

Radiative and electroweak penguin results from Belle and Belle II Pablo Goldenzweig On behalf of the Belle & Belle II Collaborations

Moriond EW 24-31 March 2024 La Thuile

Introduction

- Flavor-changing neutral-current transitions are excluded in the SM at tree-level due to the GIM mechanism.
- Excellent place to **search for New Physics** that could interfere with radiative and electroweak penguin loops.
- In addition to $b \to s\nu\bar{\nu}, b \to d\ell\ell$, and $b \to (s, d)\gamma$, decays, we will report on the **first Belle + Belle II** search for $B^0 \to \gamma\gamma$:
 - No direct interaction
 between the b and d quarks;
 - An effective FCNC is induced by a 1-loop or penguin diagram.

Upgrade of KEKB and Belle to achieve **30x peak** \mathscr{L}

Datasets

Analysis presented today use Belle &/or Belle II datasets

Belle II

 $B^+ \to K^+ \nu \bar{\nu}$ $B \to K^* \gamma$

Evidence for $B^+ \to K^+ \nu \bar{\nu}$

- FCNC transition with precise SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}.$
- Including long-distance double charged current decay* PRD **107**, 014511 (2023)

• Belle II is ideally suited to measure B-decays with significant E_{miss} :

- Constraints from well-known initial state kinematics;
- Lower average multiplicity at the $\Upsilon(4S)$ compared to hadronic collisions.

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Analysis strategy

Low purity (0.8%), high efficiency (8%)

High purity (3.5%), low efficiency (0.4%)

Small size of overlap results in 10% increase in precision over the ITA result alone.

See talk by S. Moneta for HTA result.

 π^{-}

 π^+

$^+ \rightarrow K^+ \nu \bar{\nu}$ ITA

- Train two consecutive BTDs. Signal efficiency checked with $B^+ \rightarrow J/\psi K^+$ decays:
- Remove J/ψ and correct K^+ kinematics to match $K^+\nu\bar{\nu}$.

Detailed studies described in arXiv

- Contribution of $B \to X_c(K_L^0 X)$ corrected using π -enriched SB.
- Modeling of $\epsilon_{\text{detection}}^{K_L^0}$ in the calorimeter corrected using $e^+e^- \rightarrow \gamma \phi (\rightarrow K^0_S K^0_L)$.
- Closure test: $\mathscr{B}(B^+ \to \pi^+ K_S^0) = (2.5 \pm 0.5) \times 10^{-5}$. Compatible with PDG: (2.38 ± 0.08) × 10^{-5}

Bins follow theoretical predictions JHEP 02, 184

+ $\rightarrow K^+ \nu \bar{\nu}$ Combination

ITA

- $\mathscr{B} = [2.7 \pm 0.5 \pm 0.5] \times 10^{-5}$
- Significance of the excess 3.5σ
- 2.9σ deviation from SM

HTA

- $\mathscr{B} = [1.1^{+0.9+0.8}_{-0.8-0.5}] \times 10^{-5}$
- Significance of the excess 1.1σ
- 0.6σ deviation from SM
- Perform likelihood-level combination:
- Include correlations among common systematic uncertainties;
- Common data events excluded from ITA sample.

Compatibility between ITA and HTA results at 1.2σ

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = [2.3 \pm 0.5(\text{stat})^{+0.5}_{-0.4}(\text{syst})] \times 10^{-5}$

Significance of the excess is 3.5σ

 2.7σ deviation from the SM prediction

$B^+ \rightarrow K^+ \nu \bar{\nu}$ Implications

Many papers have been written to interpret this result

Lepton [flavor] universality (red) does not intersect with Belle II data (yellow) below the grey band (90% CL excluded).

PRD 109, 015006 (2024)

$F^+ \rightarrow K^+ \nu \bar{\nu}$ Implications

Many papers have been written to interpret this result

Lepton [flavor] universality (red) does not intersect with Belle II data (yellow) below the grey band (90% CL excluded).

Very active effort within Belle II to provide results for other $b \rightarrow s \nu \bar{\nu}$ channels.

Belle SL tag PHYSICAL REVIEW D 96, 091101(R) (2017)

TABLE I.Results

(a) Observed signal yield (corrected for fitting bias) in each channel. The first error is statistical and the second is systematic.

