Measurement of hadronic cross sections via initial state radiation at BaBar

Léonard Polat on behalf of the *BaBar* collaboration

leonard.polat@lphne.in2p3.fr

Rencontres de Moriond (Electroweak), 30/03/2024

Introduction

Hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (a_{μ}) obtained by measuring cross section of $e^+e^- \rightarrow$ hadrons processes: largest input from $e^+e^- \rightarrow \pi^+\pi^-$.

Theory Initiative (2023)

Current tensions between:

- predictions from dispersion approach and direct measurement (up to ~5σ),
- predictions from dispersion
 approach and lattice QCD
 (2.1σ),

Introduction

Hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon (a_{μ}) obtained by measuring cross section of $e^+e^- \rightarrow$ hadrons processes: largest input from $e^+e^- \rightarrow \pi^+\pi^-$.

Last BaBar result 15 years ago.

New upcoming BaBar analysis to measure the $e^+e^- \rightarrow \pi^+\pi^-(\gamma)/\mu^+\mu^-(\gamma)$ cross sections with:

full data samples, improved precision, new measurement method.

Léonard Polat

Moriond EW - 30/03/2024

The BaBar experiment & Simulation samples

Asymmetric e^+ (3 GeV) – e^- (9 GeV) collider located at SLAC (USA). Operated from 1999 to 2008 at $\Upsilon(4S)$ resonance energy ($\sqrt{s} = 10.58 \text{ GeV/c}^2$). Collected 424.2 fb⁻¹ at $\Upsilon(4S) + 43.9 \text{ fb}^{-1}$ off-resonance.

Monte Carlo (MC) signals: $\pi^+\pi^-\gamma_{ISR}$, $\mu^+\mu^-\gamma_{ISR}$

- *Phokhara*: 10× data stat., full NLO ISR. (*full* = with large angle ISR & ISR-FSR interference)
- AfkQED: smaller stat., NLO+NNLO ISR.

MC backgrounds:

- Phokhara/AfkQED: $K^+K^-\gamma_{ISR}$
- JETSET: $e^+e^- \rightarrow q\overline{q} \ (q = u, d, s, c)$,
- KK2f: $e^+e^- \rightarrow \tau^+\tau^-$,
- AfkQED: $e^+e^- \rightarrow X\gamma_{\text{ISR}} (X = n\pi/K + m\pi^0, ...)$.

Reminder: Measurement of the $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ cross section

B. Aubert *et al.* (BABAR Collaboration) <u>Precise Measurement of the e+e- $\rightarrow \pi + \pi - (\gamma)$ Cross Section with the Initial State Radiation Method at BABAR</u> Phys. Rev. Lett. 103, 231801 – Published 3 December 2009

J. P. Lees *et al.* (BABAR Collaboration) <u>Precise measurement of the e+e- $\rightarrow \pi + \pi - (\gamma)$ cross section with the initial-state radiation method at BABAR</u> Phys. Rev. D 86, 032013 – Published 28 August 2012

Results of the 2009 / 2012 BaBar analysis

 $e^+e^- \rightarrow \pi^+\pi^-(\gamma_{\rm FSR})$ cross section by $\sqrt{s'}$ intervals (in GeV) 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.9 0.9-1.2 1.2-1.4 1.4-2.0 2.0-3.0 Sources trigger/ filter 5.32.7 1.91.00.70.60.40.42.13.13.1tracking 3.8 2.11.1 1.7 3.1 π -ID 6.210.110.12.52.44.210.110.14.3 5.250.0background 3.51.03.07.012.0acceptance 1.61.6 1.01.01.6 1.61.61.6kinematic fit (χ^2) 0.30.30.90.90.90.90.90.9correl $\mu\mu$ ID loss 3.02.03.01.32.03.010.010.0 $\pi\pi/\mu\mu$ non-cancel. 2.71.61.1 2.75.15.11.4 1.3unfolding 1.02.7 2.71.01.3 1.01.01.0 ISR luminosity 3.43.4 3.43.43.43.43.43.45.052.413.88.1 10.26.513.919.8sum (cross section)

Relative systematic uncertainties (in 10⁻³) on the

Léonard Polat

Moriond EW - 30/03/2024

New features in the upcoming analysis

Previous analysis (2009 / 2012):

- Runs 1 to 4 (232 fb⁻¹ at $\Upsilon(4S)$),
- π/μ separation using particle identification (PID), one of dominant systematics,
- Momentum selection on each track: p > 1 GeV/c (more reliable μ ID),
- Total relative systematic uncertainty $(0.5 1 \text{ GeV}/c^2) = 0.50\%$.

