Status of muon g-2

Christoph Lehner (University of Regensburg)

March 30, 2024 - Rencontres de Moriond 2024

The magnetic moment and quantum corrections

The g-factor in $\vec{\mu}=g\left(\frac{e}{2 m}\right) \vec{S}$ describes the strength of coupling to a magnetic field, which can be measured and computed from theory very precisely.

Anomalous magnetic moment
Dirac: $g=2$

The quantum effects arise from virtual particle contributions from all known and unknown particles.

By comparing high-precision experiments and theory, we have the potential to learn about such contributions of new particles.

Experimental status (PRL 131 (2023) 16, 161802)

Contributions from known particles: The Standard Model

Open questions: dark matter, size of matter-antimatter asymmetry, origin of neutrino masses, ... \Rightarrow Standard Model is incomplete

Contributions from known particles: The Standard Model

$$
a_{\mu}(\mathrm{SM})=a_{\mu}(\mathrm{QED})+a_{\mu}(\text { Weak })+a_{\mu}(\text { Hadronic })
$$

Uncertainty dominated by hadronic contributions

Status of hadronic light-by-light contribution

Ab-initio lattice QCD + QED

Data-driven

Systematically improvable methods are maturing; uncertainty to a_{μ} controlled at 0.15 ppm ; cross-checks detailed in Theory Initiative whitepaper

RBC/UKQCD 23 update (2304.04423)

Status and impact of hadronic vacuum polarization contribution

Ab-initio lattice QCD (+QED) calculations are maturing

Difficult problem: scales from $2 m_{\pi}$ to several GeV enter; cross-checks needed at high precision

Hybrid window method restricts scales that enter from lattice/dispersive data

Dispersive, $e^{+} e^{-} \rightarrow$ hadrons (20+ years of experiments, however, unresolved tensions of experimental data sets)

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to establish or refute high-precision lattice methodology

Consistency of lattice results

Diagrams

(a) V

(b) S

(c) T

(d) T_{d}

(e) D1

(f) $\mathrm{D} 1_{d}$

(g) D2

(h) $\mathrm{D} 2_{d}$

(i) F

(j) D3

(a) M

(b) R

(c) R_{d}

(d) O

Overview of individual contributions

Diagrams - Isospin limit

FIG. 1. Quark-connected (left) and quark-disconnected (right) diagram for the calculation of $a_{\mu}^{\mathrm{HVP}}{ }^{\mathrm{LO}}$. We do not draw gluons but consider each diagram to represent all orders in QCD.

Up, down; isospin symmetric limit; $m_{\pi}=m_{\pi}^{0}$

Diagrams - QED corrections

For diagram F we enforce exchange of gluons between the quark loops as otherwise a cut through a single photon line would be possible. This single-photon contribution is counted as part of the HVP NLO and not included for the HVP LO.

Attention needed

Diagrams - Strong isospin breaking

For the HVP R is negligible since $\Delta m_{u} \approx-\Delta m_{d}$ and O is $\mathrm{SU}(3)$ and $1 / N_{c}$ suppressed.

Lehner, Meyer 2020: NLO PQChPT: FV effects in connected and disconnected cancel but are each significant $O\left(4 \times 10^{-10}\right)$; PQChPT expects cancellation between connected and disconnected contribution $a_{\mu}^{\text {SIB, conn. }}=-a_{\mu}^{\text {SIB, disc. }}=6.9 \times 10^{-10}$

Attention on light-quark isospin-symmetric contribution and QED disconnected contribution

Lattice QCD - Time-Moment Representation

Starting from the vector current $J_{\mu}(x)=i \sum_{f} Q_{f} \bar{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$ we may write

$$
a_{\mu}^{\mathrm{HVP} \mathrm{LO}}=\sum_{t=0}^{\infty} w_{t} C(t)
$$

with

$$
C(t)=\frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2}\left\langle J_{j}(\vec{x}, t) J_{j}(0)\right\rangle
$$

and w_{t} capturing the photon and muon part of the HVP diagrams (Bernecker-Meyer 2011).

The correlator $C(t)$ is computed in lattice QCD+QED at physical pion mass with non-degenerate up and down quark masses including up, down, strange, and charm quark contributions. The missing bottom quark contributions are computed in pQCD.

Lattice QCD - Example of correlation function $C(t)$ (RBC/UKQCD18)

Large discretization errors at short distance, large finite-volume errors and statistical errors at large distance

Window method (introduced in RBC/UKQCD 2018)
We therefore also consider a window method. Following Meyer-Bernecker 2011 and smearing over t to define the continuum limit we write

$$
a_{\mu}=a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

with

$$
\begin{aligned}
a_{\mu}^{\mathrm{SD}} & =\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right], \\
a_{\mu}^{\mathrm{W}} & =\sum_{t} C(t) w_{t}\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right] \\
a_{\mu}^{\mathrm{LD}} & =\sum_{t} C(t) w_{t} \Theta\left(t, t_{1}, \Delta\right), \\
\Theta\left(t, t^{\prime}, \Delta\right) & =\left[1+\tanh \left[\left(t-t^{\prime}\right) / \Delta\right]\right] / 2
\end{aligned}
$$

All contributions are well-defined individually and can be computed from lattice or R-ratio via $C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s t}}$ with $R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right)$.
a_{μ}^{W} has small statistical and systematic errors on lattice!

Use these windows as a lattice internal cross-check

Isospin-symmetric light quark-connected contribution to a_{μ}^{W} for $t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}$;

Use these windows as a lattice internal cross-check

Isospin-symmetric light quark-connected contribution to $a_{\mu}^{S D}$ for $t_{0}=\mathrm{fm}$; consistent with pQCD (RBC/UKQCD 2023)

Remaining piece: long-distance window

Continuum limit for long-distance contribution in BMW calculation is non-trivial

New results (Moriond preview for RBC/UKQCD update)

RBC/UKQCD does blinded analysis for LD window, 5 groups; here blinded group-A results; begin relative unblinding process soon

BMW (left) had 19298 gauge configurations, RBC (right) here has 1571; RBC method does not have same systematics in LD window (see above), however, approximately factor 10 more costly per gauge configuration.

Note: RBC/UKQCD finest value statistically consistent with continuum extrapolation value! Expect similar precision to BMW result.

Summary of current status

- Short distance window (up to $t_{0}=0.4 \mathrm{fm}$) dominated by pQCD; consistency between LQCD and LQCD/pQCD
- Intermediate window ($t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}$); consistency between different LQCD results established
- The long-distance window is at this point not yet independently checked! Only BMW20 result at sub-percent precision. This is expected to change in 2024!

Consistency of lattice results with R-ratio

$$
R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right), \quad C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s} t}
$$

Situation before CMD3:

Tensions in dispersive two-pion channel: From arXiv:2302.08834

Lattice has now converged for short-distance and intermediate windows. Difficult to come up with single dispersive number at this point. If fluctuation up to CMD3 is taken as systematic error for dispersive result, tension in intermediate window between lattice and dispersive disappears.

Summary

- Lattice QCD making steady progress towards full first-principles determination of HVP and HLbL at FNAL E989 target precision
- HLbL converged, no surprises
- HVP a_{μ}^{SD} contribution converged between LQCD and pQCD, no surprises
- HVP a_{μ}^{W} contribution converged in LQCD, $O\left(6 \times 10^{-10}\right)$ higher than previous dispersive consensus (before CMD3)
- HVP $a_{\mu}^{\text {LD }}$ next focus of LQCD community. We may expect high-precision results in 2024!
- Further reduction in experimental uncertainty for a_{μ} expected by upcoming FNAL E989 Run 4-6 data release