Channel	Observed signal yield	Significanc
$\overline{K^+ u ar u}$	$17.7 \pm 9.1 \pm 3.4$	1.9σ
$K^0_S u ar u$	$0.6\pm4.2\pm1.4$	0.0σ
$K^{ ilde{*}+} u ar{ u}$	$16.2\pm7.4\pm1.8$	2.3σ
$K^{*0} u ar{ u}$	$-2.0 \pm 3.6 \pm 1.8$	0.0σ
$\pi^+ u ar u$	$5.6 \pm 15.1 \pm 5.9$	0.0σ
$\pi^0 u ar u$	$0.2\pm5.6\pm1.6$	0.0σ
$ ho^+ u ar u$	$6.2 \pm 12.3 \pm 2.4$	0.3σ
$ ho^0 u ar u$	$11.9 \pm 9.0 \pm 3.6$	1.2σ

(b) Expected (median) and observed upper limits on the branching fraction at 90% C.L. The observed limits include the systematic uncertainties.

Channel	Efficiency	Expected limit	Observed lin
$K^+ u ar u$	2.16×10^{-3}	0.8×10^{-5}	1.9×10^{-5}
$K^0_{ m S} u ar{ u}$	0.91×10^{-3}	1.2×10^{-5}	1.3×10^{-5}
$K^{*+} u ar{ u}$	0.57×10^{-3}	2.4×10^{-5}	6.1×10^{-5}
$K^{*0} u ar{ u}$	0.51×10^{-3}	2.4×10^{-5}	1.8×10^{-5}
$\pi^+ u ar u$	2.92×10^{-3}	1.3×10^{-5}	1.4×10^{-5}
$\pi^0 u ar u$	1.42×10^{-3}	1.0×10^{-5}	0.9×10^{-5}
$ ho^+ u ar u$	1.11×10^{-3}	2.5×10^{-5}	3.0×10^{-5}
$ ho^0 u ar u$	0.82×10^{-3}	2.2×10^{-5}	4.0×10^{-5}

Search for $b \Rightarrow d \to K^+ \nu \bar{\nu}$

• FCNC proc $\overline{\chi}$ ses with multiple claimed particiles in final state with $\overline{\nu}$ $S \not = dt \chi (t^{-}) \leq S \not = (10^{-8})$. $\chi'' \qquad \nu_{W^+} \qquad Z' \qquad \nu_{W^+} \qquad$

- NP signature may be **uniquely observed** in $b \to d\ell^+\ell^-$ if sensitive to quark flavors.
- LHCb has observed final states with muons and π^{\pm} is mesons $(\mathcal{W}b^{\pm}, \mathcal{W})$: $\overline{u}, \overline{c}, \overline{t}$ $\overline{\mathcal{W}}(B^{\pm} \rightarrow \pi^{\pm}\mu^{\pm}\mu^{\pm}) = (1.78 \pm 0.23) \times 10^{4}$, $\mathcal{W}(\overline{B^{0}} \rightarrow \rho^{0}\mu^{\pm}\mu^{\pm}) = (1.98 \pm 0.53) \times 10^{-6}$, $\mathcal{B}(B^{0} \rightarrow \pi^{\pm}\pi^{-}\mu^{\pm}\mu^{-}) = (2.11 \pm 0.52) \times 10^{-8}$.

JHEP **10** (2015) 34, PLB **743** (2015) 46

 $\nu_{\tau} u$

 μ in the form e and μ final states

$b \rightarrow d\ell^+\ell^-$ Analysis strategy

- BDT trained to suppress dominant $e^+e^- \rightarrow q\bar{q}$ background:
 - Trained separately for each decay channel and optimized using Punzi's FOM.
- Suppression of peaking *B* backgrounds:
 - J/ψ and $\psi(2S)$ mass veto;
 - Photon conversions and π_{Dalitz}^0 decays suppres
- Control channel $B \to J/\psi(\ell^+\ell^-)\pi$ used to calibrate signal:

ssed with
$$q_{ee}^2 > 0.045 \text{ GeV}^2$$
.