New analysis (202?):

- Runs 1 to 6 (424.2 fb⁻¹ + 43.9 fb⁻¹ on/off Y(4S) resonance) and no PID requirement: larger statistics, smaller stat. & syst. uncertainties,
- New method to separate all processes: fit of angular distributions in 2-particle CM frame $\rightarrow \theta_{\pi}^* =$ angle between trk⁻ and $\gamma_{\rm ISR}$ in $\pi\pi$ CM frame,
- π/μ separation at large $\cos \theta_{\pi}^*$: release p > 1 GeV/c cut \rightarrow increase statistics.
- \rightarrow independent method allowing to check the previous BaBar result + improve the precision.

Léonard Polat

2023: Measurement of add. radiation in $e^+e^- \rightarrow \pi^+\pi^-\gamma_{\rm ISR}(\gamma)/\mu^+\mu^-\gamma_{\rm ISR}(\gamma)$

Measurement of additional radiation in ISR processes

J. P. Lees *et al.* (BABAR Collaboration) <u>Measurement of additional radiation in the initial-state-radiation processes $e+e-\rightarrow \mu+\mu-\gamma$ and $e+e-\rightarrow \pi+\pi-\gamma$ at BABAR Phys. Rev. D 108, L111103 – Published 21 December 2023</u>

NLO fits

Study on data (full on/off $\Upsilon(4S)$) and **both Phokhara and AfkQED** using $\pi^+\pi^-(\gamma)/\mu^+\mu^-(\gamma)$ generated samples.

<u>2 fits</u>:

- $\gamma_{\text{ISR}}\gamma_{\text{LA}}$ fit: additional large angle (LA) γ (0.35 2.45 rad).
- $\gamma_{ISR}\gamma_{SA}$ fit: additional small angle (SA) γ fitted, assumed collinear with one of the beams.

<u>3 categories</u>:

- NLO LA sample: $\chi^2_{LA} < \chi^2_{SA}$, $E_{\gamma_{LA}} > 200$ MeV.
- **NLO SA sample**: $\chi^2_{LA} > \chi^2_{SA}$, $E^*_{\gamma_{SA}} > 200$ MeV.
- LO sample: events below the thresholds.

Larger background in $\pi\pi\gamma$ process, suppressed with optimized BDT-based **2D**- χ^2 selection (98-99% signal efficiency).

Léonard Polat

NLO LA fits

FSR and LA ISR separation:

 \rightarrow minimum angle between additional γ_{LA} and charged tracks $\theta_{\min(trk,\gamma_{LA})}$:

No LA ISR generated by AfkQED

Fraction / (0.1 GeV)

Ratio Data/MC

1.2

 \Rightarrow fit to the data with FSR template (AfkQED) and LA ISR template (Phokhara - AfkQED). FSR and LA ISR separation at 20 deg.

AfkQED:

Phokhara:

NLO SA fits

Moriond EW - 30/03/2024

NNLO fits

Category	$\mu\mu$	$\pi\pi$
	$m_{\pi\pi} < 1.4 \mathrm{GeV}/c^2$	$0.6 < m_{\pi\pi} < 0.9 \text{GeV}/c^2$
LO	0.7716(4)(14)	0.7839(5)(12)
NLO SA-ISR	0.1469(3)(36)	0.1401(2)(16)
NLO LA-ISR	0.0340(2)(9)	0.0338(2)(9)
NLO ISR	0.1809(4)(35)	0.1739(3)(20)
NLO FSR	0.0137(2)(7)	0.0100(1)(16)
NNLO ISR a	0.0309(2)(38)	0.0310(2)(39)
NNLO FSR b	0.00275(6)(9)	0.00194(12)(50)
NNLO 2LA c	0.00103(3)(1)	0.00066(4)(4)

 a NNLO ISR = 2SA-ISR or SA-ISR + LA-ISR

^bNNLO FSR = SA-ISR + LA-FSR

 $^c\mathrm{NNLO}$ 2LA = 2LA-ISR, LA-ISR + LA-FSR or 2LA-FSR

NNLO contribution obtained after NLO (Phokhara) subtraction from data.

Significant NNLO signals found. 2SA dominant category.

Good agreement with **AfkQED** up to 2.3 GeV.

