

Effective Field Theory (EFT) limits from ATLAS and CMS

Mark Owen On behalf of ATLAS & CMS The University of Glasgow

Moriond EW 2024

Outline

- Why (SM)EFT for ATLAS and CMS?
- Highlights of recent SMEFT limits:
 - CMS $\gamma\gamma \rightarrow \tau\tau$
 - ATLAS WWjj
 - ATLAS $hh \rightarrow bb\gamma\gamma$
 - ATLAS $t\bar{t}Z + t\bar{t}\gamma$
 - CMS tt + leptons
- Summary

New physics limits at the LHC

• Huge programme of dedicated searches for new particles / forces:

SM Effective field theory

- New physics could be at such a high energy scale that we cannot see the new resonances at the LHC.
- New particles will still impact LHC measurements parameterise this with an effective field theory:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

$$O_{i}^{(n)}: \text{ operator of dimension n (obeying SM symmetries)}$$

$$c_{i}^{(n)}: \text{ Wilson coefficient for } O_{i}^{(n)}$$

$$\Lambda: \text{ energy scale of new physics}$$

SM Effective field theory

- New physics could be at such a high energy scale that we cannot see the new resonances at the LHC.
- New particles will still impact LHC measurements parameterise this with an effective field theory:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(5)}}{\Lambda} O_{i}^{(5)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$
$$O_{i}^{(n)}: \text{ operator of dimension n (obeying SM symmetries)}$$
$$c_{i}^{(n)}: \text{ Wilson coefficient for } O_{i}^{(n)}$$
$$\Lambda: \text{ energy scale of new physics}$$

- If $\Lambda \gg E$, can truncate series at e.g. n=6.
- One n=5 operator violates L conservation and can generate neutrino mass not relevant for LHC studies.
- For n=6, Warsaw basis [JHEP 10 (2010) 085] often used to define a complete set of independent operators 59 operators for CP-even and restricted-flavour scenario.

$$\sigma = |\mathcal{A}_{\rm SM}|^2 + \sum_i \frac{c_i^{(6)}}{\Lambda^2} 2\text{Re}\left(\mathcal{A}_i^{(6)}\mathcal{A}_{\rm SM}^*\right) + \sum_i \frac{\left(c_i^{(6)}\right)^2}{\Lambda^4} \left|\mathcal{A}_i^{(6)}\right|^2 + \sum_{i < j} \frac{c_i^{(6)}c_j^{(6)}}{\Lambda^4} 2\text{Re}\left(\mathcal{A}_i^{(6)}\mathcal{A}_j^{(6)*}\right)$$

$$\begin{split} & \mathcal{E} \text{ffect on observables} \\ \sigma &= |\mathcal{A}_{\text{SM}}|^2 + \sum_i \frac{c_i^{(6)}}{\Lambda^2} 2\text{Re}\left(\mathcal{A}_i^{(6)}\mathcal{A}_{\text{SM}}^*\right) + \sum_i \frac{\left(c_i^{(6)}\right)^2}{\Lambda^4} \left|\mathcal{A}_i^{(6)}\right|^2 + \sum_{i < j} \frac{c_i^{(6)}c_j^{(6)}}{\Lambda^4} 2\text{Re}\left(\mathcal{A}_i^{(6)}\mathcal{A}_j^{(6)*}\right) \\ & \checkmark \end{split}$$ SM

• Just need quadratic parameterisation in $\frac{c_i}{\Lambda^2}$ & a measurement can be used to constrain c_i .

- Want observables that: (i) have large $p_i/\sigma_{\rm SM}$ (ii) we can measure precisely.
- Caveat: dimension 8 operators also enter at $\frac{I}{\Lambda^4}$, but are often neglected.

• Just need quadratic parameterisation in $\frac{c_i}{\Lambda^2}$ & a measurement can be used to constrain c_i .