Measured ${\mathcal B}$ consistent within PDG uncertainty

channel	\mathcal{B}	PDG
$B^0 \to J/\psi(\mu\mu)\pi^0$	$(0.975 \pm 0.090) \times 10^{-6}$	$0.990 \times$
$B^0 \to J/\psi(ee)\pi^0$	$(1.091 \pm 0.119) \times 10^{-6}$	$0.991 \times$
$B^+ \to J/\psi(\mu\mu)\pi^+$	$(2.397 \pm 0.118) \times 10^{-6}$	$2.337 \times$
$B^+ \to J/\psi(ee)\pi^+$	$(2.140 \pm 0.174) \times 10^{-6}$	$2.340 \times$

$$\Delta E \equiv E_{B^0}^{\text{c.m.}} - E_{\text{beam}}^{\text{c.m.}}$$

$b \rightarrow d\ell^+\ell^-$ Results

- 2D fit to $\Delta E \& M_{\rm bc}$ to extract signal yield.
- World's **best limits** for all $b \to d\ell^+ \ell^$ channels: $\mathscr{B} < (3.8 - 47) \times 10^{-8}$.

	$N_{ m sig}$	$\mathcal{B}^{\mathrm{UL}}$ (10^{-8})	${\cal B}~(10^{-8})$
$B^{0} \rightarrow \eta \ell^{+} \ell^{-}$ $B^{0} \rightarrow \eta e^{+} e^{-}$ $B^{0} \rightarrow \eta \mu^{+} \mu^{-}$	$\begin{array}{c} 0.5^{+1.0}_{-0.8} \\ 0.0^{+1.4}_{-1.0} \\ 0.8^{+1.5}_{-1.1} \end{array}$	< 4.8 < 10.5 < 9.4	$\begin{array}{c} 1.3^{+2.8}_{-2.2} \pm 0.1 \\ 0.0^{+4.9}_{-3.4} \pm 0.1 \\ 1.9^{+3.4}_{-2.5} \pm 0.2 \end{array}$
$\blacksquare B^+ \to \pi^+ e^+ e^-$	$0.1^{+2.5}_{-1.6}$	< 5.4	$0.1^{+2.7}_{-1.8} \pm 0.1$ \bullet
$B^{0} \rightarrow \pi^{0} \ell^{+} \ell^{-}$ $B^{0} \rightarrow \pi^{0} e^{+} e^{-}$ $B^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$	$ \begin{array}{c} -1.8^{+1.6}_{-1.1} \\ -2.9^{+1.8}_{-1.4} \\ -0.5^{+3.6}_{-2.7} \end{array} $	< 3.8 < 7.9 < 5.9	$-2.3^{+2.1}_{-1.5} \pm 0.2 \\ -5.8^{+3.6}_{-2.8} \pm 0.5 \\ -0.4^{+3.5}_{-2.6} \pm 0.1$

 $B^+ \rightarrow \pi^+ \mu^+ \mu^$ from LHCb

$b \rightarrow d\ell^+\ell^-$ Results

• World's first limits for $\omega \ell^+ \ell^-$, $\rho^+ \ell^+ \ell^-$, and $\rho^0 e^+ e^-$.

	$N_{ m sig}$	$\mathcal{B}^{\mathrm{UL}}$ (10^{-8})	${\cal B}~(10^{-8})$
$B^{0} \rightarrow \omega \ell^{+} \ell^{-}$ $B^{0} \rightarrow \omega e^{+} e^{-}$ $B^{0} \rightarrow \omega \mu^{+} \mu^{-}$	$1.0^{+1.8}_{-1.3}\\-0.3^{+3.2}_{-2.5}\\1.7^{+2.3}_{-1.6}$	< 22.0 < 30.7 < 24.9	$\begin{array}{r} 6.4^{+10.7}_{-7.8}\pm0.5\\ -^{+26.5}_{-20.8}\pm0.2\\ _{-7.5}^{+10.8}\pm0.6\end{array}$
$\blacksquare B^0 \to \rho^0 e^+ e^-$	$5.6^{+3.5}_{-2.7}$	< 45.5	$23.6^{+14.6}_{-11.2} \pm 1.1$
$B^+ \rightarrow \rho^+ \ell^+ \ell^-$ $B^+ \rightarrow \rho^+ e^+ e^-$ $B^+ \rightarrow \rho^+ \mu^+ \mu^-$	$\begin{array}{c} 0.4^{+2.3}_{-1.8} \\ -4.4^{+2.3}_{-2.0} \\ 3.0^{+4.0}_{-3.0} \end{array}$	< 18.9 < 46.7 < 38.1	$2.5^{+14.6}_{-11.8} \pm 0.2 \\ -38.2^{+24.5}_{-17.2} \pm 3.4 \\ 13.0^{+17.5}_{-13.3} \pm 1.1$

- Additional information provided with first measurements of neutral and electron final states.
- Approaching SM values.
- No sign of lepton non-universality.

