalization factor ZV [17]. We use
ZA ⇡ ZV for the charm [22] and QED corrections. The
SIB correction is computed by inserting scalar operators
in the respective quark lines. The procedure used for
e↵ective masses in such a perturbative expansion is ex-
plained in Ref. [18]. We use the finite-volume QEDL

prescription [19] and remove the universal 1/L and 1/L2

corrections to the masses [20] with spatial lattice size L.
The e↵ect of 1/L3 corrections is small compared to our
statistical uncertainties. We find �mup = �0.00050(1),
�mdown = 0.00050(1), and �mstrange = �0.0002(2) for
the 48I lattice ensemble described in Ref. [17]. The shift
of the ⌦� mass due to the QED correction is significantly
smaller than the lattice spacing uncertainty and its e↵ect
on C(t) is therefore not included separately.

Figure 1 shows the quark-connected and quark-
disconnected contributions to C(0). Similarly, Fig. 2
shows the relevant diagrams for the QED correction to

FIG. 1. Quark-connected (left) and quark-disconnected
(right) diagram for the calculation of aHVP LO

µ . We do not
draw gluons but consider each diagram to represent all orders
in QCD.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  10  20  30  40  50  60  70
r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
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We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.
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FIG. 2. QED-correction diagrams with external pseudo-scalar
or vector operators.

the meson spectrum and the hadronic vacuum polariza-
tion. The external vertices are pseudo-scalar operators
for the former and vector operators for the latter. We
refer to diagrams S and V as the QED-connected and to
diagram F as the QED-disconnected contribution. We
note that only the parts of diagram F with additional
gluons exchanged between the two quark loops contribute
to aHVP LO

µ as otherwise an internal cut through a single
photon line is possible. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F.
In the current calculation, we neglect diagrams T, D1,
D2, and D3. This approximation is estimated to yield an
O(10%) correction for isospin splittings [21] for which the
neglected diagrams are both SU(3) and 1/Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1/Nc suppressed and we adopt
a corresponding 30% uncertainty.

In Fig. 3, we show the SIB diagrams. In the calcu-
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diagrams. Diagram M gives the valence, diagram R the sea quark mass shift
e↵ects to the meson masses. Diagram O would yield a correction to the HVP
disconnected contribution (that likely is very small).
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FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator.

Mainz 2020 prelim.
Fermilab/HPQCD/MILC 2020 prelim.

BMW 2020
Mainz 2019

RBC/UKQCD 2018
RBC/UKQCD 2015

BMW 2017

-30 -25 -20 -15 -10 -5 0

aµ, uds, disc, isospin × 1010

10 / 27



Diagrams – QED corrections

and fit d!.
red For the finite-volume errors, the two-pion states in d are identical to the

I = 1 contributions of c and can be calculated using the GSL estimate which
we use for c. For the omega-related finite-volume errors, I will take the fitted
d! and E! and use this as the full result at finite-volume and compare it to
a GS model with omega mass from the fitted E! and width from the PDG
in infinite-volume. I should also compare this to R-ratio results for the I = 0
channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all O(↵) and O(mu � md)
corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V (b) S (c) T (d) Td (e) D1 (f) D1d
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For diagram F we enforce exchange of gluons between the quark loops as otherwise a
cut through a single photon line would be possible. This single-photon contribution is
counted as part of the HVP NLO and not included for the HVP LO.
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Diagrams – Strong isospin breaking
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For the HVP R is negligible since ∆mu ≈ −∆md and O is SU(3) and 1/Nc suppressed.

Lehner, Meyer 2020: NLO PQChPT: FV effects in connected and
disconnected cancel but are each significant O(4× 10−10); PQChPT
expects cancellation between connected and disconnected contribution
aSIB, conn.
µ = −aSIB, disc.