Léonard Polat

NNLO correction to NLO SA results (Phokhara)

<u>NNLO 2SA feedthrough</u>: $2\gamma_{SA}$ from same beam not distinguished from single NLO γ_{SA} \rightarrow correction to $\mathbf{E}^*_{\gamma_{SA}}$ from NLO $\gamma_{ISR}\gamma_{SA}$ fit in Phokhara.

Better agreement in shape but excess of \sim 20% in Phokhara. (\sim

 $\mu^{+}\mu^{-}\gamma_{ISR}^{}\gamma_{SA}^{}$ Fraction / (0.1 GeV) Fraction / (0.1 GeV) $\pi^+\pi^-\gamma_{ISR}^-\gamma_{SA}$ 10⁻² 10^{-2} 10⁻³ 10⁻³ Signal data Signal data PHOKHARA • PHOKHARA 10-4 10⁻⁴ Before NNLO correction Data/MC Data/MC Before NNLO correction 1.2 <mark>۱.2</mark>⊧ Data/MC Data/MC 0 0.6 0.6 After NNLO correction .2 After NNLO correction 1.2 ****** 0 0.8 0.6 0.6 0.5 3.5 4 4.5 5 1.5 2.53.5 0.5 1.5 2.5 4.5 3 4 5 $E^*_{\gamma_{SA}}$ (GeV) $E^*_{\gamma_{SA}}$ (GeV)

Summary and consequences

Results of the additional radiation study in ISR processes:

- Significant NNLO contribution: $(3.47 \pm 0.38)\%$ for muons and $(3.36 \pm 0.39)\%$ for pions.
- Large excess of NLO photons generated by Phokhara at small angles.
- Good performance from AfkQED in simulating data at NLO & NNLO. Slightly high data/MC ratios (1.061 ± 0.015 for muons and 1.043 ± 0.010 for pions) up to max. generated energy of additional photons.

<u>Consequences for the</u> $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ <u>cross section measurement analyses</u>:

(see also Z. Zhang talk on 05/04, Moriond QCD)

- <u>BaBar analysis unaffected</u>: NLO + higher orders already included. Correction of (0.3 ± 0.1) × 10⁻³ for acceptance, negligible compared to 0.5% systematic uncertainty on cross section.
- Other experiments relying on Phokhara for additional radiations and apply more stringent LO selection (KLOE, BESIII) might be affected → <u>larger systematics</u>?...
- New BaBar analysis crucial to better understand the tensions between the different experiments.

From $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ cross section to a_μ

Cross section of $e^+e^- \rightarrow X$ at **reduced energy** $\sqrt{s'} = m_X$ (X = any final state) from measurement of $e^+e^- \rightarrow X\gamma_{ISR}$:

$$s' = s \left(1 - 2E_{\gamma_{\rm ISR}}^* / \sqrt{s} \right),$$

 $E^*_{\gamma_{\rm ISR}} = \gamma_{\rm ISR}$ energy in center of mass (CM) frame.

Measuring the yield $N_{X\gamma_{\rm ISR}}$ gives the bare cross section $\sigma_X^0(\sqrt{s'})$ (excluding vacuum polarization):

$$\frac{dN_{X\gamma_{\rm ISR}}}{d\sqrt{s'}} = \frac{dL_{\rm ISR}^{eff}}{d\sqrt{s'}} \varepsilon_{X\gamma_{\rm ISR}}(\sqrt{s'}) \sigma_X^0(\sqrt{s'}) \quad (1)$$

- $\varepsilon_{X\gamma_{\text{ISR}}} = \text{detection efficiency in acceptance} \rightarrow \text{from simulation with data corrections.}$
- L_{ISR}^{eff} = effective ISR luminosity \rightarrow from $X = \mu\mu(\gamma_{\text{FSR}})$ in (1) and σ_X^0 taken from QED computation.

Ratio of $\pi\pi$ and $\mu\mu$ mass spectra \Rightarrow cancellation of VP \Rightarrow ratio of (1) =

$$\frac{\sigma^{0}_{\pi\pi(\gamma_{\rm FSR})}(\sqrt{s'})}{\sigma_{\rm pt}(\sqrt{s'})(1+\delta^{\mu\mu}_{\rm FSR})(1+\delta^{\mu\mu}_{\rm add.\,FSR})}$$

- $\sigma_{\rm pt} = 4\pi \alpha^2/3s' = {\rm cross\ section\ for\ pointlike\ charged\ fermions.}$
- $(1 + \delta^{\mu\mu}_{(add.) FSR}) = corrections for lowest-order (additional) FSR contributions.$