Statistically limited but consistent with $B^0 \to \rho^0 \mu^+ \mu^$ from LHCb

Measurement of $B \rightarrow K^* \gamma$

- The first radiative penguin decay. Now a precision measurement.
- SM \mathscr{B} predictions have large uncertainties (30%) related to form factors.
- **CP** and **isospin asymmetries** are theoretically **clean** due to cancelation of form factor uncertainties.
- SM prediction of A_{CP} is small (~1%) and those for Δ_{0+} range from 2-8% with an uncertainty $\sim 2\%$.
- Belle observed evidence of isospin violation at 3.1σ . PRL 119, 191802 (2017) lacksquare

In addition to \mathscr{B} , $A_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B)}$ targets include: $\Delta A_{CP} = A_{CP}(B^0 \to K^{*0}\gamma) - A$ $\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(E)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(E)}$

Long way since the first **CLEO result in 1993**

$$\frac{\rightarrow K^* \gamma)}{\rightarrow K^* \gamma)}$$

$$E_{CP}(B^+ \rightarrow K^{*+} \gamma)$$

$$\frac{B^+ \rightarrow K^{*+} \gamma)}{B^+ \rightarrow K^{*+} \gamma)}$$

$B \rightarrow K^* \gamma$ Analysis strategy

- Reconstruct $K^* \to K^+ \pi^-, K_S^0 \pi^0, K^+ \pi^0, K_S^0 \pi^+$.
- Classifiers to reject boosted photons from asymmetric $\pi^0 \rightarrow \gamma\gamma$ and $\eta \rightarrow \gamma\gamma$ decays, and continuum events.
- Fit to $M_{\rm bc}$ and ΔE to extract yields.
- See Niharika Rout's talk on Hadronic B Decays at Belle and Belle II for details

0.06

0.05

0.04

0.03

0.02

Significant effort at Belle II to improve K_{c}^{0} reconstruction 0.08 and systematics: 0.07

- Studied using $D^+ \to K^0_S \pi^+ d\epsilon$ Candidates
 - Kinematic region of the sigr
 - 0.01 Determine systematic error 0.5 length for signal range of p = (v. v, v. v) [UV v/V].

$K_{\rm S}^0$ kinematics between signal and control mode in simulation

(Normalized to unit area)

$B \rightarrow K^* \gamma$ Results

$$\mathscr{B}[B^0 \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5}$$
$$\mathscr{B}[B^+ \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5}$$
$$\mathscr{B}[B \to K^*\gamma] = (4.12 \pm 0.08 \pm 0.11) \times 10^{-5}$$

$$A_{CP}[B^0 \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%$$
$$A_{CP}[B^+ \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%$$
$$A_{CP}[B \to K^{*}\gamma] = (-2.3 \pm 1.9 \pm 0.3)\%$$

$$\Delta A_{CP} = (2.2 \pm 3.8 \pm 0.7) \%$$
$$\Delta_{0+} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1) \%$$

Consistent with WA and SM.

Similar sensitivity wrt **Belle due to improved** $K_{\rm S}^0$ efficiency and ΔE resolution.

Measurement of $B \rightarrow \rho \gamma$

Suppressed relative to $b \to s\gamma$ by $\frac{|V_{td}|^2}{|V_{tc}|^2} \sim 0.04.$

Targets:

• $\mathscr{B}(B^{+,0} \to \rho^{+,0}\gamma)$, A_{CP} , and the isospin asymmetry with CP-averaged \mathscr{B} 's:

$$A_{\rm I} = \frac{c_{\rho}^2 \Gamma(B^0 \to \rho^0 \gamma) - \Gamma(B^{\pm} \to \gamma)}{c_{\rho}^2 \Gamma(B^0 \to \rho^0 \gamma) + \Gamma(B^{\pm} \to \gamma)}$$

 2σ tension between WA and SM prediction

Full Belle & run 1 **Belle II datasets:**

Previous Belle result used 657 fb^{-1} PRL 101, 111801 (2008)

 $A_{\rm I}^{\rm WA} = (30^{+16}_{-13})\%$ $A_{\rm I}^{\rm SM} = (5.2 \pm 2.8) \%$

PRD 88, 094004 (2013)

$B \rightarrow \rho \gamma$ Analysis strategy

- Challenge due to large backgrounds from continuum:
 - Driven by $\pi^0(\eta) \rightarrow \gamma \gamma$, where one γ has asymmetrically large energy.
- Train 2 MVA classifiers to veto π^0/η and to further reduce continuum.