µ = 6.9× 10−10
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Attention on light-quark isospin-symmetric contribution and QED
disconnected contribution
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Lattice QCD – Time-Moment Representation

Starting from the vector current Jµ(x) = i
∑

f QfΨf (x)γµΨf (x) we may
write

aHVP LO
µ =

∞∑

t=0

wtC (t)

with

C (t) =
1

3

∑

x⃗

∑

j=0,1,2

⟨Jj(x⃗ , t)Jj(0)⟩

and wt capturing the photon and muon part of the HVP diagrams
(Bernecker-Meyer 2011).

The correlator C (t) is computed in lattice QCD+QED at physical pion
mass with non-degenerate up and down quark masses including up,
down, strange, and charm quark contributions. The missing bottom
quark contributions are computed in pQCD.
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Lattice QCD – Example of correlation function C (t)
(RBC/UKQCD18)
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FIG. 4. Comparison of wtC(t) obtained using R-ratio data
[1] and lattice data on our 64I ensemble.

lation presented here, we only include diagram M. For
the meson masses this corresponds to neglecting the sea
quark mass correction, which we have previously [17] de-
termined to be an O(2%) and O(14%) e↵ect for the pi-
ons and kaons, respectively. This estimate is based on
the analytic fits of (H7) and (H9) of Ref. [17] with ratios
C

m⇡, K

2 /C
m⇡, K

1 given in Tab. XVII of the same reference.
For the hadronic vacuum polarization the contribution of
diagram R is negligible since �mup ⇡ ��mdown and di-
agram O is SU(3) and 1/Nc suppressed. We therefore
assign a corresponding 10% uncertainty to the SIB cor-
rection.

We also compute the O(↵) correction to the vector
current renormalization factor ZV used in C(0) [17, 18]
and find a small correction of approximately 0.05% for
the light quarks.

We perform the calculation of C(0) on the 48I and 64I
ensembles described in Ref. [17] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [22]. The quark-disconnected
contribution as well as QED and SIB corrections are com-
puted only on ensemble 48I.

For the noisy light quark connected contribution, we
employ a multi-step approximation scheme with low-
mode averaging [23] over the entire volume and two levels
of approximations in a truncated deflated solver (AMA)
[24–27] of randomly positioned point sources. The low-
mode space is generated using a new Lanczos method
working on multiple grids [28]. Our improved statisti-
cal estimator for the quark disconnected diagrams is de-
scribed in Ref. [29] and our strategy for the strange quark
is published in Ref. [30]. For diagram F, we re-use point-
source propagators generated in Ref. [31].

The correlator C(t) is related to the R-ratio data
[11] by C(t) = 1

12⇡2

R1
0

d(
p

s)R(s)se�
p

st with R(s) =
3s

4⇡↵2�(s, e+e� ! had). In Fig. 4 we compare a lattice
and R-ratio evaluation of wtC(t) and note that the R-
ratio data is most precise at very short and long dis-
tances, while the lattice data is most precise at interme-
diate distances. We are therefore led to also investigate
a position-space “window method” [11, 32] and write

aµ = aSD
µ + aW

µ + aLD
µ (6)

with aSD
µ =

P
t C(t)wt[1 � ⇥(t, t0,�)], aW

µ =P
t C(t)wt[⇥(t, t0,�) � ⇥(t, t1,�)], and aLD

µ =P
t C(t)wt⇥(t, t1,�), where each contribution is

accessible from both lattice and R-ratio data. We define
⇥(t, t0,�) = [1 + tanh [(t � t0)/�]] /2 which we find to
be helpful to control the e↵ect of discretization errors
by the smearing parameter �. We then take aSD

µ and

aLD
µ from the R-ratio data and aW

µ from the lattice.
In this work we use � = 0.15 fm, which we find to
provide a su�ciently sharp transition without increasing
discretization errors noticeably. This method takes the
most precise regions of both datasets and therefore may
be a promising alternative to the proposal of Ref. [33].