Dispersion relation:

$$a_{\mu}^{\pi\pi(\gamma_{\rm FSR}),\,\rm LO} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds' \ K(s') \ \sigma_{\pi\pi(\gamma_{\rm FSR})}^0(s')$$

where K(s') is a QED kernel, relates the bare cross section to the lowest-order contribution of $\pi\pi(\gamma_{FSR})$ to a_{μ} .

$$K(s) = x^{2} \left(1 - \frac{x^{2}}{2}\right) + (1 + x)^{2} \left(1 + \frac{1}{x^{2}}\right) \left[\ln(1 + x) - x + \frac{x^{2}}{2}\right] + x^{2} \ln x \frac{1 + x}{1 - x} , \quad x = (1 - \beta_{\mu})(1 + \beta_{\mu}), \quad \beta_{\mu} = \text{muon velocity}.$$

Léonard Polat

QED test with $\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$ events

Comparison of $\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$ cross section with QED:

ratio of $m_{\mu\mu}$ in data and simulation.

- **<u>Data</u>**: background-subtracted.
- <u>Simulation</u>: AfkQED, normalized to data lumi., data/MC corrections (detector, reco.), corrections for NLO limitations (Phokhara/AfkQED comparison with fast simulation) ⇒ <u>equivalent to NLO QED</u>.

QED prediction for $m_{\mu\mu}$:

$$\frac{dN_{\text{QED}}}{dm} = L_{ee} \sigma_{\text{Phokhara}}^{\text{NLO}} \left(\frac{1}{N_0} \frac{dN}{dm}\right)_{\text{fullsim}}^{\text{AfkQed,M>8}} \times \frac{\left(\frac{1}{N_0} \frac{dN}{dm}\right)_{\text{fastsim}}^{\text{Phokhara}}}{\left(\frac{1}{N_0} \frac{dN}{dm}\right)_{\text{fastsim}}^{\text{AfkQed,M>8}} \times C_{\text{data/MC}},$$

- N₀: generated number of events,
- *dN/dm*: mass spectrum of events satisfying all criteria,
- $M > 8 \Leftrightarrow m_{X\gamma_{\rm ISR}} > 8 \, {\rm GeV}/c^2$,
- $C_{\text{data/MC}}$: data/MC corrections for detector efficiencies.

$$\frac{\sigma_{\mu\mu(\gamma)\gamma_{\rm ISR}}^{\rm data}}{\sigma_{\mu\mu(\gamma)\gamma_{\rm ISR}}^{\rm NLO \ QED}} = 1 + (4.0 \pm 1.9 \pm 5.5 \pm 9.4) \times 10^{-3}$$

Léonard Polat

Moriond EW - 30/03/2024

Additional radiation study: track and $\gamma_{\rm ISR}$ selections

Two tracks of opposite charges, each with:

- $\theta: 0.4 2.45 \text{ rad},$
- $p_{\rm T} > 0.1 \, {\rm GeV}/c^2$,
- at least 15 hits in drift chamber,
- $doca_{xy} < 5 \text{ mm}$ (distance of closest approach to collision point in transverse plane),
- $|\Delta z| < 6$ cm (distance along beam direction),
- $\left(\frac{E_{cal}/p-1}{0.15}\right)^2 + \left(\frac{dE/dx_{DCH}-690}{150}\right)^2 < 1$ (reduces electron contamination),
- No PID: consistent with cross section measurement analysis.

ISR photon candidate:

- $E_{\gamma}^* > 4$ GeV,
- largest E^* if multiple photons,
- θ : 0.35 2.40 rad.

Any number of additional tracks and photons ($E_{\gamma} > 50$ MeV) allowed.

NLO & NNLO fits description

- $\gamma_{ISR}\gamma_{LA}$ fit: additional large angle (LA) γ (0.35 2.45 rad) in EMC (threshold: energy > 50 MeV). Measured energy/angle of γ_{LA} used in fit.
- $\gamma_{\text{ISR}}\gamma_{\text{SA}}$ fit: additional small angle (SA) γ . No measured information: γ_{SA} assumed collinear with one of the beams. Additional photons in EMC ignored.

<u>4-momentum conservation</u>: use measured ISR energy/direction + momenta/angles of both tracks. Tracks assumed to be pions: similar to cross section measurement analysis.

<u>Asymmetry of EMC response when</u> $E_{\gamma} < E_{true}$: ISR photon energy transformed to symmetric (gaussian) with Novosibirsk function $\rightarrow Z$ variable (3 parameters), initialized with measured E_{γ} .

 χ^2 minimized according to 4-momentum conservation in terms of Z variable(s). Fitted energy obtained from returned Z values.