- •Large background from $B \to K^* \gamma$ decays ($K \to \pi$) mis-identified):
 - For $\rho^0 \to \pi^+ \pi^-$, the π with the larger kaon identification is redefined as a K.
 - Include $M_{K\pi}$ as a fitting variable, along with ΔE and $M_{\rm hc}$, to extract the signal.

$B \rightarrow \rho \gamma$ Results

- World's most precise measurements.
- $A_{\rm I}$ consistent with SM at 0.6σ .

$$\mathscr{B} \left(B^+ \to \rho^+ \gamma \right) = \left(12.87^{+2.02+1.00}_{-1.92-1.17} \right) \times 10^{-7}$$
$$\mathscr{B} \left(B^0 \to \rho^0 \gamma \right) = \left(7.45^{+1.33+1.00}_{-1.27-0.80} \right) \times 10^{-7}$$
$$A_{CP} \left(B^+ \to \rho^+ \gamma \right) = \left(-8.4^{+15.2+1.3}_{-15.3-1.4} \right) \%$$
$$A_{\rm I} \left(B \to \rho \gamma \right) = \left(14.2^{+11.0+8.9}_{-11.7-9.1} \right) \%$$

Dominant systematics:

- \mathscr{B} : Selection, peaking $K^*\gamma$ yield
- A_{CP} : Peaking $B\bar{B}A_{CP}$
- A_I : Uncertainty from f_{+-}/f_{00} and lifetime ratio of B^+ to B^0 .

PRD 107 L031102 (2023), PTEP 2022, 083C01 (2022)

 $B \rightarrow \rho \gamma$

Search for $B^{0} \rightarrow \gamma \gamma$

- Very rare decay with $\mathscr{B}_{SM} = (1.4^{+1.4}_{-0.8}) \times 10^{-8}$.
- Highly CKM suppressed relative to $B_s \rightarrow \gamma \gamma$.
- Challenging due to 2γ final state; large backgrounds.

Previous searches	
L3 (73 pb ⁻¹)	<
Belle (104 fb^{-1})	<
BaBar (426 fb ^{-1})	<

JHEP 12, 169 (2020)

Limits

 3.9×10^{-5} 6.2×10^{-7} 3.2×10^{-7}

- Peaking background in $M_{\rm bc}$ from combinations of back-to-back offtime photons \rightarrow suppressed using photon timing cuts.
- Veto candidates from asymmetric π^0 and η decays.
- Dominant (90%) background contamination from
- Event shape variables used in a BDT for discrimination.

$$e^+e^- \to q\bar{q}.$$

Significant improvement in ΔE resolution in Belle II

$B^0 \rightarrow \gamma \gamma$ Results

- Simultaneous 3D unbinned ML fit to $M_{\rm bc},\,\Delta E$ and $C_{\rm BDT}'$
 - Combined signal yield = $11.0^{+6.5}_{-5.5}$.
- 2.5σ significance.

- Higher observed significance than expected (1.2σ) .
- Sensitivity approaching SM prediction.
- Uncertainties are comparable between Belle and Belle II even though smaller dataset.
- Sx improvement over previous best UL.

- Robust radiative and electroweak penguin program exploiting the full Belle and Run 1 Belle II datasets.
- Many more analyses in the pipeline.

Expectations for the uncertainties on the signal strength μ (relative to the SM strength)

Decay	$1 \mathrm{ab}^{-1}$	$5 \mathrm{ab}^{-1}$	$10 \mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55~(0.37)	0.28(0.19)	$0.21 \ (0.14)$
$B^0 \to K^0_{\rm S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05~(0.70)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	$0.83 \ (0.59)$
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)

Base (Target)

<u>Snowmass submission</u> (most up-to-date prospects document)

0.5

Run 2 is underway

50 ab⁻ 0.11(0.08)0.59(0.40)0.53(0.38)0.34(0.23)

Extra material

$B^+ \rightarrow K^+ \nu \bar{\nu}$ ITA Systematics

TABLE I. Sources of systematic uncertainty in the ITA, corresponding correction factors (if any), their treatment in the fit, their size, and their impact on the uncertainty of the signal strength μ . The uncertainty type can be "Global", corresponding to a global normalization factor common to all SR bins, or "Shape", corresponding to a bin-dependent uncertainty. Each source is described by one or more nuisance parameters (see the text for more details). The impact on the signal strength uncertainty σ_{μ} is estimated by excluding the source from the minimization and subtracting in quadrature the resulting uncertainty from the uncertainty of the nominal fit.