ANALYSIS AND RESULTS

In Tab. I we show our results for the individual as well
as summed contributions to aµ for the window method
as well as a pure lattice determination. We quote sta-
tistical uncertainties for the lattice data (S) and the R-
ratio data (RST) separately. For the quark-connected
up, down, and strange contributions, the computation is
performed on two ensembles with inverse lattice spacing
a�1 = 1.730(4) GeV (48I) as well as a�1 = 2.359(7) GeV
(64I) and a continuum limit is taken. The discretization
error (C) is estimated by taking the maximum of the
squared measured O(a2) correction as well as a simple
(a⇤)4 estimate, where we take ⇤ = 400 MeV. We find
the results on the 48I ensemble to di↵er only a few per-
cent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution additional ensembles described in Ref. [22]
are used and the maximum of the above and a (amc)

4

estimate is taken as discretization error. The remain-
ing contributions are small and only computed on the
48I ensemble for which we take (a⇤)2 as estimate of dis-
cretization errors.

For the up and down quark-connected and discon-
nected contributions, we correct finite-volume e↵ects to
leading order in finite-volume position-space chiral per-
turbation theory [34]. Note that in our previous pub-
lication of the quark-disconnected contribution [29], we
added this finite-volume correction as an uncertainty but
did not shift the central value. We take the largest ratio
of p6 to p4 corrections of Tab. 1 of Ref. [35] as systematic
error estimate of neglected finite-volume errors (V). For
the SIB correction we also include the sizeable di↵erence
of the corresponding finite and infinite-volume chiral per-
turbation theory calculation as finite-volume uncertainty.
For the QED correction, we repeat the computation us-
ing an infinite-volume photon (QED1 [36]) and include
the di↵erence to the QEDL result as a finite-volume er-
ror. Further details of the QED1 procedure are provided
as supplementary material.

Large discretization errors at short distance, large finite-volume errors and

statistical errors at large distance
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Window method (introduced in RBC/UKQCD 2018)

We therefore also consider a window method. Following Meyer-Bernecker
2011 and smearing over t to define the continuum limit we write

aµ = aSDµ + aWµ + aLDµ

with

aSDµ =
∑

t

C (t)wt [1−Θ(t, t0,∆)] ,

aWµ =
∑

t

C (t)wt [Θ(t, t0,∆)−Θ(t, t1,∆)] ,

aLDµ =
∑

t

C (t)wtΘ(t, t1,∆) ,

Θ(t, t ′,∆) = [1 + tanh [(t − t ′)/∆]] /2 .

All contributions are well-defined individually and can be computed from
lattice or R-ratio via C (t) = 1

12π2

∫∞
0

d(
√
s)R(s)se−

√
st with

R(s) = 3s
4πα2σ(s, e

+e− → had).

aWµ has small statistical and systematic errors on lattice!
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Use these windows as a lattice internal cross-check

Fermilab/HPQCD/MILC 2023
RBC/UKQCD 2023

ETMC 2022
Mainz 2022

ChiQCD 2022 OV/HISQ
ChiQCD 2022 OV/DWF

Aubin et al. 2022
LM 2020

BMW 2020
ETMC 2021

Aubin et al. 2019
RBC/UKQCD 2018

195 200 205 210 215

aµ, ud, conn, isospin, W-0.4-1.0-0.15 × 1010

Isospin-symmetric light quark-connected contribution to aWµ for
t0 = 0.4 fm, t1 = 1.0 fm;
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Use these windows as a lattice internal cross-check

Mainz 2024
RBC/UKQCD 2023

ETMC 2022
ETMC 2021

45 46 47 48 49 50 51 52 53

aµ, ud, conn, isospin, W-SD-0.4-0.15 × 1010

Isospin-symmetric light quark-connected contribution to aSDµ for
t0 = fm; consistent with pQCD (RBC/UKQCD 2023)
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Remaining piece: long-distance window
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Figure 4: Continuum extrapolation of the isospin-symmetric, light, connected component of the window
observable aµ,win, denoted by [alight