- Want observables that: (i) have large $p_i/\sigma_{\rm SM}$ (ii) we can measure precisely.
- Caveat: dimension 8 operators also enter at $\frac{1}{\Lambda 4}$, but are often neglected.
- Aim for global fits of many operators with many input physics measurements.

• Aim for global fits of many operators with many input physics measurements.

JHEP 04 (2021) 279

Combined Higgs fit

$\mathsf{CMS}\,pp(\gamma\gamma)\to\tau\tau$

Other recent exclusive studies: CMS $\gamma\gamma \rightarrow WW/ZZ$ JHEP 07 (2023) 229 ATLAS and CMS PbPb($\gamma\gamma$) $\rightarrow \tau\tau$ PRL 131 (2023) 151802, PRL 131 (2023) 151803

CMS-PAS-SMP-23-005

$\mathsf{CMS} \gamma \gamma \to \tau \tau$

• Use LHC as a photon collider:

• The process probes the magnetic (a_{τ}) and electric (d_{τ}) dipole moments of the tau lepton, which are related to SMEFT operators:

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re} \left[C_{\tau\gamma} \right]$$
$$\delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im} \left[C_{\tau\gamma} \right]$$
$$C_{\tau\gamma} = \left(\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W} \right)$$

CMS-PAS-SMP-23-005

$\mathsf{CMS} \gamma \gamma \to \tau \tau$

- Search for $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ channels.
- "Exclusivity" requirement of maximum 1 track close to the tau decay products is crucial to select di-photon production.
- Invariant mass of tau decay products provides observable sensitive of new physics:

CMS-PAS-SMP-23-005

CMS $\gamma\gamma \rightarrow \tau\tau$ limits

CMS-PAS-SMP-23-005

EFT @ ATLAS and CMS

ATLAS $W^{\pm}W^{\pm}jj$

Other recent diboson EFT studies: ATLAS $W\gamma jj$ arXiv:2403.02809 ATLAS WZjj arXiv:2403.15296 ATLAS ZZ arXiv:2310.04350 CMS $W\gamma jj$ PRD 108 (2023) 032017 CMS exclusive WW, ZZ JHEP 07 (2023) 229

arXiv:2312.00420

ATLAS $W^{\pm}W^{\pm}jj$

- Same-sign W boson production possible in SM via triple & quartic gauge boson vertices and Higgs exchange.
- Contributions to quartic vertex (and not triple vertex) appear first at dimension 8 in SMEFT.

- Analysis selects $\ell^{\pm}\ell^{\pm}jj$ events consistent with vector-boson scattering high m(jj), large $\Delta y(jj)$.
- Differential cross-section are measured in the paper, but EFT limits done by direct fit to the reconstructed $m(\ell \ell)$ distribution and two control regions.
- 8 operators considered, either in 1D or 2D fits.

<u>arXiv:2312.00420</u>

- EFT predictions can violate unitarity this is implemented in the limits by applying a WV invariant mass requirement on the signal which varies according to the sensitivity.
- Competitive limits with earlier CMS measurement [PLB 809 (2020) 135710].

- Not yet at SM sensitivity for hh, but can probe non-SM contributions.
- Interesting case, where alternate HEFT Lagrangian formalism is used, in addition to SMEFT interpretation.
 - Couplings of HH to fermions / gluons decoupled from H to fermions / gluons, test c_{hhh}, c_{tthh} and c_{gghh}.
- Analysis separates events by $m^*(bb\gamma\gamma)$ different operators contribute to different regions.

 $m^*(bb\gamma\gamma) = m(bb\gamma\gamma) - (m(bb) - m_H) - (m(\gamma\gamma) - m_H)$

• No deviation from SM.