Source	Correction	Uncertainty type, parameters	Uncertainty size	Impact on σ_{μ}
Normalization of $B\overline{B}$ background		Global, 2	50%	0.90
Normalization of continuum background		Global, 5	50%	0.10
Leading B -decay branching fractions		Shape, 5	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	20%	0.49
p-wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1	30%	0.02
Branching fraction for $B \to D^{**}$, 	Shape, 1	50%	0.42
Branching fraction for $B^+ \to K^+ n\bar{n}$	q^2 dependent $O(100\%)$	Shape, 1	100%	0.20
Branching fraction for $D \to K^0_L X$	+30%	Shape, 1	10%	0.14
Continuum-background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1	100% of correction	0.01
Integrated luminosity		Global, 1	1%	< 0.01
Number of $B\overline{B}$		Global, 1	1.5%	0.02
Off-resonance sample normalization		Global, 1	5%	0.05
Track-finding efficiency		Shape, 1	0.3%	0.20
Signal-kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7	O(1%)	0.07
Photon energy		Shape, 1	0.5%	0.08
Hadronic energy	-10%	Shape, 1	10%	0.37
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1	8%	0.22
Signal SM form-factors	q^2 dependent $O(1\%)$	Shape, 3	O(1%)	0.02
Global signal efficiency		Global, 1	3%	0.03
Simulated-sample size		Shape, 156	O(1%)	0.52

$B \rightarrow K^* \gamma$ Systematics

 \mathscr{B}

Source	$K^{*0}[K^+\pi^-]\gamma$	$ \boxed{K^{*0}[K^0_{\rm S}\pi^0]\gamma} $	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K^0_{\rm S}\pi^+]\gamma$				
B counting	1.5	1.5	1.5	1.5		A	5	
f^{\pm}/f^{00}	1.6	1.6	1.6	1.6		^{T}C	\mathbf{p}	
$\gamma { m selection}$	0.9	0.9	0.9	0.9	Source	$K^{*0}[K^+\pi^-]\gamma$	$K^{*+}[K^+\pi^0]\gamma$	$K^{*+}[K$
π^0 veto	0.7	0.7	0.7	0.7	Fit bias	0.1	0.2	0.5
η veto	0.2	0.2	0.2	0.2	Signal PDF model	0.1	0.1	0.
Tracking efficiency	0.5	0.5	0.2	0.7	KDE modelling	0.1	0.4	0.1
π^+ selection	0.2	_	_	0.2	BCS	0.1	0.5	0.5
K^+ selection	0.4	—	0.4	—	K^+ asymmetry	_	0.6	-
$K^0_{\rm S}$ reconstruction		1.4	_	1.4	π^+ asymmetry	_		0.0
$\pi^{\widetilde{0}}$ reconstruction		3.9	3.9		$K^+\pi^-$ asymmetry	0.3		
χ^2 selection	0.2	1.0	0.2	1.0	Total	0.4	0.9	0.
CSBDT selection	0.3	0.4	0.4	0.3				
Candidate selection	0.1	1.0	0.6	0.2				
Fit bias	0.1	0.9	0.5	0.2				
Signal PDF model	0.1	0.4	0.3	0.2				
KDE PDF model	0.1	0.8	0.6	0.2				
Simulation sample size	0.2	0.8	0.4	0.5				
Misreconstructed signal	_	1.0	1.0					
Total	2.6	5.4	4.9	3.2				

$B^0 \rightarrow \gamma \gamma$ Systematics

Signal yield

Source	Belle (%)	Belle II (%)
Photon Detection Efficiency	4.0	2.7
Reconstruction Efficiency (ϵ_{rec})	0.6	0.5
Number of $B\overline{B}$	1.3	1.5
f^{00}	2.5	2.5
$C_{\rm BDT}$ requirement	0.4	0.9
π^0/η veto	0.3	0.4
Timing requirement efficiency	2.8	
Total (sum in quadrature)	5.7	4.1

Signal efficiencies

Source	Belle	Belle
	(events)	(ever
Fit bias	+0.16	+0.1
PDF parameterization	$+0.56 \\ -0.48$	$+0.30 \\ -0.32$
Shape Modeling	+0.06	+0.0
Total (sum in quadrature)	$\begin{array}{c} +0.58 \\ -0.48 \end{array}$	$+0.30 \\ -0.32$