µ,win]iso. The data points are extrapolated to the infinite-volume limit.
Errorbars are s.e.m. Two di↵erent ways to perform the continuum extrapolations are shown: one without
improvement, and another with corrections from a model involving the ⇢-meson (SRHO). In both cases
the lines show linear, quadratic and cubic fits in a2 with varying number of lattice spacings in the fit.
The continuum extrapolated result is shown with the results from other lattice groups, RBC’18 [19] and
Aubin’19 [20]. Also plotted is our R-ratio-based determination, obtained using the experimental data
compiled by the authors of [4] and our lattice results for the non light connected contributions. This
plot is convenient for comparing di↵erent lattice results with each other. Regarding the total aµ,win, for
which we also have to include the contributions of other-than-light flavors and isospin-breaking e↵ects, we
obtain 236.7[1.4] on the lattice and 229.7[1.3] from the R-ratio, the latter is 3.7� or 3.1% smaller than
the lattice result.
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Extended Data Figure 3: Example continuum limits of alight
µ . The light green triangles labeled none

correspond to our lattice results with no taste improvement. The blue squares have undergone no taste
improvement for t < 1.3 fm and SRHO improvement above. The blue curves correspond to example
continuum extrapolations of those improved data to polynomials in a2, up to and including a4. Note that
extrapolations in a2↵s(1/a)3, with ↵s(1/a) the strong coupling at the lattice scale, are also considered
in our final result. The red circles and curves are the same as the blue points, but correspond to SRHO
taste improvement for t � 0.4 fm and none for smaller t. The purple histogram results from the fits using
the SRHO improvement, the corresponding central value and error is the purple band. The darker grey
circles correspond to results corrected with SRHO in the range 0.4�1.3 fm, NNLO SXPT for larger t.
These latter fits serve to estimate the systematic uncertainty of the SRHO improvement. The grey band
includes this uncertainty, the corresponding histogram is shown with grey. Errors are s.e.m.

8

Continuum limit for long-distance contribution in BMW calculation
is non-trivial
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New results (Moriond preview for RBC/UKQCD update)

RBC/UKQCD does blinded analysis for LD window, 5 groups; here blinded group-A
results; begin relative unblinding process soon
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Extended Data Figure 3: Example continuum limits of alight
µ . The light green triangles labeled none

correspond to our lattice results with no taste improvement. The blue squares have undergone no taste
improvement for t < 1.3 fm and SRHO improvement above. The blue curves correspond to example
continuum extrapolations of those improved data to polynomials in a2, up to and including a4. Note that
extrapolations in a2↵s(1/a)3, with ↵s(1/a) the strong coupling at the lattice scale, are also considered
in our final result. The red circles and curves are the same as the blue points, but correspond to SRHO
taste improvement for t � 0.4 fm and none for smaller t. The purple histogram results from the fits using
the SRHO improvement, the corresponding central value and error is the purple band. The darker grey
circles correspond to results corrected with SRHO in the range 0.4�1.3 fm, NNLO SXPT for larger t.
These latter fits serve to estimate the systematic uncertainty of the SRHO improvement. The grey band
includes this uncertainty, the corresponding histogram is shown with grey. Errors are s.e.m.

8

BMW (left) had 19298 gauge configurations, RBC (right) here has 1571; RBC
method does not have same systematics in LD window (see above), however,
approximately factor 10 more costly per gauge configuration.