Same process in NNLO fits.

Optimization of 2D- χ^2 selection

BDT optimization with TMVA

A. Hoecker *et al.* <u>TMVA - Toolkit for Multivariate Data Analysis</u> arXiv:physics/0703039 (2007)

Different optimization depending on mass range: $< 0.6 \text{ GeV}/c^2$, $0.6 - 0.9 \text{ GeV}/c^2$, $0.9 - 1.4 \text{ GeV}/c^2$

<u>BDT features</u>: $\chi^2_{\gamma_{\text{ISR}}\gamma_{\text{SA}}}$ and $\chi^2_{\gamma_{\text{ISR}}\gamma_{\text{LA}}}$.

<u>Figure of merit</u>: $\frac{S}{\sqrt{S+B}}$ (*S* (*B*) = integrated signal (background) to the right of the selection on BDT response).

BDT selection translated to very close cut-based selection (red outline in figures = rejected by BDT).

NLO SA fits: collinear assumption

Assumption that γ_{SA} is collinear to the beam in $\gamma_{ISR}\gamma_{SA}$ fit induces bias in fitted $E^*_{\gamma_{SA}}$ energy: systematic shift $E^*_{\gamma_{SA}} <$ generated energy.

Shift increases with true angle to the beam and energy. Check with ratio of fitted energies in SA and LA fits (CM frame) \rightarrow bias is actually <u>well reproduced</u> by simulation.

Data/Phokhara disagreement: OC calculation

Zero-constraint (0C) calculation of **angle** and **energy** of additional photon (γ_{0C}):

- 4-momentum conservation in $e^+e^- \rightarrow X\gamma_{\rm ISR}\gamma_{\rm 0C}$,
- use momenta of both tracks + direction of γ_{ISR} ,
- $E_{\gamma_{ISR}} \& \gamma_{0C}$ within 0.5 rad to γ_{ISR} direction ignored \rightarrow avoid fake photons from shower fluctuations.

Independent of NLO SA fit, no collinear assumption.

- NLO SA in Phokhara overestimated compared to data.
- Similar rate of NLO LA in Phokhara and data.
- Consistent results between data and AfkQED for LO ($E^*_{\gamma_{0C}} < 200$ MeV) and NLO ($E^*_{\gamma_{0C}} > 200$ MeV).
- **Mismatch** between LO and NLO in data/**Phokhara** ratio, positive slope at $E^*_{\gamma_{0C}} > 200$ MeV.

 \Rightarrow not due to collinear assumption.

Angular resolution of the OC calculation

Angular resolution in $\mu\mu\gamma(\gamma)$: comparison of calculated OC polar angle $\theta_{\gamma_{0C}}$ with fitted LA angle $\theta_{\gamma_{LA}}$.

Good data/MC agreement in the core of $\theta_{\gamma_{0C}} - \theta_{\gamma_{LA}}$ (rms ≈ 30 mrad).

Data more important in the tails: transfer of photons from dominant sharp radiation peak (collinear with beam) towards large angles

 \rightarrow data/MC ratio enhanced by 10% in central $\theta_{\gamma_{0C}}$ region.

NNLO 2SA fits

Acceptance correction in Phokhara

Effect of overestimated hard NLO ($E_{\gamma}^* > 50$ MeV) in Phokhara:

Ratio of NLO/LO acceptances computed as a function of mass in $\mu\mu\gamma_{\rm ISR}(\gamma)$ events.

- <u>Bottom plot</u>: *hard NLO excluded*. Same acceptance between final states at LO and virtual+soft NLO (better than 1 per mil).
- <u>Top plot</u>: *full NLO*. Acceptance affected, variations within ±1%.

→ Acceptance correction strongly correlated between $\mu\mu\gamma_{\rm ISR}(\gamma)$ and $\pi\pi\gamma_{\rm ISR}(\gamma)$ processes, thus largely reduced in $\pi\pi/\mu\mu$ ratio for cross section measurement (overall correction of 0.9981 ± 0.0004).

Induces negligible systematic bias of (0.3 \pm 0.1) \times 10⁻³.

Comparison of $\pi^+\pi^-$ cross sections with HVPTools combination

Léonard Polat

Moriond EW - 30/03/2024

M. Davier, A. Hoecker, A.M. Lutz, B. Malaescu, Z. Zhang $\frac{\text{Tensions in } e+e-\rightarrow \pi+\pi-(\gamma) \text{ measurements } [...]}{arXiv:2312.02053 (2023)}$