JHEP 01 (2024) 066

ATLAS $t\bar{t}Z + t\bar{t}\gamma$

ATLAS $t\bar{t}Z + t\bar{t}\gamma$

• Recent differential cross-section measurements of $t\bar{t}Z$ and $t\bar{t}\gamma$ production:

Simultaneous EFT fit to the two distributions, with two complex WC: C_{tZ} , $C_{t\gamma}$

 $C_{tZ} = \cos \theta_W C_{tW} - \sin \theta_W C_{tB}$ $C_{t\gamma} = \sin \theta_W C_{tW} + \cos \theta_W C_{tB}$

arXiv:2312.04450

<u>arXiv:2403.09452</u>

ATLAS $t\bar{t}Z + t\bar{t}\gamma$

• Example limit (other WC are marginalised over):

Combination of measurements significantly improves sensitivity.

- Multiple physics processes can lead to $t\bar{t}$ + additional leptons: $t\bar{t}H, t\bar{t}Z, t\bar{t}W, t\bar{t}t\bar{t}, tZq, tHq$.
 - Single SMEFT operator can affect many of the processes.
- Analysis looks at events with 2 (same charge), 3 or 4 leptons, at least 2 jets (1 b-jet).
 - Events are subdivided according to number of jets, b-jets and lepton charge.
- Observables:
 - Most ttZ like events: $p_T(Z \to \ell^+ \ell^-)$.
 - Others: p_T of pair of jet / lepton 4-vectors with highest p_T .

<u>JHEP 12 (2023) 068</u>

- EFT fits to reconstructed level data, 26 EFT operators are considered.
- Fits done with either:
 - All Wilson coefficients free-floating (profiled)
 - Only one / two are free and others are fixed to 0.

 Powerful analysis - limits not degrading going from individual (red) to profiled (black) fits.

• Direct comparisons to ATLAS result challenging due to operator definitions / sets.

JHEP 12 (2023) 068

Summary

- No discovery of resonant new physics at the LHC (SM)EFT is tool of choice for parameterising effects of heavy new physics on our measurements.
- EFT limits produced from a diverse range of analyses.
 - Number / choice of operators still a challenge.
 - Both strategies of fitting directly reconstructed level data vs fitting measured cross-section have been deployed.
- EWPO + Higgs + diboson global EFT <u>fit</u> done by ATLAS in 2022.
 - Many new results since then -> stay tuned!

Backup

$\mathsf{CMS} \gamma \gamma \to \tau \tau$

• N(tracks) distribution without selection, but with $m_{\rm vis} > 100$ GeV:

CMS-PAS-SMP-23-005

EFT @ ATLAS and CMS

Figure 2: Summary of the event selection categorization. The details for the selection requestion ments are described in Sections 5.1–5.3.

ATLAS ttZ measurement

• Recent differential cross-section of $t\bar{t}Z$ production:

ATLAS ttZ measurement

• Results for top-Boson operators:

Strong constraints when allowing only one operator to be non-zero (independent, blue).

Weaker constraints once all operators are non-zero (marginalised, yellow).

Comparing ATLAS and CMS for ttZ

• Very different analysis strategies - would like to compare:

(Top) quark - vector boson operators - Marginalised limits	Following arXiv:1802.07237	
- ATLAS - CMS	Dimension 6 operators $\tilde{C}_i \equiv C_i$	$/\Lambda^2$
	_	
	CMS, $t\bar{t} + Z/W/H$, tZq , tHq [1]	42 fb
	CMS, $tZq / t\bar{t}Z$ [2]	138 fb-
	CMS, $t\bar{t}\gamma$ [3]	137 fb
	CMS, ttH , $ttI\nu$, $tt\ell\ell$, $t\ell\ell q$, tHq , $tttt$ [6]	138 fb ⁻
	CMS, tt + boosted Z/H [7]	138 fb-
	CMS, $t \bar{t} \gamma$ [3]	137 fb
	ATLAS, <i>t_tZ</i> diff. cross section [8]	140 fb-
	CMS, $t\bar{t} + Z/W/H$, tZq , tHq [1]	42 fb-
	CMS, <i>tZq / tī</i> Z [2]	138 fb-
<u> </u>	ATLAS, Top polarization [5]	139 fb-
etW	CMS, $t\bar{t}H$, $t\bar{t}I\nu$, $t\bar{t}\ell\ell$, $t\ell\ell q$, tHq , $t\bar{t}t\bar{t}$ [6]	138 fb-
	CMS, $t\bar{t}$ + boosted Z/H [7]	138 fb-
	ATLAS, $t\bar{t}Z$ diff. cross section [8]	140 fb-
<i>۲</i> [/]	ATLAS, Top polarization [5]	139 fb-
2tW	ATLAS, <i>tīZ</i> diff. cross section [8]	140 fb ⁻
	CMS, $t\bar{t} + Z/W/H$, tZq , tHq [1]	42 fb-
Ъ́ьw	CMS, $t\bar{t}H$, $t\bar{t}l\nu$, $t\bar{t}\ell\ell$, $t\ell\ell q$, tHq , $t\bar{t}t\bar{t}$ [6]	138 fb-
	CMS, $t\bar{t}$ + boosted Z/H [7]	138 fb ⁻
Ĉ₁g/ g s	ATLAS, $t\bar{t} \ell$ + jets boosted [4]	139 fb-
	CMS, $t\bar{t} + Z/W/H$, tZq , tHq [1]	42 fb-
ČtG	CMS, $t\bar{t}H$, $t\bar{t}l\nu$, $t\bar{t}\ell\ell$, $t\ell\ell q$, tHq , $t\bar{t}t\bar{t}$ [6]	138 fb-
—	ATLAS, <i>ttZ</i> diff. cross section [8]	140 fb
[1] JHEP 03 (2021) 095 [4] JHEP 06 (2022) 063 [7] PRD 108 032008 [2] JHEP 12 (2021) 083 [5] JHEP 11 (2022) 040 [8] ATLAS-CONF-2023-065 * [3] JHEP 05 (2022) 091 [6] arXiv:2307.15761 * * Preliminary	EFT formalism is employed at different levels of experimental analyses	
-4 -2 0 2 4	1	

 Unfortunate difference between ATLAS and CMS for definition of top-Z operators:

$$c_{tZ} = -\sin \theta_W C_{tB} + \cos \theta_W C_{tW},$$

$$c_{\varphi Q}^- = C_{HQ}^{(1)} - C_{HQ}^{(3)},$$

• Would be good to harmonise.

ATLAS $W^{\pm}W^{\pm}jj$

- Operators:
 - $O_{S0,1,2}$: four covariant derivatives of the Higgs field.
 - $O_{M0,1,7}$: two Higgs field covariant derivatives, two field-strength tensors.
 - $O_{T0,1,2}$: four field-strength tensors.
 - O_{S0}, O_{S2} are hermitian conjugate, so assume $f_{S0} = f_{S2} = f_{S02}$

ATLAS $W^{\pm}W^{\pm}jj$

• Unitarity bounds:

ATLAS Higgs EFT

• Eigen-vector basis:

arXiv:2402.05742

ATLAS Higgs EFT

• Relative importance of statistical and systematic uncertainties:

arXiv:2402.05742

• Limits on benchmark HEFT points:

Benchmark	C _{hhh}	c_{tth}	c_{ggh}	c _{gghh}	C _{tthh}
SM	1.00	1.00	0	0	0
1	5.11	1.10	0	0	0
2	6.84	1.03	-1/3	0	1/6
3	2.21	1.05	1/2	1/2	-1/3
4	2.79	0.90	-1/3	-1/2	-1/6
5	3.95	1.17	1/6	-1/2	-1/3
6	-0.68	0.90	1/2	1/4	-1/6
7	-0.10	0.94	1/6	-1/6	1

• Limits on benchmark SMEFT:

ATLAS Boosted top

ATLAS Boosted top