Note: RBC/UKQCD finest value statistically consistent with continuum extrapolation
value! Expect similar precision to BMW result.
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Summary of current status

▶ Short distance window (up to t0 = 0.4 fm) dominated by
pQCD; consistency between LQCD and LQCD/pQCD

▶ Intermediate window (t0 = 0.4 fm, t1 = 1.0 fm); consistency
between different LQCD results established

▶ The long-distance window is at this point not yet
independently checked! Only BMW20 result at sub-percent
precision. This is expected to change in 2024!
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Consistency of lattice results with R-ratio
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Situation before CMD3:

Colangelo et al. 2022
BMW 2020/KNT

Aubin et al. 2019/CL/KNT
RBC/UKQCD 2018/FJ

RBC/UKQCD 2023
ETMC 2022
Mainz 2022
BMW 2020
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aµ, W-0.4-1.0-0.15 × 1010
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Tensions in dispersive two-pion channel: From arXiv:2302.08834
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Figure 36: The ⇡+⇡�(�) contribution to ahad,LO
µ from

energy range 0.6 <
p

s < 0.88 GeV obtained from this
and other experiments.

Experiment a⇡
+⇡�,LO

µ , 10�10

before CMD2 368.8 ± 10.3
CMD2 366.5 ± 3.4
SND 364.7 ± 4.9
KLOE 360.6 ± 2.1
BABAR 370.1 ± 2.7
BES 361.8 ± 3.6
CLEO 370.0 ± 6.2
SND2k 366.7 ± 3.2
CMD3 379.3 ± 3.0

Table 4: The ⇡+⇡�(�) contribution to ahad,LO
µ

from energy range 0.6 <
p

s < 0.88 GeV ob-
tained from this and other experiments.

in Table. 4, where the first line in the table corresponds to the combined result of all
measurements before CMD-2 experiment.

The pion formfactor mesuarements from the di↵erent RHO2013 and RHO2018 seasons
of the CMD-3 give the statistically consistent result in the ahad,LO

µ integral as:

a⇡⇡,LO
µ (RHO2013) = (380.06 ± 0.61 ± 3.64) ⇥ 10�10

a⇡⇡,LO
µ (RHO2018) = (379.30 ± 0.33 ± 2.62) ⇥ 10�10

a⇡⇡,LO
µ (average) = (379.35 ± 0.30 ± 2.95) ⇥ 10�10 (18)

Two CMD-3 values are in very good agreement in spite of a very di↵erent data taking
conditions (as was discussed earlier). The combined CMD-3 result was obtained in very
conservative assumption of 100% correlation between systematic errors of two data sets. The
CMD-3 result is significantly higher compared to other e+e� data, both energy scan and ISR.
Although this evaluation was done in the limited energy range only and the full evaluation
of ahad,LO

µ is yet to be done, it is clear that our measurement will reduce tension between
the experimental value of the anomalous magnetic moment of muon and its Standard Model
prediction.

9. Conclusions

The measurement of e+e� ! ⇡+⇡� cross section was performed by the CMD-3 exper-
iment at the VEPP-2000 collider in the energy range

p
s = 0.32 ÷ 1.2 GeV in 209 energy

points. The analysis was based on the biggest ever used collected statistics at ⇢ resonance
region with 34 ⇥ 106 ⇡+⇡� events at

p
s < 1 GeV. The large statistics allows to study the

possible systematic e↵ects in details. The development of the analysis strategy, cross-checks

42

Lattice has now converged for short-distance and intermediate windows.
Difficult to come up with single dispersive number at this point. If
fluctuation up to CMD3 is taken as systematic error for dispersive result,
tension in intermediate window between lattice and dispersive disappears.
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Summary

▶ Lattice QCD making steady progress towards full
first-principles determination of HVP and HLbL at FNAL
E989 target precision

▶ HLbL converged, no surprises

▶ HVP aSDµ contribution converged between LQCD and pQCD,
no surprises

▶ HVP aWµ contribution converged in LQCD, O(6× 10−10)
higher than previous dispersive consensus (before CMD3)

▶ HVP aLDµ next focus of LQCD community. We may expect
high-precision results in 2024!

▶ Further reduction in experimental uncertainty for aµ expected
by upcoming FNAL E989 Run 4-6 data release
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